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ABSTRACT

Background: Diabetic nephropathy (DN), a common complication of type 2 diabetes (T2D),

significantly contributes to end-stage kidney disease (ESKD). Despite conventional treatments

aimed at slowing disease progression, there is a pressing need for novel therapies. This study

evaluates  the potential  therapeutic impact  of adipose tissue derived stromal vascular  fraction

(SVF) on early diabetic nephrotoxicity in a rat model. 
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Materials and methods: Thirty-one male albino rats  were divided into control and diabetic

groups, with the latter further split into untreated (T2Da) and SVF-treated (T2Db) subgroups.

Biochemical, histological, immunohistochemical, and morphometric analyses were conducted. 

Results: We  demonstrated  that  SVF  treatment  reduced  oxidative  stress,  lowered  serum

creatinine,  and  improved  renal  architecture  by  mitigating  fibrosis  and  cellular  infiltration,

suggesting enhanced tissue regeneration and reduced inflammation. SVF also facilitated cellular

repair, indicated by increased endothelial cell proliferation and reduced glomerular damage. 

Conclusions: This study underscores SVF's potential as a promising regenerative approach for

managing early-stage DN, warranting further research to elucidate its mechanisms.

Keywords: SVF, diabetes, nephropathy, glomeruloscleosis

INTRODUCTION

Type 2 diabetes (T2D) mellitus has heterogeneous etiology. Hyperglycemia arising from

impaired insulin action, production, or both, contributing to its pathogenesis. Diabetes mellitus is

expected  to  affect  439  million  people  worldwide  by  2030.  Microvascular  complications

particularly diabetic nephropathy (DN), the most common complication of T2D, often resulting

from prolonged disease duration. Since DN is a major risk factor for end-stage kidney disease

(ESKD), early detection is essential to halting its progression [39]. Over the past few decades,

there has been a strong correlation between the rise in obesity rates and the prevalence of T2D

and the systemic immunological inflammation it causes. More than half of all instances of ESKD

worldwide are currently caused by diabetic kidney disease (DKD), the most prevalent kind of

chronic kidney disease [19].

To determine the risk of DKD, biochemical markers such as blood glucose levels, serum

creatinine, and the number of neutrophils and lymphocytes are essential [42].  Comparing the

neutrophil to lymphocyte ratio (NLR) to other inflammatory markers is of particular importance

for detecting the risk of DKD in T2DM patients. Close monitoring of renal function should be

carried out in situations of high NLR [26].

The standard treatment for individuals with or at risk of DKD has traditionally included

renin-angiotensin system inhibitors, along with strict blood pressure and glucose control. Even

while these treatments have been successful in postponing the deterioration in kidney function,
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T2D induced ESKD is  still  prevalent,  especially  in  middle-aged and obese individuals  [45].

Accordingly, new therapy strategies are necessary to successfully stop the progression of DKD

and enhance glomerular function and albuminuria outcomes [25].

A key goal in modern medicine is to restore normal function in acute or degenerative

medical disorders by biologically enhancing of tissue regeneration and healing. In regenerative

medicine,  mesenchymal  stem/stromal  cells  (MSCs),  have  garnered  significant  attention,

particularly for their role in promoting repair. With encouraging outcomes in preclinical models,

adipose tissue and its stromal vascular fraction (SVF) have recently been demonstrated to be a

readily available source for MSCs and their products [34]. SVF has exerted therapeutic efficacy

and  safety  throughout  different  clinical  studies  by  improvement  of  tissue  regeneration  [18].

Additionally,  SVF-gel  formed  of  granular  fat,  enriched  with  adipose  stem  cells  is  recently

applied in treatment of various skin lesions [26].

This study used serological, biochemical, histological, histochemical, immunohistochemical, and

morphometric investigations to explore the potential role of stromal vascular fraction therapy in

treating early nephrotoxicity induced by T2D in adult male albino rats.

MATERIALS AND METHODS

Materials

Drugs 

Sigma Company (St. Louis, MO, USA) provided streptozotocin in a 1 gram (g) vial in

powdered  form.  A digital  scale  was  used  to  weigh  the  necessary  dosage,  which  was  then

dissolved in citrate buffer.

