open access

Vol 56, No 2 (2018)
Review paper
Submitted: 2017-03-26
Accepted: 2018-05-29
Published online: 2018-06-12
Get Citation

Endometriosis — insights into a multifaceted entity

Cornelia Amalinei1, Ioana Păvăleanu1, Ludmila Lozneanu1, Raluca Balan1, Simona-Eliza Giuşcă2, Irina-Draga Căruntu1
·
Folia Histochem Cytobiol 2018;56(2):61-82.
Affiliations
  1. Department of Morphofunctional Sciences I — Histology, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
  2. Department of Morphofunctional Sciences I — Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania

open access

Vol 56, No 2 (2018)
REVIEW
Submitted: 2017-03-26
Accepted: 2018-05-29
Published online: 2018-06-12

Abstract

 Firstly described at the end of nineteenth century, endometriosis remains an enigmatic disease, from etio­pathogenesis to specific markers of diagnosis and its ability to associate with malignancies. Our review has been designed from a historical perspective and steps up to an updated understanding of the disease, facilitated by relatively recent molecular and genetic progresses. Although the histopathological diagnosis is relatively simple, the therapy is difficult or ineffective. Experimental models have been extremely useful as they reproduce the human disease and allow the testing of different potential modulators or treatment options. Due to molecular resemblance to carcinogenesis, applications of anti-cancer agents are currently under scrutiny. The desired goal of an efficient therapy against symptomatic disease, along with associated infertility and malignancies, needs a deeper insight into the complex mechanisms involved in endometriosis initiation, development, and progres­sion. Current trends in genomic and proteomic approaches are useful for a more accurate classification and for the identification of new therapeutic targets.

Abstract

 Firstly described at the end of nineteenth century, endometriosis remains an enigmatic disease, from etio­pathogenesis to specific markers of diagnosis and its ability to associate with malignancies. Our review has been designed from a historical perspective and steps up to an updated understanding of the disease, facilitated by relatively recent molecular and genetic progresses. Although the histopathological diagnosis is relatively simple, the therapy is difficult or ineffective. Experimental models have been extremely useful as they reproduce the human disease and allow the testing of different potential modulators or treatment options. Due to molecular resemblance to carcinogenesis, applications of anti-cancer agents are currently under scrutiny. The desired goal of an efficient therapy against symptomatic disease, along with associated infertility and malignancies, needs a deeper insight into the complex mechanisms involved in endometriosis initiation, development, and progres­sion. Current trends in genomic and proteomic approaches are useful for a more accurate classification and for the identification of new therapeutic targets.

Get Citation

Keywords

endometriosis; retrograde menstruation; cytokines; angiogenesis; apoptosis; precursor lesion; carcinogenesis; anti-cancer agents

Supp./Additional Files (1)
Figure 1A-D
View
1MB
About this article
Title

Endometriosis — insights into a multifaceted entity

Journal

Folia Histochemica et Cytobiologica

Issue

Vol 56, No 2 (2018)

Article type

Review paper

Pages

61-82

Published online

2018-06-12

Page views

3640

Article views/downloads

3075

DOI

10.5603/FHC.a2018.0013

Bibliographic record

Folia Histochem Cytobiol 2018;56(2):61-82.

Keywords

endometriosis
retrograde menstruation
cytokines
angiogenesis
apoptosis
precursor lesion
carcinogenesis
anti-cancer agents

Authors

Cornelia Amalinei
Ioana Păvăleanu
Ludmila Lozneanu
Raluca Balan
Simona-Eliza Giuşcă
Irina-Draga Căruntu

