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ABSTRACT

Recently, special scientific efforts have been directed to investigate the role of small non-

coding  RNA (miRs)  in  different  renal  diseases.  Extracellular  vesicles  (EVs)  are  small

secretory  vesicles  released  from  almost  all  mammalian  cells.  EVs-miRs  cargo  plays  a

significant role in regulating various aspects of the biological machinery of the recipient cells.

EVs-miRs  may  play  an  essential  role  in  promoting  cellular  regenerative  functions.  miRs

contained within the EVs fractions are capable of preserving their function throughout their

journey from the cell of origin to the host cells. The current review discusses the role of EVs-

miRs in different renal diseases as a novel approach for managing particular renal injuries. We

tried  to  simplify  the  possible  modulatory  impact  of  miRs  at  the  ultrastructural  cellular

pathological signaling, demonstrating the hazardous and the beneficial subtypes based on the

previous research work. Further investigations are still needed in this regard, as miRs may

have dual effects, as EVs-miR-23a could attenuate renal fibrosis through activation of Akt and

inhibition  of  FoxO1  signaling.  Whereas,  EVs-miR-23a  was  upregulated  by  the  hypoxia-

inducible factor (HIF-1a) in the hypoxic TECs and activated macrophages to accelerate the

renal inflammatory cytokine storm and promote interstitial fibrosis.

Keywords: extracellular vesicles, EVs, exosomes, microRNAs, kidney

mailto:hiahmad@kku.edu.sa


INTRODUCTION 

Extracellular  vesicles  (EVs)  are  cellular  secretory  vesicles  released  from  almost  all

mammalian  cells  [3]. Independent  of  their  cell  of  origin,  EVs are  membrane-surrounded

particles secreting from the cells. EVs can be classified according to their size into three main

subgroups: exosomes (ranging from 30–100 nm), microvesicles (100 nm to 1000 nm), and

apoptotic  bodies  (50–5000  nm).  Exosomes  are  nanovesicles  formed  from  intracellular

multivesicular  endosomes,  while  the  microvesicles  are  shed  buddings  from  the  plasma

membrane [23, 27, 32]. EVs are secreted in a wide range of biological fluids, including blood

and urine [29]. 

EVs  can  transfer  varieties  of  proteins,  lipids,  DNA,  RNA (tRNAs,  mRNAs),  as  well  as

microRNAs (miRs) strands. These biomolecules cargo transfer information from their original

cells to the target cells and participate in cell-to-cell communication, which is important in

regulating the biological machinery of the recipient cells. miRs are a newly discovered class

of  small,  non-coding  single  RNA strands.  Secreted  miRs  to  the  blood  circulation  or  the

urinary  fluids  favor  EVs-encapsulated  configuration  [10],  in  which  miRs  are capable  of

preserving their function throughout their journey from the cell of origin to the host cell [1, 7].

The  validity  of  stem cells  in  the  treatment  of  renal  injuries  is  still  under  research.  The

significance of the therapeutic potential of stem cells in tissue repair arises from their ability

to secrete different factors, including EVs containing their miRs cargo. Paracrine transmission

of miRs to the injured renal tissues may be responsible for modulating cellular biology [56].

The variety of miRs expression during renal diseases raises an important scientific question.

Could patients with renal diseases benefit from the application of EVs-miRs? Therefore, this

review  discusses  in-vitro and  in-vivo studies  suggesting  significant  values  of  EVs-miRs

administration in the treatment of renal diseases. This work aims to collect data concerning

the  EVs-miRs  role  in  different  renal  diseases  and  to  discuss  the  relevance  of  EVs-miRs

subtypes to renal injury. This review demonstrates the interrelation between different miRs

subtypes at the ultrastructural cellular pathological signaling.