Adipose tissue collection, Processing and Isolation of SVF

Approximately 20 g of adipose tissue was harvested from the abdominal fat of each rat

under aseptic conditions following a small skin incision in the lower abdomen under general

anesthesia  (phenobarbitone  sodium,  60 mg/kg).  The tissue  was  treated  using under  a  sterile

laminar  airflow.  The fat  was finely minced,  then rinsed three times with phosphate-buffered

saline  (PBS)  before  an  equal  volume  of  0.1% collagenase  type  I  was  added.  In  a  rotating

incubator, the mixture was incubated for an hour at 37°C while being constantly stirred. After

digestion,  the  collagenase  was  neutralized  by  adding  an  equivalent  volume  of  Dulbecco's
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Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum. The collagenase was

then separated from the SVF by centrifuging it for 10 minutes at 800 g. [20]. To get rid of any

remaining  collagenase,  the  SVF was  then  rinsed  three  times  with  PBS.  Following the  final

centrifugation cycle, trypan blue staining and hemocytometer counting were performed.

In vitro SVF expansion

The cell pellet was suspended in media at a 10:1 media-to-cell volume ratio. With a final media

volume of 10 ml, cells were planted in a culture flask at a density of 30–50% confluence. The

flasks were kept in an atmosphere with 5% CO  at 37°C. The adherent cells were able to achieve₂

80–90% confluence after the media was changed after 24 hours to exclude non-adherent cells.

After that,  1 × 10  ⁶ adipose-derived mesenchymal stem cells  (AD-MSCs) were injected into the

culture after being resuspended in PBS [36].

Immunophenotyping of AD-MSCs (flow cytometry) 

After the second passage, stem cells were washed and incubated for 5–10 minutes with a 10%

trypsin EDTA solution. The cell pellet was then treated with a primary antibody against the cell

surface marker CD44 in 1% bovine serum albumin and incubated for one hour. A secondary

antibody was added for 30 minutes prior to analysis using a fluorescence-activated cell sorting

(FACS) analyzer [31].

Animals and experimental design

Thirty-one male albino rats, each weighing 100 grams and aged four weeks, were used in

this investigation. The animals were housed at the Animal House of the Faculty of Medicine,

Kasr Al-Ainy, Cairo University, under standard conditions: temperature of 25 ± 2°C, humidity of

60 ± 10%, and a 12-hour light/dark cycle (lights on at 6:00 am). They were individually housed

in wire cages with free access to food and water. The experiment adhered to the Cairo University

Institutional  Animal  Care  and  Use  Committee  (IACUC)  guidelines  (CU-III-F-23-24)  and

followed ARRIVE guidelines [35].

The rats were randomly assigned to the following groups:

1. Donor group: five rats were used for adipose tissue collection, SVF isolation, and flow

cytometry for immunophenotyping. 
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2. Control group (C): six rats were maintained on a normal chow diet (ND) for 10 weeks

and 3 days, with an average final weight of 150–180 grams. They were divided into two

subgroups:

 (Ca): three rats received a single intraperitoneal (IP) injection of 0.5 ml citrate buffer

[the solvent for streptozotocin (STZ)] 4 weeks after the experiment’s start.

 (Cb): three rats received 0.5 mL citrate buffer as in subgroup Ca. After an additional 4

weeks and 3 days, they were administered 1 mL phosphate-buffered saline (PBS) (the

SVF suspension) via IP injection once.

3. Type 2 diabetic (T2D) group: twenty rats were fed a high-fat diet (HFD) consisting of

60% fat, 20% carbohydrates, and 20% protein [28] for 4 weeks, reaching a body weight

of  250–280 grams to induce  insulin resistance. Following an overnight  fast,  each  rat

received a single low-dose intraperitoneal injection of STZ (40 mg/kg, dissolved in 0.5

mL citrate buffer at pH 4.2–4.5) [21].  Blood glucose levels were measured after three

days, and rats with levels exceeding 200 mg/dL were diagnosed with T2D [22]. Four

weeks post-diabetes confirmation, 6 rats were sacrificed for histological confirmation of

early nephropathy [12]. The remaining diabetic rats were further equally subdivided into

the following subgroups:

 T2Da (spontaneous recovery subgroup): seven rats were observed for an additional 2

weeks without intervention.

 T2Db (SVF treated subgroup):  Seven rats each received an IP injection of adipose-

derived (AD) SVF containing 1 × 106 Ferridex-labeled cells suspended in 1 mL PBS,

with a follow-up period of 2 weeks [14].

All animals were sacrificed after 10 weeks and 3 days from the start of the experiment.