References (279)
  1. Von Ro. Ueber Uterusdrtisen-Neubildung in Uterus- und Ovarial-Sarcomen. Ztsch KK Gesellsch der Aerzte zu Wien. 1860; 37: 577–581.
  2. Cullen TS. Adeno-myoma uteri diffusum benignum. Bull Johns Hopkins Hosp. 1896; 6: 133–137.
  3. Cullen TS. Adeno-myoma of the round ligament. Bull Johns Hopkins Hosp. 1896; 7: 112–114.
  4. Machairiotis N, Stylianaki A, Dryllis G, et al. Extrapelvic endometriosis: a rare entity or an under diagnosed condition? Diagn Pathol. 2013; 8: 194.
  5. De Ceglie A, Bilardi C, Blanchi S, et al. Acute small bowel obstruction caused by endometriosis: a case report and review of the literature. World J Gastroenterol. 2008; 14(21): 3430–3434.
  6. Insilla AC. Deep endometriosis with pericolic lymph node involvement: A case report and literature review. World Journal of Gastroenterology. 2014; 20(21): 6675.
  7. Fluegen G, Jankowiak F, Zacarias Foehrding L, et al. Intrahepatic endometriosis as differential diagnosis: case report and literature review. World J Gastroenterol. 2013; 19(29): 4818–4822.
  8. Jablonski C, Alifano M, Regnard JF, et al. Pneumoperitoneum associated with catamenial pneumothorax in women with thoracic endometriosis. Fertil Steril. 2009; 91(3): 930.e19–930.e22.
  9. van der Linden PJ, van der Linden PJ. Theories on the pathogenesis of endometriosis. Hum Reprod. 1996; 11 Suppl 3: 53–65.
  10. Cheng CH, Kuo HC, Su B. Endometriosis in a kidney with focal xanthogranulomatous pyelonephritis and a perinephric abscess. BMC Res Notes. 2015; 8: 591.
  11. Zamurovic M. Rare extrapelvic endometriosis on iliac vein wall--diagnosis and treatment. Clin Exp Obstet Gynecol. 2014; 41(3): 349–350.
  12. Albutt K, Glass C, Odom S, et al. Endometriosis within a left-sided inguinal hernia sac. J Surg Case Rep. 2014; 2014(5).
  13. Vang R, Wheeler J. Diseases of the Fallopian Tube and Paratubal Region. Blaustein’s Pathology of the Female Genital Tract. 2011: 529–578.
  14. Brătilă E, Brătilă CP, Comandaşu DE, et al. The assessment of immunohistochemical profile of endometriosis implants, a practical method to appreciate the aggressiveness and recurrence risk of endometriosis. Rom J Morphol Embryol. 2015; 56(4): 1301–1307.
  15. Koike N, Tsunemi T, Uekuri C, et al. Pathogenesis and malignant transformation of adenomyosis (review). Oncol Rep. 2013; 29(3): 861–867.
  16. Pittaway DE, Douglas JW. Serum CA-125 in women with endometriosis and chronic pelvic pain. Fertil Steril. 1989; 51(1): 68–70.
  17. Mohamed ML, El Behery MM, Mansour SAA. Comparative study between VEGF-A and CA-125 in diagnosis and follow-up of advanced endometriosis after conservative laparoscopic surgery. Arch Gynecol Obstet. 2013; 287(1): 77–82.
  18. Harada T, Kubota T, Aso T. Usefulness of CA19-9 versus CA125 for the diagnosis of endometriosis. Fertil Steril. 2002; 78(4): 733–739.
  19. Szubert M, Suzin J, Duechler M, et al. Evaluation of selected angiogenic and inflammatory markers in endometriosis before and after danazol treatment. Reprod Fertil Dev. 2014; 26(3): 414–420.
  20. Ferrero S, Matalliotakis IM, Goumenou AG, et al. Serum concentrations of growth factors in women with and without endometriosis: the action of anti-endometriosis medicines. Int Immunopharmacol. 2003; 3(1): 81–89.
  21. Pizzo A, Salmeri F, Ardita F, et al. Behaviour of Cytokine Levels in Serum and Peritoneal Fluid of Women with Endometriosis. Gynecologic and Obstetric Investigation. 2003; 54(2): 82–87.
  22. Zong Ll, Li Yl, Ha Xq. Determination of HGF concentration in serum and peritoneal fluid in women with endometriosis. Di Yi Jun Yi Da Xue Xue Bao. 2003; 23(8): 757–760.
  23. Chuang PC, Sun HS, Chen TM, et al. Prostaglandin E2 induces fibroblast growth factor 9 via EP3-dependent protein kinase Cdelta and Elk-1 signaling. Mol Cell Biol. 2006; 26(22): 8281–8292.
  24. García-Manero M, Santana GT, Alcázar JL. Relationship between microvascular density and expression of vascular endothelial growth factor in patients with ovarian endometriosis. J Womens Health (Larchmt). 2008; 17(5): 777–782.
  25. Hur SE, Lee JiY, Moon HS, et al. Angiopoietin-1, angiopoietin-2 and Tie-2 expression in eutopic endometrium in advanced endometriosis. Mol Hum Reprod. 2006; 12(7): 421–426.
  26. Drosdzol-Cop A, Skrzypulec-Plinta V. Selected cytokines and glycodelin A levels in serum and peritoneal fluid in girls with endometriosis. J Obstet Gynaecol Res. 2012; 38(10): 1245–1253.
  27. Kocbek V, Vouk K, Mueller MD, et al. Elevated glycodelin-A concentrations in serum and peritoneal fluid of women with ovarian endometriosis. Gynecol Endocrinol. 2013; 29(5): 455–459.
  28. Chung HW, Wen Y, Chun SH, et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 mRNA expression in ectopic and eutopic endometrium in women with endometriosis: a rationale for endometriotic invasiveness. Fertil Steril. 2001; 75(1): 152–159.
  29. Chung HW, Lee JiY, Moon HS, et al. Matrix metalloproteinase-2, membranous type 1 matrix metalloproteinase, and tissue inhibitor of metalloproteinase-2 expression in ectopic and eutopic endometrium. Fertil Steril. 2002; 78(4): 787–795.
  30. Szamatowicz J, Laudański P, Tomaszewska I. Matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1: a possible role in the pathogenesis of endometriosis. Hum Reprod. 2002; 17(2): 284–288.
  31. Gaetje R, Holtrich U, Engels K, et al. Expression of membrane-type 5 matrix metalloproteinase in human endometrium and endometriosis. Gynecol Endocrinol. 2007; 23(10): 567–573.
  32. Suzumori N, Ozaki Y, Ogasawara M, et al. Increased concentrations of cathepsin D in peritoneal fluid from women with endometriosis. Mol Hum Reprod. 2001; 7(5): 459–462.
  33. Barrier BF, Sharpe-Timms KL. Expression of soluble adhesion molecules in sera of women with stage III and IV endometriosis. J Soc Gynecol Investig. 2002; 9(2): 98–101.
  34. Chen GTC, Tai CT, Yeh LS, et al. Identification of the cadherin subtypes present in the human peritoneum and endometriotic lesions: potential role for P-cadherin in the development of endometriosis. Mol Reprod Dev. 2002; 62(3): 289–294.
  35. Matalliotakis IM, Vassiliadis S, Goumenou AG, et al. Soluble ICAM-1 levels in the serum of endometriotic patients appear to be independent of medical treatment. J Reprod Immunol. 2001; 51(1): 9–19.
  36. Sipak-Szmigiel O, Włodarski P, Ronin-Walknowska E, et al. Serum and peritoneal fluid concentrations of soluble human leukocyte antigen, tumor necrosis factor alpha and interleukin 10 in patients with selected ovarian pathologies. J Ovarian Res. 2017; 10(1): 25.
  37. Cho S, Ahn YS, Choi YS, et al. Endometrial osteopontin mRNA expression and plasma osteopontin levels are increased in patients with endometriosis. Am J Reprod Immunol. 2009; 61(4): 286–293.
  38. Lee DH, Kim SC, Joo JK, et al. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients. J Obstet Gynaecol Res. 2012; 38(3): 516–525.
  39. Khan KN, Kitajima M, Inoue T, et al. 17β-estradiol and lipopolysaccharide additively promote pelvic inflammation and growth of endometriosis. Reprod Sci. 2015; 22(5): 585–594.