DISCUSSION 

Possible mechanism of action of EVs-miRs in the renal pathogenesis

The interrelations between different miRs subtypes and the renal cell signaling pathways are

complex and involve almost all  axes,  which may proceed into cell  survival or death. The

possible  mechanism  of  miRs’ actions  on  the  renal  signaling  pathways  is  collected  and



summarised in Figure 1. This review presents the modulatory role of miRs during different

renal injuries. The significance of mesenchymal stem cell-secreting (MSCs) in tissue repair

comes  from its  ability  to  secrete  other  factors,  including  EVs-miRs  cargo.  However,  the

validity and the therapeutic potential of MSCs-EVs in the treatment of renal injuries are still

under research. The paracrine transmission of miRs to the injured renal tissues may be the

mediator  for  tissue  repair  by  modulating  cellular  biological  pathways  [56].  Here,  we are

discussing different in-vitro and in-vivo research suggesting significant values of MSCs-EVs-

miRs administration in the treatment of renal diseases. 

Ischemic renal injury and the treatment with EVs/miRs 

The transfer of various miRs via EVs affects the pathophysiology of renal Ischemic renal

injury (IRI) as EVs-miRs may be involved in the regulation of the immune system in renal

IRI. miR-199a-5p, located within the MSCs, was transferred into the renal tubular epithelial

cells (TECs) and was the mediator for inhibiting the IRI-induced endoplasmic reticulum stress

[35].  Similarly,  Zhu et  al.  [55] showed that  exosomes-miR-199a-3p ameliorated renal  IRI

through the  reduction  of  semaphorin  3A (Sema3A) and stimulation  of  the  protein  kinase

(AKT)  and  extracellular‐signal‐regulated  kinase  (ERK)  pathways.  The  intra-capsular

administration of exosomes enriched with miR-93-5p improved renal structure and functions,

decreased apoptosis inflammation, and activated the AKT pathway  [49]. In the co-cultured

renal  artery-derived  vascular  progenitor  cells  and  endothelial  cells  for  24  h,  the  secreted

exosomes-miR-218 increased the migratory ability of the endothelial cells and improved renal

vasculature  [26]. Also, exosomes miR-20a-5p are protected against acute tubular injury  in

vitro by  mitigating  the  mitochondrial  functions  [43].  Furthermore,  miR-146a-5p  enriched

exosomes degraded  the  3’UTR  of  interleukin-1  (IL-1)  receptor-associated  kinase-1  and

prevented  the  nuclear  factor  (NFκB)  activation  in  the  renal  HK2  cells  exposed  to

hypoxia/reoxygenation [16]. Separated EVs from mesenchymal stem cells enriched with miR-

21,  100,  99a,  and 24 to  the TECs promoted cell  proliferation and inhibited apoptosis  on

exposure to hypoxia/reoxygenation [5]. On the contrary, the important participation miR-150

in the fibrosis initiation and progression was detected on the 12th day following renal IRI in

mice  [8].  Exosomes-miR-374b-5p  enhanced  the  polarization  and  activation  of  the  M1

macrophage subtype through binding to Socs1 and, therefore, potentiated the inflammatory

response and worsened renal IRI  [6]. Also, EVs-miR-23a was upregulated by the hypoxia-



inducible factor (HIF-1a) in the hypoxic TECs and activated macrophages to accelerate the

renal inflammatory cytokine storm [17]. 

EVs-miRs in the management of renal injury during sepsis 

Intravenous  administration  of  exosomes  containing  miR-126-5p and 3p ameliorated  renal

function in mice's sepsis model induced by cecal ligation and puncture (CLP). The protective

response was mediated through inhibition of the high mobility group box 1 (HMGB1) and the

vascular  cell  adhesion  molecule  1  (VCAM1)  levels  [54].  Remote  limb  ischemic  pre-

conditioning 24 h before the onset of CLP released exosomes-miR-21 and circulated to target

PTEN/AKT signals and inhibit renal inflammation and cell death  [25]. Besides, exosomes-

miR-146b aborted the mice's CLP renal injury through diminished IL-1 receptor-associated

kinase  and  inhibition  of  the  NF-kB  activity  [48].  Likewise,  miR-342-5p  levels  were

suppressed in patients with sepsis-induced AKI serum in mice exposed to CLP and human

kidney-2 (HK-2) cells incubated with lipopolysaccharides. The diminished miR-342-5p was

associated  with  inflammation  and  deteriorated  renal  functions.  While  MSCs-derived

Exosome-transfected with lentivirus overexpressing miR-342-5p injection in mice enhanced

autophagy suppressed inflammation and ameliorated kidney injury [18]

However,  exosomes-miR-19b-3p  were  found  to  mediate  tubulointerstitial  inflammation

through macrophage activation by targeting NF-κB/suppressor of cytokine signaling (SOCS-

1) [20]. 