Animal sacrifice and specimen collection

Control, diabetic, and treated rats were anesthetized with phenobarbitone sodium (60 mg/kg, IP)

and euthanized by cervical dislocation [15, 44]. A midline incision was performed to expose and

excise the kidneys, with further processing and analyses.

Serological evaluation
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 Prior to sacrifice, blood samples were drawn from the tail vein for blood glucose and creatinine

levels estimation after 10 weeks and 3 days from the start of the experiment.

Biochemical assessment

Left  kidney specimens  were homogenized in  1 mL normal  saline  and stored at  –20°C.  The

homogenates were centrifuged at 1000 g for 15 minutes, and the supernatants were stored at –

20°C in Eppendorf tubes [37]. Using colorimetric assay kits, tissue homogenates were analyzed

for malondialdehyde (MDA), oxidative stress marker  [4],  catalase (CAT), antioxidant enzyme

[46].  And hydroxyproline, collagen content marker  [48],  were determined using biodiagnostic

colorimetric assay kits in tissue homogenates (Biodiagnostic, Cairo, Egypt). 

Histological study 

 Right kidney specimens were preserved in 10% formal saline for 48 hours, and 5 μm sections

were prepared from paraffin blocks for staining.  Haematoxylin and eosin (H&E) was used for

general tissue morphology [24]. Masson’s Trichrome (MT) was used for collagen fiber detection

[5].

Histochemical study

 Perls’ Prussian Blue (Pb) stain was used to detect the homing of Feridex-labeled AD-MSCs

within the kidney samples. AD-MSCs were obtained from in vitro SVF expansion [11].

Immunohistochemical study [38]

 Proliferating Cell Nuclear Antigen (PCNA) was used as a marker for cell regeneration.

PCNA immunostaining  employed  a  prediluted  primary  mouse  monoclonal  antibody  (Clone

PC10, Lab Vision Corporation, Fremont, CA, USA) with 0.1 mL added for 60 minutes. Human

skin served as a positive control, and a negative control was prepared by omitting the primary

antibody [10].

Morphometric study

Five non-overlapping fields were analyzed using Leica Qwin 500 LTD software (Cambridge,

UK).  Quantitative  assessments  included  glomerular  area,  the  number  of  PCNA-positive
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endothelial and mesangial nuclei, and PCNA-positive interstitial nuclei area. Additionally, the

collagen fiber area percentage in the cortex and medulla was calculated in binary mode.

Statistical Study [7]

Analysis  of  variance  (ANOVA)  was  used  to  compare  the  quantitative  data,  which  was

summarised as means and standard deviations. To determine which group pairs were responsible

for the significant difference, the Bonferroni post-hoc test was employed after every significant

(sig)  ANOVA. Statistical  significance was defined as  p-values  less  than  0.05.  The statistical

package of the social sciences (SPSS) version 18.0 for Windows (IBM Corporation, Armonk,

NY, USA) was used to do the calculations.

RESULTS

Immunophenotyping of AD-MSCs

Adipose derived MSCs appeared mostly spindle (Fig. 1A), with immunophenotyping indicating

a 93.9% positive expression rate (Fig. 1B). 

Serological assessment

The mean values of blood glucose were (89.51 ± 2.53 mg/dL), (310.09 ± 9.11 mg/dL) and (100.4

± 7.54 mg/dL) in groups C, subgroups T2Da and T2Db respectively. While, the mean values of

serum creatinine were  (0.39 ± 0.03 mg/dL),  (1.61 ± 0.15 mg/dL) and (0.54 ± 0.06 mg/dL)

respectively.  Notably,  the  Spontaneous  recovery  subgroup  (T2Da  subgroup)  exhibited  a

significant increase in blood glucose and serum creatinine levels compared to both the control

group  (C group) and the  SVF treated subgroup (T2Db subgroup), as illustrated in (Figs. 1C

and 1D).

Biochemical assessment

Biochemical assessments of oxidative stress markers revealed that the malondialdehyde (MDA)

and catalase (CAT) levels were (4.72 ± 0.04 µmol/g) and (12.94±0.55 U/g) in C group, (14.93 ±

2.54 µmol/g) and (4.85 ± 1.01 U/g) in T2Da subgroup, (5.02 ± 0.24 µmol/g) and (11.21 ± 1.15

U/g) in  T2Db subgroup.  The  T2Da subgroup showed a significant increase in MDA and a

decrease in CAT compared to both the C group and T2Db subgroup, as seen in (Fig. 1E).
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Histological results

In H&E stained sections, Figure 2 showed in C group, the renal cortex exhibiting distal

tubules with wide lumen, proximal tubules with strong acidophilic cytoplasm, and Malpighian

corpuscles with patent  Bowman's space.  The collecting tubules  in  the medulla  showed wide

lumen and pale cytoplasm (Figs. 2 A, B). The T2Da subgroup showed dense cellular infiltration

among the cortical tubules, a number of distended glomeruli with obliterated Bowman's space,

shrunken glomeruli,  vacuolations in the cortical  tubules and congestion among the collecting

tubules (Figs. 2C–F). 