  40. Cunha-Filho JS, Gross JL, Bastos de Souza CA, et al. Physiopathological aspects of corpus luteum defect in infertile patients with mild/minimal endometriosis. J Assist Reprod Genet. 2003; 20(3): 117–121.
  41. Matarese G, Alviggi C, Sanna V, et al. Increased leptin levels in serum and peritoneal fluid of patients with pelvic endometriosis. J Clin Endocrinol Metab. 2000; 85(7): 2483–2487.
  42. Tao Yu, Zhang Q, Huang W, et al. The peritoneal leptin, MCP-1 and TNF-α in the pathogenesis of endometriosis-associated infertility. Am J Reprod Immunol. 2011; 65(4): 403–406.
  43. Malhotra N, Karmakar D, Tripathi V, et al. Correlation of angiogenic cytokines-leptin and IL-8 in stage, type and presentation of endometriosis. Gynecol Endocrinol. 2012; 28(3): 224–227.
  44. Keita M, Bessette P, Pelmus M, et al. Expression of interleukin-1 (IL-1) ligands system in the most common endometriosis-associated ovarian cancer subtypes. J Ovarian Res. 2010; 3: 3.
  45. Malutan AM, Drugan C, Drugan T, et al. The association between interleukin-4 -590C/T genetic polymorphism, IL-4 serum level, and advanced endometriosis. Cent Eur J Immunol. 2016; 41(2): 176–181.
  46. Kang YJ, Jeung InC, Park A, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 2014; 29(10): 2176–2189.
  47. Takamura M, Osuga Y, Izumi G, et al. Interleukin-17A is present in neutrophils in endometrioma and stimulates the secretion of growth-regulated oncogene–α (Gro-α) from endometrioma stromal cells. Fertility and Sterility. 2012; 98(5): 1218–1224.e2.
  48. Ahn SH, Edwards AK, Singh SS, et al. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J Immunol. 2015; 195(6): 2591–2600.
  49. Bedaiwy MA, Falcone T, Sharma RK, et al. Prediction of endometriosis with serum and peritoneal fluid markers: a prospective controlled trial. Hum Reprod. 2002; 17(2): 426–431.
  50. Kyama CM, Debrock S, Mwenda JM, et al. Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol. 2003; 1: 123.
  51. Rocha AL, Vieira EL, Maia LM, et al. Prospective Evaluation of a Panel of Plasma Cytokines and Chemokines as Potential Markers of Pelvic Endometriosis in Symptomatic Women. Gynecol Obstet Invest. 2016; 81(6): 512–517.
  52. Guo Y, Chen Y, Liu LB, et al. IL-22 in the endometriotic milieu promotes the proliferation of endometrial stromal cells via stimulating the secretion of CCL2 and IL-8. Int J Clin Exp Pathol. 2013; 6(10): 2011–2020.
  53. Yang Y, Zhang X, Zhou C, et al. Elevated immunoreactivity of RANTES and CCR1 correlate with the severity of stages and dysmenorrhea in women with deep infiltrating endometriosis. Acta Histochem. 2013; 115(5): 434–439.
  54. Shi X, Xu W, Dai HH, et al. The role of SRC1 and SRC2 in steroid-induced SDF1 expression in normal and ectopic endometrium. Reproduction. 2014; 147(6): 847–853.
  55. Leconte M, Chouzenoux S, Nicco C, et al. Role of the CXCL12-CXCR4 axis in the development of deep rectal endometriosis. J Reprod Immunol. 2014; 103: 45–52.
  56. Veillat V, Carli C, Metz CN, et al. Macrophage migration inhibitory factor elicits an angiogenic phenotype in human ectopic endometrial cells and triggers the production of major angiogenic factors via CD44, CD74, and MAPK signaling pathways. J Clin Endocrinol Metab. 2010; 95(12): E403–E412.
  57. Kats R, Collette T, Metz CN, et al. Marked elevation of macrophage migration inhibitory factor in the peritoneal fluid of women with endometriosis. Fertil Steril. 2002; 78(1): 69–76.
  58. Inagaki J, Kondo A, Lopez LR, et al. Pregnancy loss and endometriosis: pathogenic role of anti-laminin-1 autoantibodies. Ann N Y Acad Sci. 2005; 1051: 174–184.
  59. Gajbhiye R, Suryawanshi A, Khan S, et al. Multiple endometrial antigens are targeted in autoimmune endometriosis. Reprod Biomed Online. 2008; 16(6): 817–824.
  60. Heilier JF, Nackers F, Verougstraete V, et al. Increased dioxin-like compounds in the serum of women with peritoneal endometriosis and deep endometriotic (adenomyotic) nodules. Fertil Steril. 2005; 84(2): 305–312.
  61. Onda T, Ban S, Shimizu M, et al. CD10 is useful in demonstrating endometrial stroma at ectopic sites and in confirming a diagnosis of endometriosis. J Clin Pathol. 2002; 55(5): 391–392.
  62. Matsuzaki S, Darcha C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 2012; 27(3): 712–721.
  63. Seppälä M, Koistinen H, Koistinen R, et al. Glycodelin in reproductive endocrinology and hormone-related cancer. Eur J Endocrinol. 2009; 160(2): 121–133.
  64. Meola J, Dentillo DB, Rosa e Silva JC, et al. Glycodelin expression in the endometrium of healthy women and in the eutopic and ectopic endometrium of women with endometriosis. Fertil Steril. 2009; 91(5): 1676–1680.
  65. Al-Jefout M, Dezarnaulds G, Cooper M, et al. Diagnosis of endometriosis by detection of nerve fibres in an endometrial biopsy: a double blind study. Hum Reprod. 2009; 24(12): 3019–3024.
  66. Ramón L, Gilabert-Estellés J, Castelló R, et al. mRNA analysis of several components of the plasminogen activator and matrix metalloproteinase systems in endometriosis using a real-time quantitative RT-PCR assay. Hum Reprod. 2005; 20(1): 272–278.
  67. Hudelist G, Lass H, Keckstein J, et al. Interleukin 1alpha and tissue-lytic matrix metalloproteinase-1 are elevated in ectopic endometrium of patients with endometriosis. Hum Reprod. 2005; 20(6): 1695–1701.
  68. Gilabert-Estellés J, Ramón LA, España F, et al. Expression of angiogenic factors in endometriosis: relationship to fibrinolytic and metalloproteinase systems. Hum Reprod. 2007; 22(8): 2120–2127.
  69. Kim HOk, Yang KM, Kang IS, et al. Expression of CD44s, vascular endothelial growth factor, matrix metalloproteinase-2 and Ki-67 in peritoneal, rectovaginal and ovarian endometriosis. J Reprod Med. 2007; 52(3): 207–213.
  70. Gilabert-Estelles J, Ramon LA, España F, et al. Expression of the Fibrinolytic Components in Endometriosis. Pathophysiology of Haemostasis and Thrombosis. 2006; 35(1-2): 136–140.
  71. Poncelet C, Leblanc M, Walker-Combrouze F, et al. Expression of cadherins and CD44 isoforms in human endometrium and peritoneal endometriosis. Acta Obstet Gynecol Scand. 2002; 81(3): 195–203.
  72. Wu Y, Starzinski-Powitz A, Guo SW. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod Sci. 2007; 14(4): 374–382.
  73. Shaco-Levy R, Sharabi S, Benharroch D, et al. Matrix metalloproteinases 2 and 9, E-cadherin, and beta-catenin expression in endometriosis, low-grade endometrial carcinoma and non-neoplastic eutopic endometrium. Eur J Obstet Gynecol Reprod Biol. 2008; 139(2): 226–232.
  74. Poncelet C, Cornelis F, Tepper M, et al. Expression of E- and N-cadherin and CD44 in endometrium and hydrosalpinges from infertile women. Fertil Steril. 2010; 94(7): 2909–2912.
  75. D'Amico F, Skarmoutsou E, Quaderno G, et al. Expression and localisation of osteopontin and prominin-1 (CD133) in patients with endometriosis. Int J Mol Med. 2013; 31(5): 1011–1016.
  76. Xue Q, Lin Z, Cheng YH, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007; 77(4): 681–687.