EVs and the unilateral ureteral obstruction induced fibrosis

Intramuscular injection of exosomes-miR-29a two weeks before unilateral ureteral obstruction

(UUO) of mice diminished renal tissue fibrosis. Exosomes-miR-29a decreased the expression

levels  of  TGFβ,  fibronectin,  alpha-smooth  muscle  actin  (αSMA),  and  renal  collagen

deposition  [36]. Similarly, exosomes-miR-26a attenuated renal fibrosis by inhibiting TGFβ

and the connective tissue growth factor (CTGF)  [46]. Furthermore, the overexpressed miR-

let7c  downregulated  collagen  IVα1,  metalloproteinase-9,  TGFβ,  and  its  receptor  [34].

Meanwhile,  miR-133b  overexpression  complex  injection  significantly  diminished  renal

interstitial fibrosis in aged mice subjected to UUO [4]. The ability of MSCs-EVs to prevent

UUO-induced fibrosis is mediated via miR-294 and miR-133 transport. These miRs subtypes



were able to diminish SMAD2/3 and ERK1/2 signaling, thereby mitigating the TGFβ1-related

EMT in HK2 [38]. A receptor-interacting protein kinase 1 (RIPK1) is the upstream of mixed-

lineage kinase domain-like pseudokinase (MLKL), a necroptosis mediator. UUO mice model

showed extensive necroptosis associated with promoted fibrosis. However, MSCs-Exo miR-

874-3p therapy reduced renal tubular epithelial cell injury and renal fibrosis by suppressing

necroptosis revealed by targeting RIPK1 and MLKL [44].

Diabetic nephropathy and the mediating role of EVs-miRs

Extracellular vesicles-miR-23a and 27a introduced intramuscularly to diabetic mice prevented

diabetic  nephropathy  (DN)  and  attenuated  renal  fibrosis  through  activation  of  Akt  and

inhibition  of  FoxO1  signaling  [45].  Furthermore,  increased  renal  blood  flow  in  chronic

kidney-diseased mice was achieved through the remote transfer of exosomes-miR-181 from

the acupunctured limb to the kidneys  [14]. Application of EVs enriched with miR-15b-5p

protected podocytes from inflammation and apoptosis, which was mediated through inhibition

of the vascular endothelial  growth factor  [51]. Another promising molecule is miR-22-3p.

Wang and co-workers revealed the effect of miR-22-3p in DN. They co-cultured podocytes

with human umbilical MSCs derived Exo (UMSCs-Exo-miR-22-3p) in high glucose media

(HG) and injected them into diabetic mice. UMSCs-Exo diminished the inflammation and

depressed the activation of NLRP3 inflammasome in podocytes  and diabetic  mice.  These

beneficial effects were abolished when miR-22-3p was knocked down [39]. Conversely, Tsai

and co-workers stimulated the proximal tubule epithelial cells by HG and induced exosomal

miR-92a-1-5p secretion. The treatment of mesangial cell  (MCs) with the driven exosomal

miR-92a-1-5p promoted endoplasmic reticulum (ER) stress  of MCs and its  myofibroblast

transdifferentiation, and in the same context, miR- 92a-1-5p inhibitor protected mice kidneys

and prevented DN progression [33].

The precancerous/anticancer effects of EVs-miRs

Mesenchymal stem cells and human liver stem cells express vesicles enriched with miR-145

and miR-200. Both EVs-miR-145 and 200 enhanced apoptosis, inhibited proliferation, and

reduced invasion in the renal cancer cells [2]. Lopatina and co-workers reported an anticancer

effect mediated by the transmission of miR-15a, 181b, 320c, and 874 loaded within the EVs

from the human liver stem cells to the renal tumor-derived endothelial cells  [19]. Qin et al.