Figure  3  showed  in  T2Da subgroup  multiple  fibroblasts  detected around  congested

peritubular capillaries and multiple vacuolations detected among the collecting tubules (Figs. 3A,

B). In T2Db subgroup, minimal cellular infiltrate was found among the cortical tubules and few

shrunken glomeruli were evident in few fields. Minimal congestion and few vacuolations were

observed among apparently normal collecting tubules (Figs 3C–F).

In Trichrome stained renal sections, Figure 4 revealed in C group, fine collagen fibers

between  cortical  and  collecting  tubules  (Figs.  4A,  B).  In  T2Da  subgroup,  dense  collagen

bundles were seen in the cortical  and reticular in collecting tubules (Figs. 4C, D).  In  T2Db

subgroup, a few regions between the cortical or collecting tubules, occasionally displayed dense

or reticular collagen bundles (Figs. 4E, F).

Histochemical results

 In Pb stained sections, Figure 4 demonstrated in T2Db subgroup numerous positively stained

spindle cells dispersed throughout the renal glomeruli, cortical and collecting tubules (Figs. 4G,

H).

Immunohistochemical results

 In PCNA immunostained sections, Figure 5 recruited in C group few +ve nuclei of the lining

of proximal and distal tubules, in addition to some +ve flat nuclei and occasional +ve round

nuclei among the glomeruli. Few +ve nuclei of the lining of collecting tubules were seen (Figs.

5A–C). In T2Da subgroup,  multiple +ve round nuclei and few +ve flat nuclei were observed

among distended glomeruli,  besides some +ve round nuclei and few +ve flat nuclei were seen
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among shrunken glomeruli. In addition,  multiple +ve nuclei were detected among the cortical

and collecting tubules, that appeared as flat interstitial nuclei between the cortical and collecting

tubules by close observation (Figs. 5D–I). In T2Db subgroup, multiple +ve flat nuclei and few

+ve round nuclei were seen among the glomeruli. In addition, some +ve nuclei were evident

among  the  tubules  at  the  corticomedullary  junction,  identified  as +ve  flat  interstitial  nuclei

between the tubules by close observation (Figs. 5J–L). 

Morphometric results

 Comparing the T2Da subgroup to the C group and T2Db subgroup, the morphometric analysis

showed a substantial increase in mean glomerular area and mean collagen area% in both the

cortex and the medulla.  Furthermore,  T2Da subgroup had significantly lower mean count  of

PCNA +ve endothelial nuclei. Whereas, T2Da subgroup had significantly higher mean count of

PCNA +ve mesangial nuclei and mean area of PCNA +ve interstitial nuclei (Tab. 1).

DISCUSSION

Over half of end-stage kidney disease is caused by diabetic kidney disease (DKD). Due to the

higher frequency of T2DM linked to obesity, even in its early stages, DKD has become the most

common chronic kidney disease worldwide [26]. The current study sought to assess the potential

effectiveness of the stromal-vascular fraction and create an experimental model of T2D-induced

early  nephrotoxicity  using  serological,  biochemical,  histological,  histochemical,

immunohistochemical and morphometric studies.

The untreated T2Da subgroup’s serum glucose and creatinine levels were significantly higher

than those of the control (C) group and the SVF-treated T2Db subgroup. This is consistent with

the complicated pathophysiology of type 2 diabetes, where hyperglycemia need careful control to

avoid complications [8]. The cellular components of SVF, a developing treatment for type 2

diabetes, have been shown to activate angiogenesis, regenerate pancreatic islet beta cells, lower

inflammation,  and reduce  oxidative stress  [23].  In  both human and animal  models,  elevated

creatinine levels are known to be a sign of early renal impairment [2, 3]. SVF therapy has been

demonstrated to lower serum creatinine levels [6], which is in line with the results in our T2Db

subgroup.
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 In the present study, elevated MDA and decreased CAT levels in the T2Da subgroup indicated a

significant oxidative imbalance. Oxidative stress, which is associated with type 2 diabetes, is

connected  to  insulin  resistance,  ß-cell  dysfunction,  metabolic  dysregulation,  and  diabetic

consequences such as nephrotoxicity [32]. As shown in the T2Da subgroup, oxidative stress is

commonly characterized by elevated tissue MDA and decreased CAT levels. The potential of

SVF to restore the oxidant-antioxidant balance is suggested by the improvement in oxidative

markers observed in the T2Db subgroup that received SVF treatment.