  77. Monsivais D, Dyson MT, Yin P, et al. ERβ- and prostaglandin E2-regulated pathways integrate cell proliferation via Ras-like and estrogen-regulated growth inhibitor in endometriosis. Mol Endocrinol. 2014; 28(8): 1304–1315.
  78. Chae U, Min JY, Kim SH, et al. Decreased Progesterone Receptor B/A Ratio in Endometrial Cells by Tumor Necrosis Factor-Alpha and Peritoneal Fluid from Patients with Endometriosis. Yonsei Med J. 2016; 57(6): 1468–1474.
  79. Schmitz CR, Souza CA, Genro VK, et al. LH (Trp8Arg/Ile15Thr), LHR (insLQ) and FSHR (Asn680Ser) polymorphisms genotypic prevalence in women with endometriosis and infertility. J Assist Reprod Genet. 2015; 32(6): 991–997.
  80. Robin B, Planeix F, Sastre-Garau X, et al. Follicle-Stimulating Hormone Receptor Expression in Endometriotic Lesions and the Associated Vasculature: An Immunohistochemical Study. Reprod Sci. 2016; 23(7): 885–891.
  81. Gargett CE, Schwab KE, Zillwood RM, et al. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009; 80(6): 1136–1145.
  82. Pacchiarotti A, Caserta D, Sbracia M, et al. Expression of oct-4 and c-kit antigens in endometriosis. Fertil Steril. 2011; 95(3): 1171–1173.
  83. Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007; 5: 57.
  84. Yu CX, Song JH, Liang L. Correlation of changes of (non)exfoliated endometrial organelles and expressions of Musashi-1 and β-catenin with endometriosis in menstrual period. Gynecol Endocrinol. 2014; 30(12): 861–867.
  85. Cheng Y, Li L, Wang D, et al. Characteristics of Human Endometrium-Derived Mesenchymal Stem Cells and Their Tropism to Endometriosis. Stem Cells Int. 2017; 2017: 4794827.
  86. Pylväs M, Puistola U, Laatio L, et al. Elevated serum 8-OHdG is associated with poor prognosis in epithelial ovarian cancer. Anticancer Res. 2011; 31(4): 1411–1415.
  87. Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000; 60(24): 7052–7056.
  88. Dinulescu DM, Ince TA, Quade BJ, et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005; 11(1): 63–70.
  89. Govatati S, Kodati VL, Deenadayal M, et al. Mutations in the PTEN tumor gene and risk of endometriosis: a case-control study. Hum Reprod. 2014; 29(2): 324–336.
  90. Nezhat F, Cohen C, Rahaman J, et al. Comparative immunohistochemical studies of bcl-2 and p53 proteins in benign and malignant ovarian endometriotic cysts. Cancer. 2002; 94(11): 2935–2940.
  91. Akahane T, Sekizawa A, Purwosunu Y, et al. The role of p53 mutation in the carcinomas arising from endometriosis. Int J Gynecol Pathol. 2007; 26(3): 345–351.
  92. Goumenou AG, Arvanitis DA, Matalliotakis IM, et al. Microsatellite DNA assays reveal an allelic imbalance in p16(Ink4), GALT, p53, and APOA2 loci in patients with endometriosis. Fertil Steril. 2001; 75(1): 160–165.
  93. Martini M, Ciccarone M, Garganese G, et al. Possible involvement of hMLH1, p16(INK4a) and PTEN in the malignant transformation of endometriosis. Int J Cancer. 2002; 102(4): 398–406.
  94. Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010; 363(16): 1532–1543.
  95. Chene G, Ouellet V, Rahimi K, et al. The ARID1A pathway in ovarian clear cell and endometrioid carcinoma, contiguous endometriosis, and benign endometriosis. Int J Gynaecol Obstet. 2015; 130(1): 27–30.
  96. Chandler RL, Damrauer JS, Raab JR, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015; 6: 6118.
  97. Stewart CJR, Brennan BA, Chan T, et al. WT1 expression in endometrioid ovarian carcinoma with and without associated endometriosis. Pathology. 2008; 40(6): 592–599.
  98. Yotova I, Hsu E, Do C, et al. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis. PLoS One. 2017; 12(1): e0170859.
  99. Goumenou A, Panayiotides I, Matalliotakis I, et al. Bcl-2 and Bax expression in human endometriotic and adenomyotic tissues. Eur J Obstet Gynecol Reprod Biol. 2001; 99(2): 256–260.
  100. Meresman GF, Vighi S, Buquet RA, et al. Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis. Fertil Steril. 2000; 74(4): 760–766.
  101. Ueda M, Yamashita Y, Takehara M, et al. Survivin Gene Expression in Endometriosis. The Journal of Clinical Endocrinology & Metabolism. 2002; 87(7): 3452–3459.
  102. Kato N, Sasou Si, Motoyama T. Expression of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors and endometriosis of the ovary. Mod Pathol. 2006; 19(1): 83–89.
  103. Stewart CJR, Leung Y, Walsh MD, et al. KRAS mutations in ovarian low-grade endometrioid adenocarcinoma: association with concurrent endometriosis. Hum Pathol. 2012; 43(8): 1177–1183.
  104. Matsumoto T, Yamazaki M, Takahashi H, et al. Distinct β-catenin and PIK3CA mutation profiles in endometriosis-associated ovarian endometrioid and clear cell carcinomas. Am J Clin Pathol. 2015; 144(3): 452–463.
  105. Samartzis EP, Noske A, Dedes KJ, et al. ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. Int J Mol Sci. 2013; 14(9): 18824–18849.
  106. Körner M, Burckhardt E, Mazzucchelli L. Higher frequency of chromosomal aberrations in ovarian endometriosis compared to extragonadal endometriosis: A possible link to endometrioid adenocarcinoma. Mod Pathol. 2006; 19(12): 1615–1623.
  107. Bischoff FZ, Heard M, Simpson JL. Somatic DNA alterations in endometriosis: high frequency of chromosome 17 and p53 loss in late-stage endometriosis. J Reprod Immunol. 2002; 55(1-2): 49–64.
  108. Okamoto A, Sehouli J, Yanaihara N, et al. Somatic copy number alterations associated with Japanese or endometriosis in ovarian clear cell adenocarcinoma. PLoS One. 2015; 10(2): e0116977.
  109. Ali-Fehmi R, Khalifeh I, Bandyopadhyay S, et al. Patterns of loss of heterozygosity at 10q23.3 and microsatellite instability in endometriosis, atypical endometriosis, and ovarian carcinoma arising in association with endometriosis. Int J Gynecol Pathol. 2006; 25(3): 223–229.
  110. Zhao ZZ, Nyholt DR, Thomas S, et al. Polymorphisms in the vascular endothelial growth factor gene and the risk of familial endometriosis. Mol Hum Reprod. 2008; 14(9): 531–538.
  111. Ammendola M, Pietropolli A, Saccucci P, et al. Acid phosphatase locus 1 genetic polymorphism, endometriosis, and allergy. Fertil Steril. 2008; 90(4): 1203–1205.
  112. Ammendola M, Bottini N, Pietropolli A, et al. Association between PTPN22 and endometriosis. Fertil Steril. 2008; 89(4): 993–994.
  113. Novella-Maestre E, Carda C, Ruiz-Sauri A, et al. Identification and quantification of dopamine receptor 2 in human eutopic and ectopic endometrium: a novel molecular target for endometriosis therapy. Biol Reprod. 2010; 83(5): 866–873.
  114. André GM, Barbosa CP, Teles JS, et al. Analysis of FOXP3 polymorphisms in infertile women with and without endometriosis. Fertil Steril. 2011; 95(7): 2223–2227.
  115. Frare AB, Barbosa AM, Costa IR, et al. GSTM1 and GSTT1 polymorphisms in endometriosis in women from Goiás, Brazil. Genet Mol Res. 2013; 12(3): 2764–2770.
  116. Liaqat I, Jahan N, Lone K, et al. Genetic polymorphisms associated with endometriosis in Pakistani women. J Endometr Pelvic Pain Disord. 2013; 5(4): 127–169.