[28] observed the abundance of miR-224-5p in EVs extracted from patients with RCC urinary

samples. miR-224-5p prevented the proliferation of RCC cells and induced cell cycle arrest

by suppressing the CCND1 gene that encodes cyclin D1. 

However,  several  research  studies  have  linked  the  EVs-miRs  expression  to  renal  cancer

proliferation. Exosomes-miR-19b-3p [37] and miR-210-5p [40] potentiated cell migration and

metastasis of clear cell renal cell carcinoma. Hypoxia stimulates EVs secretion from the RCC

cell lines and is found to be enriched with high levels of miR-155. The secreted EVs-miR-155

promoted  cell  proliferation  and  tumor  progression  through  FOXO3  inhibition  [22].  The

elevated exosome-harbouring lncARSR mediates renal  cancer  resistance to treatment with

sunitinib  through competitively  binding to  miR-34,  449 and confers  drug resistance  [30].

Similarly, the resistant response to sorafenib is mediated through EVs-containing miR-31-5p

by downregulating Mut L homolog 1 in RCC [9]. Furthermore, miR-142-3p functions as an

oncogene  in  RCC,  and  miR-142-3p  was  upregulated  in  RCC,  which  promotes  cancer

progression and metastasis. By miR-142-3p suppression, RhoBTB3 protein expression was

upregulated,  and  HIF1A,  VEGFA,  and  GGT1  levels  were  mitigated,  improving  cancer

prognosis [50].

EVs-miRs in miscellaneous renal studies

Researchers  have  noticed  a  significantly  diminished  hsa-miR-500a-3P in  cisplatin-treated

human  HK2  cells,  and  application  of  hsa-miR-500a-3P  attenuated  P65  NF-kB

phosphorylation  and  inhibited  MLKL,  the  central  mediator  of  necroptosis  [13].  The

endothelial progenitor cell-derived EVs (EPC-EVs) protected the glomerular membrane-like

structure formed by glomerular endothelial cells and podocytes from inflammation-induced

destruction. Analysis of the miRs content of EVs determined 16 protective subtypes miR-17-

3p, 17-5p, 18a, 19a, 30a-3p, 30e-3p, 30a-5p, 30e-5p, 137, 142-3p, 142-5p, 324-3p, 425-5p,

484, 485-3p, and 650 [21]. The injured podocytes induced by puromycin secreted a group of

EVs-miR-149-5p, 424-5p, 542-3p, 582-5p, and 874-3p. These miRs were cultured with renal

TECs.  The  authors  documented  marked  apoptosis  in  the  TECs  through  activation  of  the

cleaved poly (ADP-ribose) polymerase (PARP) [11]. 

To study the mediating role of macrophages in vascular calcification in chronic kidney disease

(CKD), vascular smooth muscle cells (VSMCs) obtained from the arteries of CKD patients or

mouse models were incubated with macrophage-derived exosomes. The results documented



an inhibited expression of let-7b-5p in VSMCs associated with vascular calcification  [15].

The anti-fibrosis candidate molecule miR-26a expression was diminished in the kidney of

aldosterone  (ALD)-induced  Renal  tubulointerstitial  fibrosis  (TIF)  mice  model.  When  the

diseased mice were injected with exomes-miR-26a, there was a significant inhibition in the

epithelial-mesenchymal transition and extracellular matrix deposition through suppression of

SMAD3  [52].  Yang and colleagues have studied the effect of hepatitis B virus (HBV) on

podocyte viability  and ferroptosis  using HBx, a multifunctional  protein encoded by HBV.