  Histological examination showed clear variations in kidney shape between the groups.

The  appearance  of  fibroblasts  surrounding  crowded  peritubular  capillaries,  congestion  in

collecting  tubules,  and  extensive  cellular  infiltration  among  cortical  tubules  all  suggested

inflammation in the untreated T2Da subgroup. This is consistent with research on inflammatory

cell  infiltration  in  diabetic  nephropathy  [41].  Furthermore,  poor  renal  function  has  been

associated with venous congestion, a characteristic of congestion-related nephropathy [9].

Further observations in the T2Da subgroup included multiple distended and shrunken

glomeruli  and  vacuolations  among  cortical  and  collecting  tubules,  suggesting  progressive

inflammatory changes leading to glomerulosclerosis and glomerular atrophy. This was confirmed

morphometrically and indicates tubular degenerative changes Fareed et al. [13] and Ma et al.

[30]. reported that high levels of reactive oxygen species (ROS) in diabetic nephropathy activate

pathways that damage the antioxidant defense system, disrupt vascular permeability, and induce

glomerular proliferation before atrophy. Glomerular shrinkage and tubulointerstitial  injury,  as

seen in our study, are also well-documented features of diabetic nephropathy [1, 29]. 

According to our results, there was less cellular infiltration, less glomerular shrinkage,

less collecting tubule congestion, and less tubular epithelial cell vacuolation in the SVF-treated

T2Db subgroup. SVF, enriched with mesenchymal stem cells  (MSCs), supports tissue repair,

regeneration, and immunomodulation, according to Ossendorff et al. [34] and Vargel et al. [40].

Additionally,  Goncharov  et  al.  [18] showed  that  SVF's  immunomodulatory  and  anti-

inflammatory properties support tissue repair and regeneration. Furthermore, trichrome-stained

sections showed that the T2Db subgroup had fewer collagen deposits than the untreated group,

suggesting that the fibrotic alterations had subsided. According to Xue et al. [41], renal fibrosis is

a  major  pathology  in  T2DM-induced  nephropathy.  The  extracellular  matrix  in  SVF,  which
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promotes  cell  survival  and  differentiation,  and  the  regenerative  plasticity  of  MSCs  may  be

responsible for the reduction in fibrosis observed with SVF treatment [27, 43]. 

Histochemical analysis using Prussian blue staining showded multiple positively stained

spindle cells in the renal cortex and medulla, suggesting mesenchymal stem cell homing in the

SVF-treated  group.  Prussian  blue  staining  is  known to  identify  iron  labeling  in  these  cells,

providing evidence of cellular retention and localization in the kidney [16].

In the T2Da subgroup, PCNA immunostaining revealed a large number of positive nuclei,

especially  in  the  interstitial  spaces  and  reduced  glomeruli,  indicating  increased  cellular

proliferation.  A notable  reduction in  PCNA-positive  endothelial  nuclei  and a  rise  in  PCNA-

positive mesangial and interstitial nuclei supported this, indicating cellular proliferation linked to

diabetic nephropathy's damage and healing processes. According to Oliva-Damaso et al.  [33]

mesangial proliferation rises in diabetic nephropathy while endothelium proliferation falls. The

SVF-treated T2Db subgroup, on the other hand, showed elevated endothelium PCNA positive,

suggesting restorative activity as opposed to unchecked proliferation. The regenerative properties

of  SVF components,  such as  adipose-derived stem cells,  which  support  angiogenesis,  tissue

remodeling, and immunomodulation, are consistent with this finding [10, 47].

This study concludes by highlighting SVF's therapeutic potential in reducing the early

nephrotoxic consequences of type 2 diabetes. In kidney tissues, SVF therapy enhanced oxidative

stress indicators, decreased inflammation, eased fibrosis, and encouraged cellular regeneration.

Although more research is necessary to fully understand SVF's exact mechanisms of action in

renal repair,  our results  point to SVF as a  potentially effective treatment  option for diabetic

nephropathy.
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Table 1. Summary of morphometric results.