  117. Sahmani M, Ghaleh TD, Darabi M, et al. I405V polymorphism of CETP gene and lipid profile in women with endometriosis. Gynecol Endocrinol. 2013; 29(7): 712–715.
  118. Abutorabi R, Baradaran A, Sadat Mostafavi F, et al. Evaluation of Tumor Necrosis Factor Alpha Polymorphism Frequencies in Endometriosis. Int J Fertil Steril. 2015; 9(3): 329–337.
  119. Al-Rubae'i SHN, Naji TS, Turki KM. Common variation of the gene in Iraqi women with endometriosis disease. Genom Data. 2017; 11: 55–59.
  120. Kang S, Shi Yy, Li Y, et al. Association between genetic variants of the VEGFR-2 gene and the risk of developing endometriosis in Northern Chinese Women. Gynecol Obstet Invest. 2013; 76(1): 32–37.
  121. Powell JE, Fung JN, Shakhbazov K, et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum Mol Genet. 2016; 25(22): 5046–5058.
  122. Waldeyer W. Eierstock und Ei. Leipzig: Engeimann. ; 1870.
  123. Russell WW. Aberrant portions of the Mullerian duct found in an ovary. Ovarian cysts of Mullerian origin. Bull. John Hopkins Hosp. 1899; 10: 8–10.
  124. Iwanoff NS. IV. Drüsiges cystenhaltiges Uterusfibromyom complicirt durch Sarcom und Carcinom. (Adenofibromyoma cysticum sarcomatodes carcinomatosum). Gynecologic and Obstetric Investigation. 1898; 7(3): 295–300.
  125. Lauche A. Die extragenitalen heterotopen Epithelwucherungen vom Bau der Uterusschleimhaut. (Fibroadenomatosis seroepidielialis). Virch Arch. 1923; 243: 298–373.
  126. Suginami H. A reappraisal of the coelomic metaplasia theory by reviewing endometriosis occurring in unusual sites and instances. Am J Obstet Gynecol. 1991; 165(1): 214–218.
  127. Ridley JH. The histogenesis of endometriosis. A review of facts and fancies. Obstet Gynecol Survey. 1968; 23: 1–23.
  128. Lauchlan SC, Lauchlan SC. The secondary Müllerian system. Obstet Gynecol Surv. 1972; 27(3): 133–146.
  129. Meyer R. Ueber den stand der Frage der Adenomyositis und Adenomyome in algemeinen und insbesondere iiber Adenomyositis serosoepithelialis und Adenomyometritis sarcomatosa. Zentralbl Gyndkol. 1919; 43: 745–750.
  130. Novak E. Pelvic endometriosis. Spontaneous rupture of endometrial cysts, with a report of three cases. Am J Obstet Gynecol. 1931; 22(6): 826–837.
  131. Levander G, Normann P. The Pathogenesis of Endometriosis an Experimental Study. Acta Obstetricia et Gynecologica Scandinavica. 1955; 34(4): 366–398.
  132. Merrill JA. Endometrial induction of endometriosis across Millipore filters. Am J Obstet Gynecol. 1966; 94(6): 780–790.
  133. Sampson J. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. American Journal of Obstetrics and Gynecology. 1927; 14(4): 422–469.
  134. Haney AF. The pathogenesis and aetiology of endometriosis. In Thomas EJ, Rock JA, eds. Modern Approaches to Endometriosis. Dordrecht, Boston, London: Kluwer Academic Publishers; 1991:3–19.
  135. Halban J. Metastatic hysteroadenosis. Wien Klin Wochenschr. 1924; 37: 1205–1206.
  136. Halban J. Hysteroadenosis metastatica. Zentralbl Gyndkoi. 1925; 7: 387–391.
  137. Sampson J. The development of the implantation theory for the origin of peritoneal endometriosis. American Journal of Obstetrics and Gynecology. 1940; 40(4): 549–557.
  138. Kitawaki J, Kado N, Ishihara H, et al. Endometriosis: the pathophysiology as an estrogen-dependent disease. J Steroid Biochem Mol Biol. 2002; 83(1-5): 149–155.
  139. Dun EC, Taylor RN, Wieser F. Advances in the genetics of endometriosis. Genome Med. 2010; 2(10): 75.
  140. Cosín R, Gilabert-Estellés J, Ramón LA, et al. Influence of peritoneal fluid on the expression of angiogenic and proteolytic factors in cultures of endometrial cells from women with endometriosis. Hum Reprod. 2010; 25(2): 398–405.
  141. Machado DE, Berardo PT, Palmero CY, et al. Higher expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) and metalloproteinase-9 (MMP-9) in a rat model of peritoneal endometriosis is similar to cancer diseases. J Exp Clin Cancer Res. 2010; 29: 4.
  142. Sotnikova NYu, Antsiferova YS, Posiseeva LV, et al. Mechanisms regulating invasiveness and growth of endometriosis lesions in rat experimental model and in humans. Fertil Steril. 2010; 93(8): 2701–2705.
  143. Bartosik D, Jacobs S, Kelly L. Endometrial tissue in peritoneal fluid. Fertility and Sterility. 1986; 46(5): 796–800.
  144. Kao AP, Wang KH, Chang CC, et al. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril. 2011; 95(4): 1308–13015.e1.
  145. Amalinei C, Cianga C, Balan R, et al. Immunohistochemical analysis of steroid receptors, proliferation markers, apoptosis related molecules, and gelatinases in non-neoplastic and neoplastic endometrium. Ann Anat. 2011; 193(1): 43–55.
  146. Keenan JA, Chen TT, Chadwell NL, et al. IL-1 beta, TNF-alpha, and IL-2 in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am J Reprod Immunol. 1995; 34(6): 381–385.
  147. Gottschalk C, Malberg K, Arndt M, et al. Matrix metalloproteinases and TACE play a role in the pathogenesis of endometriosis. Adv Exp Med Biol. 2000; 477: 483–486.
  148. Măluţan AM, Drugan T, Ciortea R, et al. Serum anti-inflammatory cytokines for the evaluation of inflammatory status in endometriosis. J Res Med Sci. 2015; 20(7): 668–674.
  149. Grund EM, Kagan D, Tran CA, et al. Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol Pharmacol. 2008; 73(5): 1394–1404.
  150. Salmeri FM, Laganà AS, Sofo V, et al. Behavior of tumor necrosis factor-α and tumor necrosis factor receptor 1/tumor necrosis factor receptor 2 system in mononuclear cells recovered from peritoneal fluid of women with endometriosis at different stages. Reprod Sci. 2015; 22(2): 165–172.
  151. Dawood MY, Khan-Dawood FS. Differential suppression of menstrual fluid prostaglandin F2a, prostaglandin E2, 6-keto prostaglandin F1a and thromboxane B2 by suprofen in women with primary dysmenorrhea. Prostaglandins Other Lipid Mediat. 2007; 83(1-2): 146–153.
  152. Akoum A, Kong J, Metz C, et al. Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil Steril. 2002; 77(5): 989–994.
  153. Ouyang Z, Osuga Y, Hirota Y, et al. Interleukin-4 induces expression of eotaxin in endometriotic stromal cells. Fertil Steril. 2010; 94(1): 58–62.
  154. Morin M, Bellehumeur C, Therriault MJ, et al. Elevated levels of macrophage migration inhibitory factor in the peripheral blood of women with endometriosis. Fertil Steril. 2005; 83(4): 865–872.
  155. Khoufache K, Bazin S, Girard K, et al. Macrophage migration inhibitory factor antagonist blocks the development of endometriosis in vivo. PLoS One. 2012; 7(5): e37264.
  156. Attar E, Tokunaga H, Imir G, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab. 2009; 94(2): 623–631.
  157. Banu SK, Lee J, Speights VO, et al. Cyclooxygenase-2 regulates survival, migration, and invasion of human endometriotic cells through multiple mechanisms. Endocrinology. 2008; 149(3): 1180–1189.
  158. Carli C, Metz CN, Al-Abed Y, et al. Up-regulation of cyclooxygenase-2 expression and prostaglandin E2 production in human endometriotic cells by macrophage migration inhibitory factor: involvement of novel kinase signaling pathways. Endocrinology. 2009; 150(7): 3128–3137.