They  reported  reduced  podocyte  viability  following  lentivirus  transfection  overexpressing

HBx through ferroptosis activation. Meanwhile, MSCs-derived exosomes enriched with miR-

223-3p protected the podocytes from ferroptosis cell death, which was proven when the miR-

223-3p inhibitor reversed the protective effect of MSCs exosomes-miR-223- 3p [41]

Primed stem cells and EVs-miRs secretion improve their regenerative actions

Researchers tried to potentiate the beneficial effects of EVs by incubating their secretory cells

with drugs. Melatonin has previously been known to improve MSCs' viability, proliferation,

and differentiation  [31].  When MSCs isolated from patients  with CKD were treated with

melatonin,  upregulation  of  miR-4516-PrPC was  observed  and  enhanced  the  regenerative

potential of the MSCs with reduced cellular senescence. Therefore, the pre-conditioned MSCs

with melatonin mitigated the hind limb ischemia mice model of CKD [42]. Another factor is

vasopressin, which activates the EVs-miR-503 uptake by the renal collecting duct cells and

downregulates the vascular endothelial growth factor, fibroblast growth factor [24].

Interestingly,  pre-treated HK-2 cells  with exendin-4 inhibited the transfer of EV miR-192

from HG-induced renal TECs to normal cells and inhibited the expression of fibrosis markers

fibronectin and type I collagen  [12]. Furthermore, erythropoietin inhibited tubulointerstitial

fibrosis  in  mice  induced  by  UUO.  The  extended  in-vitro  research  confirmed  the  role  of

transferred EVs-miR-144 from the bone marrow cells to the renal fibroblasts to suppress tPA

expression  [53].  Zhang and co-workers  designed scaffold nanofibers  containing Arginine-

Glycine-Aspartate (RGD). RGD facilitated the uptake and stability of EVs to the injured renal

tissues of mice by supporting the surface EVs integrins. The obtained EVs' protective effects

seemed  to  be  mediated  through  EVs-miR  let-7a-5p,  which  regulated  cell  apoptosis  and

autophagy  [47].  Therefore,  the  primed  cells  could  be  a  promising  strategy  to  potentiate

beneficial types of miRs, which mediates renal tissue protection.



CONCLUSIONS

The non-coding RNA segments, miRs, participate in several biological processes, including

inflammation,  apoptosis,  necroptosis,  ferroptosis,  fibrosis,  and  cancer  progression.  This

review tried to collect and discuss EVs-harboured miRs as a new insight into the alteration of

renal pathogenesis. This review attempted to simplify the possible modulatory effect of miRs

at the cellular level. Further investigations are still needed as miRs may have dual effects;

EVs-miR-23a attenuated  renal  fibrosis  by  activating  Akt  and inhibiting  FoxO1 signaling.

Whereas,  EVs-miR-23a  was  upregulated  by  the  hypoxia-inducible  factor  (HIF-1a)  in  the

hypoxic TECs and activated macrophages to accelerate the renal inflammatory cytokine storm

and promote interstitial fibrosis.
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Figure  1.  Schematic  representation  of  the  possible  mediating  role  of  miRs  in  renal

pathogenesis. The figure demonstrates the interrelation between different miRs subtypes and

the renal cell signaling pathways. The miRs in blue participate in beneficial effects while the

miRs  in  red  mediate  harmful  effects.  EVs — extracellular  vesicles-containing  miRs.  The

inflammatory  pathway  begins  by  inflammatory  cells’ activation  to  secrete  inflammatory

mediators;  TNF  — tumor  necrosis  factor,  IL — interleukin  interaction  which  starts  cell

signalling  through  binding  to  their  receptors.  AKT —  activated  protein  kinase,  IKB  —

inhibitor of kappa light polypeptide, PTEN — phosphatase and tensin homolog, FOXO —

forkhead transcription factors of the O class. The fibrosis signals involve CTGF — connective

tissue growth factor, TGF — transforming growth factor and its downstream Smad, ERK —

extracellular‐signal‐regulated  kinase.  Different  cell  death  pathways  are  included  in  the

modulatory functions of miRs. FADD — Fas-associated protein with death domain, PARP —

poly  (ADP-ribose)  polymerase,  the  necroptosis  mediators  RIPK  —  receptor  interacting

protein kinase, and MLKL — mixed lineage kinase domain-like.