Group and

subgroups

Mean GA Mean C

area% in Cx

Mean  C

area%  in

M

Mean

count  of

PCNA  +ve

eN

Mean

count  of

PCNA  +ve

mN

Mean area

of PCNA +ve iN

C group 4004.25 ±

 20.99

3.29 ± 0.15 2.95 ± 0.23 5.1 ± 0.02 1.4 ± 0.25 0

T2Da 

subgroup

6255.43 ±

 45.83*

18.93 ± 2.09* 9.98  ±

2.25*

2.4 ± 0.21* 4.5 ± 0.46* 4857.85 ±

 31.98
T2Db 3992.42 ± 3.98 ± 0.31 3.26 ± 0.33 6.9 ± 0.12 1.9 ± 0.21 1599.51 ±
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subgroup  28.69  17.85

*Significant (p ≤ 0.05) versus C group and T2Db subgroup. PCNA — proliferating cell nuclear

antigen.

Figure 1A.  AD-MSCs mostly spindle (inverted microscope,  ×100); B.  Immuno-phenotyping

denoting 93.9%; C. Histogram of mean values of blood glucose in mg/dL; D. Histogram of mean

values of serum creatinine in mg/dL); E. Histogram of mean values of MDA in µmol/g and CAT

in  U/g.  AD-MSCs  —  adipose-derived  mesenchymal  stem cells;  CAT —  catalase;  MDA —

malondialdehyde.
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Figure 2.  Haematoxylin and eosin,  (×200) stained kidney sections revealed: A.  Renal cortex

exhibiting  Malpighian  corpuscles  (m),  proximal  tubules  (p)  and distal  tubules  (d);  B. Renal

medulla exhibiting collecting tubules (T)  in C group; C. Dense cellular infiltrate among the

cortical tubules; D.  Multiple distended glomeruli (g) and obliterated BS (arrows); E.  Multiple

shrunken (s) glomeruli  and multiple vacuolations (v) among the cortical  tubules; F.  Obvious

congestion (c) among the collecting tubules in subgroup T2Da. 
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Figure 3A.  Multiple  fibroblasts  (f)  detected around  congested  (c)  peritubular  capillaries;  B.

Multiple vacuolations (v) detected among the collecting tubules in subgroup T2Da. C. Minimal

cellular infiltrate (arrow) among cortical tubules and normal glomeruli (g); D. Multiple normal

glomeruli (g) and a shrunken (s) one; E. Minimal congestion (c) and F. Few vacuolations among

apparently normal collecting tubules in subgroup T2Db. 
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Figure 4. Trichrome stained renal sections, (×200) demonstrated: A. Fine collagen fibers (f)

between cortical tubules; B.  Fine fibers (f) between collecting tubules in C group; C.  Dense

collagen  bundles  (B)  between  cortical  tubules;  D.  Multiple reticular  collagen  bundles  (B)

between collecting tubules in subgroup T2Da; E. A dense collagen bundle (B) between cortical

tubules;  F. A reticular  collagen bundle  (B) and fine fibers  (f) between collecting  tubules  in

subgroup T2Db.  Pb stained sections (×200) showed  G.  Multiple +vely stained spindle cells

among the renal glomeruli, cortical tubules and H. Collecting tubules.

Figure 5. PCNA immunostained sections, clarified; A. Few +ve nuclei (N) (arrows) of lining of

proximal and distal tubules (×200); B. Some +ve flat N (t) and a +ve round (r) nucleus among a

glomerulus (×400); C. Few +ve N (arrow) of lining of collecting tubules (×200) in group C; D.

Multiple +ve round (r) and few +ve flat (t) N among a distended glomerulus (×400); E.  Some

+ve round (r) and few +ve flat (t) N among a shrunken glomerulus (×400); F.  Multiple +ve N

among cortical  tubules  (×200); G.  Multiple  +ve flat  interstitial  N (arrows)  between cortical

tubules  (×400); H.  Multiple  +ve  N  among  collecting  tubules  (×200); I.  Multiple  +ve  flat

interstitial N (arrows) between collecting tubules (×400) in T2Da subgroup; J. Multiple +ve flat

(t) and few +ve round (r) N among a glomerulus (×400);  K.  Some +ve N among tubules at
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corticomedullary junction (×200). L.  Some +ve flat interstitial N (arrows) between the tubules

(×400) in T2Db subgroup.  
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