  159. Chuang PC, Lin YJ, Wu MH, et al. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. Am J Pathol. 2010; 176(2): 850–860.
  160. Jana S, Chatterjee K, Ray AK, et al. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis. PLoS One. 2016; 11(10): e0163540.
  161. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z. Role of natural killer cell activity in the pathogenesis of endometriosis. Curr Med Chem. 2011; 18(2): 200–208.
  162. Jeung I, Cheon K, Kim MR. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis. Biomed Res Int. 2016; 2016: 2916070.
  163. Oosterlynck DJ, Cornillie FJ, Waer M, et al. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril. 1991; 56(1): 45–51.
  164. Stanic AK, Kim M, Styer AK, et al. Dendritic cells attenuate the early establishment of endometriosis-like lesions in a murine model. Reprod Sci. 2014; 21(10): 1228–1236.
  165. Podgaec S, Abrao MS, Dias JA, et al. Endometriosis: an inflammatory disease with a Th2 immune response component. Hum Reprod. 2007; 22(5): 1373–1379.
  166. Viganó P, Pardi R, Magri B, et al. Expression of intercellular adhesion molecule-1 (ICAM-1) on cultured human endometrial stromal cells and its role in the interaction with natural killers. Am J Reprod Immunol. 1994; 32(3): 139–145.
  167. Maeda N, Izumiya C, Oguri H, et al. Aberrant expression of intercellular adhesion molecule-1 and killer inhibitory receptors induces immune tolerance in women with pelvic endometriosis. Fertil Steril. 2002; 77(4): 679–683.
  168. Nishida M, Nasu K, Ueda T, et al. Endometriotic cells are resistant to interferon-gamma-induced cell growth inhibition and apoptosis: a possible mechanism involved in the pathogenesis of endometriosis. Mol Hum Reprod. 2005; 11(1): 29–34.
  169. Drosdzol-Cop A, Skrzypulec-Plinta V. Selected cytokines and glycodelin A levels in serum and peritoneal fluid in girls with endometriosis. J Obstet Gynaecol Res. 2012; 38(10): 1245–1253.
  170. Kocbek V, Grandi G, Blank F, et al. TNFα-induced IKKβ complex activation influences epithelial, but not stromal cell survival in endometriosis. Mol Hum Reprod. 2016; 22(11): 768–777.
  171. Veillat V, Sengers V, Metz CN, et al. Macrophage migration inhibitory factor is involved in a positive feedback loop increasing aromatase expression in endometriosis. Am J Pathol. 2012; 181(3): 917–927.
  172. Rakhila H, Girard K, Leboeuf M, et al. Macrophage migration inhibitory factor is involved in ectopic endometrial tissue growth and peritoneal-endometrial tissue interaction in vivo: a plausible link to endometriosis development. PLoS One. 2014; 9(10): e110434.
  173. Li Y, Adur MK, Kannan A, et al. Progesterone Alleviates Endometriosis via Inhibition of Uterine Cell Proliferation, Inflammation and Angiogenesis in an Immunocompetent Mouse Model. PLoS One. 2016; 11(10): e0165347.
  174. Xue Q, Lin Z, Cheng YH, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007; 77(4): 681–687.
  175. Han SJ, Jung SY, Wu SP, et al. Estrogen Receptor β Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell. 2015; 163(4): 960–974.
  176. Arosh JA, Lee J, Balasubbramanian D, et al. Molecular and preclinical basis to inhibit PGE2 receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis. Proc Natl Acad Sci U S A. 2015; 112(31): 9716–9721.
  177. Lebovic DI, Bentzien F, Chao VA, et al. Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1beta. Mol Hum Reprod. 2000; 6(3): 269–275.
  178. Rocha AL, Carrarelli P, Novembri R, et al. Activin A stimulates interleukin 8 and vascular endothelial growth factor release from cultured human endometrial stromal cells: possible implications for the pathogenesis of endometriosis. Reprod Sci. 2012; 19(8): 832–838.
  179. Piva M, Sharpe-Timms KL. Peritoneal endometriotic lesions differentially express a haptoglobin-like gene. Mol Hum Reprod. 1999; 5(1): 71–78.
  180. Suzumori N, Zhao XXi, Suzumori K. Elevated angiogenin levels in the peritoneal fluid of women with endometriosis correlate with the extent of the disorder. Fertil Steril. 2004; 82(1): 93–96.
  181. Chung HW, Wen Y, Choi EA, et al. Pleiotrophin (PTN) and midkine (MK) mRNA expression in eutopic and ectopic endometrium in advanced stage endometriosis. Mol Hum Reprod. 2002; 8(4): 350–355.
  182. Maas JW, Calhaz-Jorge C, ter Riet G, et al. Tumor necrosis factor-alpha but not interleukin-1 beta or interleukin-8 concentrations correlate with angiogenic activity of peritoneal fluid from patients with minimal to mild endometriosis. Fertil Steril. 2001; 75(1): 180–185.
  183. Zucchini C, De Sanctis P, Facchini C, et al. Performance of Circulating Placental Growth Factor as A Screening Marker for Diagnosis of Ovarian Endometriosis: A Pilot Study. Int J Fertil Steril. 2016; 9(4): 483–489.
  184. Sotnikova NYu, Antsiferova YS, Posiseeva LV, et al. Mechanisms regulating invasiveness and growth of endometriosis lesions in rat experimental model and in humans. Fertil Steril. 2010; 93(8): 2701–2705.
  185. Takehara M, Ueda M, Yamashita Y, et al. Vascular endothelial growth factor A and C gene expression in endometriosis. Hum Pathol. 2004; 35(11): 1369–1375.
  186. Young VJ, Ahmad SF, Brown JK, et al. Peritoneal VEGF-A expression is regulated by TGF-β1 through an ID1 pathway in women with endometriosis. Sci Rep. 2015; 5: 16859.
  187. Inan S, Kuscu NK, Vatansever S, et al. Increased vascular surface density in ovarian endometriosis. Gynecol Endocrinol. 2003; 17(2): 143–150.
  188. Alcázar JL, García-Manero M. Ovarian endometrioma vascularization in women with pelvic pain. Fertil Steril. 2007; 87(6): 1271–1276.
  189. Selam B, Kayisli UA, Garcia-Velasco JA, et al. Regulation of fas ligand expression by IL-8 in human endometrium. J Clin Endocrinol Metab. 2002; 87(8): 3921–3927.
  190. Greenberg LH, Slayden OvD. Human endometriotic xenografts in immunodeficient RAG-2/gamma(c)KO mice. Am J Obstet Gynecol. 2004; 190(6): 1788–95; discussion 1795.
  191. Nap AW, Dunselman GAJ, Griffioen AW, et al. Angiostatic agents prevent the development of endometriosis-like lesions in the chicken chorioallantoic membrane. Fertil Steril. 2005; 83(3): 793–795.
  192. Masuda H, Maruyama T, Hiratsu E, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gamma c(null) immunodeficient mice. Proc Natl Acad Sci U S A. 2007; 104(6): 1925–1930.
  193. Styer AK, Sullivan BT, Puder M, et al. Ablation of leptin signaling disrupts the establishment, development, and maintenance of endometriosis-like lesions in a murine model. Endocrinology. 2008; 149(2): 506–514.
  194. Juhasz-Böss I, Hofele A, Lattrich C, et al. Matrix metalloproteinase messenger RNA expression in human endometriosis grafts cultured on a chicken chorioallantoic membrane. Fertil Steril. 2010; 94(1): 40–45.
  195. Maruyama T, Masuda H, Ono M, et al. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010; 140(1): 11–22.
  196. Burns KA, Rodriguez KF, Hewitt SC, et al. Role of estrogen receptor signaling required for endometriosis-like lesion establishment in a mouse model. Endocrinology. 2012; 153(8): 3960–3971.
  197. Greaves E, Cousins FL, Murray A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014; 184(7): 1930–1939.
  198. Maeda N. Role of NK cells and HLA-G in endometriosis. Frontiers in Bioscience. 2012; S4(4): 1568–1581.
  199. Goumenou AG, Matalliotakis IM, Tzardi M, et al. Apoptosis and differential expression of apoptosis-related proteins in endometriotic glandular and stromal cells. J Soc Gynecol Investig. 2004; 11(5): 318–322.
  200. Wang XQ, Yu J, Luo XZ, et al. The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol. 2010; 45(5): 291–299.
  201. Mori S, Matsuzaki K, Yoshida K, et al. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene. 2004; 23(44): 7416–7429.
  202. Hull ML, Johan MZ, Hodge WL, et al. Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol. 2012; 180(3): 880–887.
  203. Sampson J. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. American Journal of Obstetrics and Gynecology. 1927; 14(4): 422–469.
  204. Pearce CL, Templeman C, Rossing MA, et al. Ovarian Cancer Association Consortium. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 2012; 13(4): 385–394.
  205. Yu HC, Lin CY, Chang WC, et al. Increased Association Between Endometriosis and Endometrial Cancer. International Journal of Gynecological Cancer. 2015; 25(3): 447–452.
  206. Kobayashi H, Sumimoto K, Moniwa N, et al. Risk of developing ovarian cancer among women with ovarian endometrioma: a cohort study in Shizuoka, Japan. Int J Gynecol Cancer. 2007; 17(1): 37–43.
  207. Kuo KT, Mao TL, Chen Xu, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009; 174(5): 1597–1601.
  208. Kajihara H, Yamada Y, Kanayama S, et al. The role of hepatocyte nuclear factor-1beta in the pathogenesis of clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2009; 19(3): 471–479.
  209. Jones S, Wang TL, Shih IM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010; 330(6001): 228–231.
  210. Keita M, AinMelk Y, Pelmus M, et al. Endometrioid ovarian cancer and endometriotic cells exhibit the same alteration in the expression of interleukin-1 receptor II: to a link between endometriosis and endometrioid ovarian cancer. J Obstet Gynaecol Res. 2011; 37(2): 99–107.
  211. Worley MJ, Liu S, Hua Y, et al. Molecular changes in endometriosis-associated ovarian clear cell carcinoma. Eur J Cancer. 2015; 51(13): 1831–1842.
  212. Zhao C, Wu LSF, Barner R. Pathogenesis of ovarian clear cell adenofibroma, atypical proliferative (borderline) tumor, and carcinoma: clinicopathologic features of tumors with endometriosis or adenofibromatous components support two related pathways of tumor development. J Cancer. 2011; 2: 94–106.
  213. Bayramoğlu H, Düzcan E. Atypical epithelial changes and mutant p53 gene expression in ovarian endometriosis. Pathol Oncol Res. 2001; 7(1): 33–38.
  214. Amemiya S, Sekizawa A, Otsuka J, et al. Malignant transformation of endometriosis and genetic alterations of K-ras and microsatellite instability. Int J Gynaecol Obstet. 2004; 86(3): 371–376.
  215. Otsuka J, Okuda T, Sekizawa A, et al. K-ras mutation may promote carcinogenesis of endometriosis leading to ovarian clear cell carcinoma. Med Electron Microsc. 2004; 37(3): 188–192.
  216. Hadfield RM. Linkage and association studies of the relationship between endometriosis and genes encoding the detoxification enzymes GSTM1, GSTT1 and CYP1A1. Molecular Human Reproduction. 2001; 7(11): 1073–1078.
  217. Lousse JC, Defrère S, Colette S, et al. Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis. Hum Reprod. 2010; 25(3): 734–741.
  218. Furuya M, Tanaka R, Miyagi E, et al. Impaired CXCL4 expression in tumor-associated macrophages (TAMs) of ovarian cancers arising in endometriosis. Cancer Biol Ther. 2012; 13(8): 671–680.
  219. Varma R, Rollason T, Gupta JK, et al. Endometriosis and the neoplastic process. Reproduction. 2004; 127(3): 293–304.
  220. Yu HC, Lin CY, Chang WC, et al. Increased Association Between Endometriosis and Endometrial Cancer. International Journal of Gynecological Cancer. 2015; 25(3): 447–452.
  221. Treloar SA, Wicks J, Nyholt DR, et al. Genomewide linkage study in 1,176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26. Am J Hum Genet. 2005; 77(3): 365–376.
  222. Uno S, Zembutsu H, Hirasawa A, et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet. 2010; 42(8): 707–710.
  223. Painter JN, Anderson CA, Nyholt DR, et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet. 2011; 43(1): 51–54.
  224. Nakayama K, Toki T, Nikaido T, et al. Genetic alterations in microsatellite marker sites among tumor suppressor genes in endometriosis. Gynecol Obstet Invest. 2001; 51(4): 240–242.
  225. Hsieh YY, Chang CC, Tsai FJ, et al. Glutathione S-transferase M1*null genotype but not myeloperoxidase promoter G-463A polymorphism is associated with higher susceptibility to endometriosis. Mol Hum Reprod. 2004; 10(10): 713–717.
  226. Suganuma I, Mori T, Ito F, et al. Peroxisome proliferator-activated receptor gamma, coactivator 1α enhances local estrogen biosynthesis by stimulating aromatase activity in endometriosis. J Clin Endocrinol Metab. 2014; 99(7): E1191–E1198.
  227. McConechy M, Ding J, Senz J, et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Modern Pathology. 2013; 27(1): 128–134.
  228. Høgdall EVS, Christensen L, Høgdall CK, et al. Distribution of p53 expression in tissue from 774 Danish ovarian tumour patients and its prognostic significance in ovarian carcinomas. APMIS. 2008; 116(5): 400–409.
  229. Lai CR, Hsu CY, Chen YJ, et al. Ovarian cancers arising from endometriosis: a microenvironmental biomarker study including ER, HNF1ß, p53, PTEN, BAF250a, and COX-2. J Chin Med Assoc. 2013; 76(11): 629–634.
  230. Bitler BG, Aird KM, Garipov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015; 21(3): 231–238.
  231. Guan B, Wang TL, Shih IM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011; 71(21): 6718–6727.
  232. Jones S, Li M, Parsons DW, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012; 33(1): 100–103.
  233. Samartzis EP, Samartzis N, Noske A, et al. Loss of ARID1A/BAF250a-expression in endometriosis: a biomarker for risk of carcinogenic transformation? Mod Pathol. 2012; 25(6): 885–892.
  234. Wu H, Wang Ke, Liu W, et al. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression. Biochem Biophys Res Commun. 2014; 444(2): 141–146.
  235. Santulli P, Marcellin L, Chouzenoux S, et al. Role of the protein kinase BRAF in the pathogenesis of endometriosis. Expert Opin Ther Targets. 2016; 20(8): 1017–1029.
  236. Wang Y, van de, Fodde R, et al. Wnt/Beta-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget. 2010; 1(7): 674–684.
  237. Matsuzaki S, Darcha C. In vitro effects of a small-molecule antagonist of the Tcf/ß-catenin complex on endometrial and endometriotic cells of patients with endometriosis. PLoS One. 2013; 8(4): e61690.
  238. Suryawanshi S, Vlad AM, Lin HM, et al. Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2013; 19(5): 1213–1224.
  239. Yuan Dz, Yu Ll, Qu T, et al. Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci. 2015; 22(2): 223–234.
  240. Burney RO, Hamilton AE, Aghajanova L, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod. 2009; 15(10): 625–631.
  241. Petracco R, Grechukhina O, Popkhadze S, et al. MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab. 2011; 96(12): E1925–E1933.
  242. Shen L, Yang S, Huang W, et al. MicroRNA23a and microRNA23b deregulation derepresses SF-1 and upregulates estrogen signaling in ovarian endometriosis. J Clin Endocrinol Metab. 2013; 98(4): 1575–1582.
  243. Wang WT, Zhao YN, Han BW, et al. Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J Clin Endocrinol Metab. 2013; 98(1): 281–289.
  244. Graham A, Falcone T, Nothnick WB. The expression of microRNA-451 in human endometriotic lesions is inversely related to that of macrophage migration inhibitory factor (MIF) and regulates MIF expression and modulation of epithelial cell survival. Hum Reprod. 2015; 30(3): 642–652.
  245. Mannis GN, Fehniger JE, Creasman JS, et al. Risk-reducing salpingo-oophorectomy and ovarian cancer screening in 1077 women after BRCA testing. JAMA Intern Med. 2013; 173(2): 96–103.
  246. Jiang X, Hitchcock A, Bryan EJ, et al. Microsatellite analysis of endometriosis reveals loss of heterozygosity at candidate ovarian tumor suppressor gene loci. Cancer Res. 1996; 56(15): 3534–3539.
  247. Suryawanshi S, Huang X, Elishaev E, et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2014; 20(23): 6163–6174.
  248. Harada T, Momoeda M, Taketani Y, et al. Low-dose oral contraceptive pill for dysmenorrhea associated with endometriosis: a placebo-controlled, double-blind, randomized trial. Fertil Steril. 2008; 90(5): 1583–1588.
  249. Petraglia F, Hornung D, Seitz C, et al. Reduced pelvic pain in women with endometriosis: efficacy of long-term dienogest treatment. Arch Gynecol Obstet. 2012; 285(1): 167–173.
  250. Mabuchi S, Altomare DA, Cheung M, et al. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res. 2007; 13(14): 4261–4270.
  251. Rauh-Hain JA, Penson RT. Potential benefit of Sunitinib in recurrent and refractory ovarian clear cell adenocarcinoma. Int J Gynecol Cancer. 2008; 18(5): 934–936.
  252. Jin Y, Li Y, Pan L. The target therapy of ovarian clear cell carcinoma. Onco Targets Ther. 2014; 7: 1647–1652.
  253. Littlepage LE, Adler AS, Kouros-Mehr H, et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012; 2(7): 638–651.
  254. Rahman MT, Nakayama K, Rahman M, et al. Gene amplification of ZNF217 located at chr20q13.2 is associated with lymph node metastasis in ovarian clear cell carcinoma. Anticancer Res. 2012; 32(8): 3091–3095.
  255. Lokman NA, Elder ASF, Ween MP, et al. Annexin A2 is regulated by ovarian cancer-peritoneal cell interactions and promotes metastasis. Oncotarget. 2013; 4(8): 1199–1211.
  256. Shaw D, Clamp A, Jayson GC. Angiogenesis as a target for the treatment of ovarian cancer. Curr Opin Oncol. 2013; 25(5): 558–565.
  257. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 2002; 21(13): 2000–2008.
  258. Banu SK, Lee J, Speights VO, et al. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol Endocrinol. 2009; 23(8): 1291–1305.
  259. Matsuzaki S, Serada S, Morimoto A, et al. Annexin A4 is a promising therapeutic target for the treatment of platinum-resistant cancers. Expert Opin Ther Targets. 2014; 18(4): 403–414.
  260. Alborzi S, Hamedi B, Omidvar A, et al. A comparison of the effect of short-term aromatase inhibitor (letrozole) and GnRH agonist (triptorelin) versus case control on pregnancy rate and symptom and sign recurrence after laparoscopic treatment of endometriosis. Arch Gynecol Obstet. 2011; 284(1): 105–110.
  261. Zhao Y, Gong P, Chen Y, et al. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med. 2015; 7(271): 271ra9.
  262. Kulak J, Fischer C, Komm B, et al. Treatment with bazedoxifene, a selective estrogen receptor modulator, causes regression of endometriosis in a mouse model. Endocrinology. 2011; 152(8): 3226–3232.
  263. Yao Z, Shen X, Capodanno I, et al. Validation of rat endometriosis model by using raloxifene as a positive control for the evaluation of novel SERM compounds. J Invest Surg. 2005; 18(4): 177–183.
  264. Zhang YX. Effect of mifepristone in the different treatments of endometriosis. Clin Exp Obstet Gynecol. 2016; 43(3): 350–353.
  265. Wagenfeld A, Bone W, Schwede W, et al. BAY 1002670: a novel, highly potent and selective progesterone receptor modulator for gynaecological therapies. Hum Reprod. 2013; 28(8): 2253–2264.
  266. Howe DC, Mount NM, Bess K, et al. The translational efficacy of a nonsteroidal progesterone receptor antagonist, 4-[3-cyclopropyl-1-(mesylmethyl)-5-methyl-1H-pyrazol-4-yl]oxy,-2,6-dimethylbenzonitrile (PF-02413873), on endometrial growth in macaque and human. J Pharmacol Exp Ther. 2011; 339(2): 642–653.
  267. Tanmahasamut P, Rattanachaiyanont M, Angsuwathana S, et al. Postoperative levonorgestrel-releasing intrauterine system for pelvic endometriosis-related pain: a randomized controlled trial. Obstet Gynecol. 2012; 119(3): 519–526.
  268. Melis GB, Neri M, Corda V, et al. Overview of elagolix for the treatment of endometriosis. Expert Opin Drug Metab Toxicol. 2016; 12(5): 581–588.
  269. Magon N. Gonadotropin releasing hormone agonists: Expanding vistas. Indian J Endocrinol Metab. 2011; 15(4): 261–267.
  270. Streuli I, Ziegler Dde, Borghese B, et al. New treatment strategies and emerging drugs in endometriosis. Expert Opinion on Emerging Drugs. 2012; 17(1): 83–104.
  271. Ren XU, Wang Y, Xu G, et al. Effect of rapamycin on endometriosis in mice. Exp Ther Med. 2016; 12(1): 101–106.
  272. Ma Y, He YL. Study of an antiangiogenesis gene therapy with endostatin on endometriosis in the nude mouse model. Clin Exp Obstet Gynecol. 2014; 41(3): 328–334.
  273. Dabrosin C, Gyorffy S, Margetts P, et al. Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol. 2002; 161(3): 909–918.
  274. Nap AW, Griffioen AW, Dunselman GAJ, et al. Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab. 2004; 89(3): 1089–1095.
  275. Soysal D, Kızıldağ S, Saatlı B, et al. A novel angiogenesis inhibitor bevacizumab induces apoptosis in the rat endometriosis model. Balkan J Med Genet. 2014; 17(2): 73–80.
  276. Olivares CN, Bilotas MA, Ricci AG, et al. Anastrozole and celecoxib for endometriosis treatment, good to keep them apart? Reproduction. 2013; 145(2): 119–126.
  277. Hirakawa T, Nasu K, Aoyagi Y, et al. Arcyriaflavin a, a cyclin D1-cyclin-dependent kinase4 inhibitor, induces apoptosis and inhibits proliferation of human endometriotic stromal cells: a potential therapeutic agent in endometriosis. Reprod Biol Endocrinol. 2017; 15(1): 53.
  278. Park S, Lim W, Bazer F, et al. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. Journal of Cellular Physiology. 2017; 233(4): 3055–3065.
  279. Celik O, Hascalik S, Elter K, et al. Combating endometriosis by blocking proteasome and nuclear factor-kappaB pathways. Hum Reprod. 2008; 23(11): 2458–2465.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl