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CARBAPENEMASES: CLASSIFICATION, OCCURRENCE, STRUCTURE AND 

CATALYTIC MECHANISM  

 

Carbapenem hydrolysing class D beta-lactamases (CHDL) 

CHDLs are the most common factor of carbapenem resistance in A. baumannii strains. These 

enzymes are referred as OXAs (oxacillinases) due to their ability to hydrolyse 

oxazolylpenicillin – oxacillin much faster than benzylpenicillin [1, 2]. Currently, more than 

400 OXA enzymes have been described, within variants possessing carbapenemase activity. 

Among A. baumannii there have been identified so far six groups of OXA carbapenemases 

represented by: OXA-51-like, OXA-23-like, OXA-40/24-like, OXA-58-like, OXA-143-like, 

and OXA-48-like [3, 4]. The estimated sequence identities between members of OXA 

carbapenemases subgroups and enzymes belonging to each subgroup were more than 90% 

and less than 70%, respectively. Taking into consideration the structure of these enzymes, 

four essential motifs have been described. Till date the crystal structures of OXA-23, OXA-

40/24, OXA-58, OXA-48, and OXA-146 have been determined. The general structure of class 

D carbapenemases comprises of two domains of which one includes helixes, and the second 

has a mixed alpha/beta domain [5]. The enzymes have in common three highly conserved 

active site elements represented by: 1) the tetrad – Ser70-X-X-Lys (X represents a variable 

residue, containing the active site serine; Ser70 according to the class D beta-lactamase 

numbering), 2) Ser118-X-Val/Ile, which is equivalent to the invariable Ser-Asp-Asn motif in 

class A beta-lactamases and Tyr-Ala/Ser-Asn in AmpC beta-lactamases, 3) Lys216-Thr/Ser-

Gly element, that is common to the vast majority of serine-active beta-lactamases. Additional 

conserved motifs in class D beta-lactamases are represented by the triad Tyr/Phe144-Gly-Asn 

and the tetrad Trp232-X-X-Gly that have no analogues in either class A or AmpC beta-

lactamases [6]. The enzymatic reaction of class D carbapenemases considers acylation and 

deacylation of beta-lactam, facilitated by the conserved lysine residue. In these groups of 

enzymes, the covalent acyl-enzyme intermediate is not formed. 

OXA-51-like group. The largest group of OXA-type beta-lactamases (currently 

consisting of 95 closely related enzymes) is represented by OXA-51-like family. These 

enzymes are innate to A. baumannii and are encoded on the chromosome of this bacterium 

[3]. The kinetic studies performed by Smith and co-authors revealed the low catalytic 

efficiency for carbapenems, which was attributed to low affinity of the OXA-51 enzyme for 
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these antimicrobial agents. Further analysis concerning the structure of the enzyme revealed 

that low affinity towards carbapenems is derived from the presence of transient steric barrier 

which is formed by the occurrence of site chain of Trp222 in the enzymes active site. The 

research concerning the substitution of the Trp222Met showed that single amino acid 

substitution relieves the mentioned above steric hindrance and elevates the affinity of the 

mutant enzyme for carbapenems. The mutant enzyme exhibited tenfold rise in the affinity and 

an increase the level of resistance to these antimicrobials. Therefore, it was concluded that in 

the near future the OXA-51 family may become one of the most important carbapenemase, 

resulting with important clinical consequences among A. baumannii infections [7]. While 

natural low-level expression of OXA-51-like beta-lactamases have little impact on 

carbapenem susceptibility, the insertion sequence (ISAba1) mediated overproduction can lead 

to carbapenem resistance [8]. Analysis performed by Figueiredo and co-authors revealed the 

fiftyfold increase of blaOXA-66 expression (member of blaOXA-51-like gene family) in the isolate 

carrying ISAba1. Moreover, the authors demonstrated that inactivation of a blaOXA-66 gene in 

A. baumannii resulted in higher susceptibility to carbapenems [9]. The cases of A. baumannii 

strains resistant to carbapenems only due to the overexpression of OXA-51-like were reported 

inter alia in Spain and Korea, but this mode of resistance according to current knowledge 

remains globally infrequent [10, 11]. 

OXA-23-like group. The first identified acquired class D beta-lactamase with 

carbapenemase activity was OXA-23. It was detected in A. baumannii isolate collected in 

Edinburg, United Kingdom [12]. The ability of this enzyme to hydrolyse carbapenems, 

comparing to other CHDLs, is significant [1]. Till date, the OXA-23-like group includes 19 

enzymes, known to be located on plasmids and chromosomes, mainly in A. baumannii 

isolates. Furthermore, the members of this group were also detected among other Gram-

negative bacterial species, represented inter alia by: A. junii, A. radioresistens, A. pittii, 

Proteus mirabilis, Acinetobacter phenon 5, Acinetobacter phenon 6/ct 13TU, A. nosocomialis, 

Acinetobacter genomic species 10/11, A. lwoffii, Klebsiella pneumoniae, and A. baylyi. These 

carbapenemases are predominantly spread via plasmid-mediated transfer [4, 8]. Furthermore, 

the expression of OXA-23-like enzymes may be enhanced by the presence of ISAba1 

upstream of blaOXA-23-like gene [13]. The OXA-23-like enzymes are capable of hydrolysing 

oxyiminocephalosporins, aminopenicillins, piperacillin, oxacillin, and aztreonam as well as 

carbapenems. Additionally, taking into consideration the OXA-23 turnover rate for subjected 

to the study carbapenems (imipenem, meropenem, ertapenem, and doripenem) the highest 

value was noted for imipenem [4]. Moreover, tight binding of the carbapenems by OXA-23 
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enzyme is associated with the presence of a hydrophobic bridge across the top of the active 

site, which is formed by phenylalanine 110 and methionine 221 [4, 14]. Clonal studies 

concerning carbapenem resistance among OXA-23 carrying strains revealed that the presence 

of the gene is efficient enough to confer the resistance. Furthermore, the high level of 

resistance can be accomplished due to the co-existence of OXA-23 and other resistance 

mechanisms, e.g. AdeABC efflux pump [4]. The spread of beta-lactamases belonging to 

OXA-23-like group has been reported worldwide and A. baumannii strains carrying these 

enzymes are isolated in Italy [15], Poland [16], France [17], Spain [18], Japan [19], Egypt 

[20], Australia [21], the United States of America [22], Brazil [23], and others [24]. 

OXA-40/24-like group. Further group of acquired carbapenemases belonging to class 

D beta-lactamases is OXA-40/24-like. The first discovered member of OXA-40/24-like group 

was OXA-24 enzyme, currently renamed to OXA-40. This beta-lactamase originated from 

A. baumannii outbreak strain from hospital in Spain [25]. OXA-40 was also the first CHDL 

enzyme identified in A. baumannii in the United States of America [26]. The OXA-40/24-like 

group comprises till date of 7 enzymes, mostly identified in A. baumannii, but lately also 

encoded on plasmids or chromosomes of Gram-negative bacteria, represented by other 

species of Acinetobacter genus as well as P. aeruginosa and K. pneumoniae [4]. The OXA-

40/24 enzymes are able to hydrolyse the penicillins, and display the weaker activity towards 

cephalosporins and carbapenems. While, within OXA-40/24 group the kinetic parameters 

substantially differ, the OXA-40 exhibits the highest activity versus carbapenems [4]. The 

studies concerning insertional inactivation or insertion of cloned blaOXA-40 gene, confirmed 

the significant role of OXA-40 in the resistance to carbapenems [27]. Taking into 

consideration the structure of apo OXA-24, it was suggested that the ability of the enzyme to 

hydrolyse carbapenems is facilitated by an entrance tunnel resembling entry to the active site 

formed by side chains of residues Tyr112 and Met223 [14]. Acinetobacter baumannii strains 

carrying OXA-40/24 enzymes have been isolated worldwide, including countries, such as: 

Spain [28], Portugal [29], Finland [30], Poland [31], Croatia [32], Turkey [33], Egypt [34], 

Iran [35], and the United States of America [36]. 

OXA-58-like group. The first described representative of this group was carried by 

the carbapenem-resistant A. baumannii isolate originated from the hospital in Toulouse, 

France [37]. While OXA-58 is considered to hydrolyse carbapenems at low-level, its 

expression may be enhanced by the presence of insertion sequences (e.g. ISAba3, ISAba825), 

resulting in carbapenem resistance in A. baumannii [38, 39]. Until now, four members of 

OXA-58-like group (OXA-58, OXA-96, OXA-97, OXA-164), located on plasmids or 
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chromosomes, have been described in this species [4]. Acinetobacter baumannii strains 

carrying these CHDLs were described worldwide, inter alia in: France [37], the United States 

of America [39], Turkey [38], and Germany [40]. The OXA-58 kinetic analysis disclosed 

similarity within the enzymatic spectrum with other OXA-type enzymes in A. baumannii, 

considering weak activity towards the penicillins and carbapenems and capability to 

hydrolyse cefpirome and cephalothin [4]. Taking into account the crystal structure of OXA-58 

enzyme, it has been reported that the active site of the beta-lactamase lacs the hydrophobic 

bridge. Moreover, when compared with OXA-24/40 and OXA-48, the OXA-58 has 

a differently shaped active site. Comparative studies concerning catalytic efficiency for 

imipenem of OXA-48, OXA-58 and OXA-23, OXA-24/40 suggested that the role of the 

active site hydrophobic bridge may not be essential factor for more efficient deacylation of 

carbapenems in class D carbapenemases [41]. 

OXA-143-like group. An additional reported CHDL is OXA-143. This enzyme was 

first recovered from clinical isolate of A. baumannii in Brazil in 2004. Amino acid sequence 

analysis of blaOXA-143 revealed diversified degree of identity to the previously described 

enzymes, following 88% with OXA-40, 63% with OXA-23 and 52% with OXA-58. The 

enzyme hydrolytically disintegrated penicillins, oxacillin, meropenem, and imipenem. Despite 

the fact that OXA-143 is characterised by low rates of hydrolysis, it is more probably that it 

significantly contributes to resistance to imipenem and meropenem. Taking into account 

genetic environment of plasmid encoded OXA-143 carbapenemase, it was not associated 

either with insertion sequences or integrons. Further studies concerning transformation of the 

A. baumannii reference strain resulted with blaOXA-143 mediated carbapenem resistance [42]. 

Currently, four members of OXA-143-like group were described in A. baumannii: OXA-143 

[42], OXA-182 [43], OXA-231 [44], and OXA-253 [44, 45] in strains from Brazil, Korea, 

Honduras, and Brazil, respectively. 

OXA-48-like group. While OXA-48-like enzymes are the most frequently reported 

among K. pneumoniae and other Enterobacteriaceae, very recently there have been described 

the first detection of OXA-48-like-producing A. baumannii. The isolate derived from fecal 

flora of a nursing home resident in northern Portugal [46]. General structure of the OXA-48 

enzyme is considered to resemble OXA-1, OXA-10 and OXA-13, although they differ 

structurally in the length and orientation of beta5-beta6 loop. Furthermore, it was also 

concluded that the short-loop connecting beta5- and beta6-strands may be responsible for the 

carbapenemase activity of the OXA-48 enzyme. The above-mentioned structure is situated 

within the active site of OXA-48, forming a narrow active site cleft [5, 47].  
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Table 1 presents acquired CHDLs described till date in A. baumannii strains (Table 1). 

 

Ambler class B beta-lactamases 

These enzymes are often described as metallo-beta-lactamases (MBL) and possess one or two 

metal ions (usually zinc) in their active site, in the opposition to a serine residue present 

among A, C and D class enzymes. Due to zinc dependence, MBL catalysis is inhibited by 

metal-chelating agents e.g. EDTA (ethylenediaminetetraacetic acid) [3]. These enzymes 

confer resistance to a broad spectrum of beta-lactams including: penicillins, cephalosporins 

and carbapenems. Furthermore, MBLs are not inhibited by any clinically useful beta-

lactamase inhibitors, such as clavulanic acid, tazobactam and sulbactam. Metallo-beta-

lactamases have been detected in strains of P. aeruginosa, A. baumannii and other Gram-

negative non-fermenters as well as Enterobacteriaceae [58]. The overall structure of MBLs 

enzymes is very similar and all the metallo-beta-lactamases possess the alpha-beta/beta-alpha 

sandwich fold consisting of two central beta-sheets and five alpha-helices on the external 

faces. At the external edge of the beta-beta sandwich the zinc-binding motifs composed of six 

residues are located [5]. Taking into account the amino acid sequence homology and metal 

requirement, the MBLs are classified into three subclasses – B1, B2, and B3. Comparing the 

substrate spectrum, B1 and B3 subclasses hydrolyse broad range of beta-lactams including 

penicillins, cephalosporins and carbapenems, while B2 subclass enzymes have a narrow 

spectrum that involves carbapenems [5]. The subclass B1 contains the larger number of 

described so far metallo-beta-lactamases, including clinically important enzymes belonging to 

IMP, VIM, NDM, and SIM families [59]. The B1 metallo-beta-lactamases carry two Zn ions, 

with one tightly and the other loosely coordinated. However, the subclass B3 have two Zn 

ions, but with similar binding affinity. The subclass B2 beta-lactamases require only one zinc 

ion for maximal enzymatic activity, moreover the simultaneous binding of another zinc ion 

results with reduction of the enzymatic activity [5]. In case of B1 and B3 subclasses the role 

of the ligands for both metal ions is played by one water or OH-ion. Furthermore, the 

nucleophilic attack on the beta-lactam carbon present in the carboxyl group is considered to 

be associated with the Zn1 and Zn2 that stabilise and activate the OH-ion. In consequence, the 

formation of the intermediate characterised as transient, non-covalent, tetrahedral as well as 

stabilised by zinc ions is performed. Moreover, it is considered that the cleaved beta-lactam 

ring nitrogen protonation and disintegration of the tetrahedral intermediate is related with Zn1 

and Zn2 [5]. Despite the fact that MBLs are not as much prevalent among A. baumannii as 

OXA enzymes, they exhibit significantly higher hydrolytic activity against carbapenems [60]. 
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Currently four groups of these enzymes have been described in A. baumannii worldwide  

– IMP, VIM, SIM, and NDM [61]. 

IMP (imipenemase). The first report of IMP-type beta-lactamase considered the 

P. aeruginosa strain isolated in 1988 in Japan [62]. Currently, 42 variants of IMP have been 

described, predominantly in Asia and among P. aeruginosa. IMP enzymes are denoted with 

broad substrate specificity including high affinity for carbapenems and cephalosporins, but 

weak affinity towards 6-alpha-methoxy-penicillins [63]. Basing on the identity of the second 

sphere residue at position 262, IMP variants can be divided into two major groups: IMP-1-like 

and IMP-6-like. While IMP-1-like enzymes have Ser residue at 262 position the IMP-6-like 

exhibit a Gly residue at this position. Taking into consideration the differences in catalytic 

efficiencies, the IMP-1 possesses greater efficiency towards penicillins (in particular 

penicillin G and ampicillin), ceftazidime, cephaloridine, and imipenem than IMP-6 [64]. The 

first IMP metallo-beta-lactamase carried by A. baumannii was described in Brazilian teaching 

hospital [65]. At present, 9 variants of IMP enzymes have been reported in A. baumannii, 

predominantly occurring in Asia, but also in Europe and Southern America [61]. 

VIM (Verona integron-encoded metallo-beta-lactamase). The first described VIM 

enzyme (VIM-1) was found in clinical isolate of P. aeruginosa in Verona, Italy, in the late 

nineties of the twentieth century. Moreover, the VIM-2 variant was found in 1996 in France. 

VIM metallo-beta-lactamases exhibit a broad substrate spectrum including: penicillins, 

cephalosporins and carbapenems. VIM enzymes show broader substrate specificity than IMP, 

in addition to their high affinity towards carbapenems and cephalosporins, they also hydrolyse 

6-alpha-methoxy-penicillins. Variants of VIM are characterised with the sequence similarities 

ranging between 81% and 99.6%, and form two major clusters represented by VIM-1-like and 

VIM-2-like. The comparative studies of Rossolini and co-workers revealed that both VIM-1 

and VIM-2 enzymes are efficient carbapenemases characterised with low Km and Kcat values. 

This feature differentiates the VIM enzymes from the other carbapenemases with comparable 

hydrolytic efficiencies and high Km and high Kcat values. Moreover, in the opposition to other 

B1 enzymes, VIM beta-lactamases are characterised with the absence of the conserved 

Lys224 [64]. Presently, the VIM enzymes are considered to be the most prevalent metallo-

beta-lactamases worldwide, with phenomenal spreading potential including non-fermenters as 

well as Enterobacteriaceae. The first MBL belonging to this group was characterised among 

A. baumannii in 2002 in Korea [66, 67]. Out of twenty-five described so far allotypes of VIM 

enzymes, only five were currently reported among A. baumannii strains in Europe and Asia 

[61, 62, 64, 65–69]. 
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SIM (Seoul imipenemase). Another group of MBLs is represented by SIM. These 

enzymes hydrolyse carbapenems, as well as penicillins, narrow- and extended-spectrum 

cephalosporins. SIM beta-lactamases are also characterised by lower prevalence and limited 

spread in comparison to IMP and VIM enzymes. The SIM-1 enzyme is also characterised 

with 69% and 64% identity to IMP-12 and IMP-9 MBL, respectively. Among A. baumannii, 

SIM-1 was first detected in clinical strain originating from tertiary-care hospital in Seoul, 

Korea [70]. Taking into consideration the occurrence of SIM-positive A. baumannii strains, 

their presence is currently limited to Korea. 

NDM (New Delhi metallo-beta-lactamase). NDM is one of the most recently 

discovered carbapenemase, forming a novel group of MBLs [71]. The first described NDM 

enzyme – NDM-1, was detected in K. pneumoniae strain acquired from patient who was 

transferred from Indian hospital to Sweden [72]. NDMs have been reported worldwide, 

mostly in strains belonging to Enterobacteriaceae family but also in non-fermenters and 

Vibrionaceae. Owing to brisk international dissemination NDMs are considered to be in near 

future the most prevalent carbapenemases worldwide. While primary reports suggested that 

NDM-positive strains were epidemiologically associated with the Indian subcontinent, current 

data highlight also the other areas of endemicity which are the Balkans and the Middle East 

[63]. NDM enzymes are able to hydrolyse penicillins, carbapenems and cephalosporins. 

Taking into account sequence homology among described so far NDMs, it is considered that 

the enzymes are less diversified than variants of VIM and IMP. Comparative studies 

concerning the L3 loop of NDM-1 and IMP-1, VIM-2, and VIM-7, showed that the loop of 

NDM-1 is more open and hydrophobic. It was also proposed that L3 loop is considered to 

play a significant role in the binding of antimicrobials at the active site [5]. The first clinical 

isolate of A. baumannii carrying NDM enzyme was acquired from patient from intensive care 

unit of a tertiary-care hospital in Chennai, India in 2010 [73]. Till date A. baumannii NDM-

positive strains have been recovered from patients in many countries throughout the world, 

including: Germany [74], Switzerland [75], France [76], Spain [77], Israel [78], the United 

Arab Emirates [79], Egypt [80], the United Kingdom, India, Bangladesh, and Pakistan [81]. 

The summarized data considering metallo-beta-lactamases carried by A. baumannii strains are 

presented in Table 2 (Table 2). 

 

Ambler class A carbapenemases 

Among currently described serine based Ambler class A beta-lactamases only a small number 

of enzymes represent carbapenemase activity. The carbapenem inactivation mechanism 
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mediated by these enzymes is associated with the acylation and deacylation steps [5]. These 

beta-lactamases include six groups of enzymes with the K. pneumoniae carbapenemases to be 

currently the most clinically-relevant [63].  

KPCs (Klebsiella pneumoniae carbapenemases) are serine-based enzymes, active 

against all beta-lactams, and not susceptible to commercially available beta-lactamase 

inhibitors. Till date twenty-two variants of KPC have been described [5]. The analysis of 

crystal structure of KPC-2 performed by Ke and co-authors revealed that subtle changes in the 

enzyme active site along with shifts in conserved amino acid positions which have 

a substantial effect on the substrate specificity [93]. KPC carbapenemases have been detected 

worldwide mainly in Enterobacteriaceae isolates, but also among P. aeruginosa and 

A. baumannii strains. The first report of KPC-positive A. baumannii took place in Puerto 

Rico. The PCR-based surveillance study conducted by Robledo and co-workers, performed in 

17 hospitals, revealed the presence of 41 A. baumannii KPC producers. The authors 

emphasize the high potential of blaKPC genes to spread among nosocomial pathogens in the 

hospitals of the Island [94]. 

GES (Guiana extended-spectrum beta-lactamase) enzymes are acquired beta-

lactamases which have been reported in P. aeruginosa, Enterobacteriaceae and A. baumannii 

strains. Currently, the family includes twenty-four variants, all possessing the activity against 

broad-spectrum cephalosporins. Furthermore, several GES enzymes owing to the 

modification of the active site obtained the carbapenemase activity, within GES-2, -4, -5, -6,  

-11, -14, and -18 beta-lactamases hydrolysing imipenem efficiently [95]. Although, GES 

enzymes are not widely distributed throughout the world, there have been reports of 

A. baumannii strains carrying GES-11 and/or GES-14 beta-lactamases in France, Belgium, 

Turkey, and Kuwait [96–100]. 

 

 

CARBAPENEMASE INHIBITORS 

 

While production of beta-lactamases may cause a significant threat to effective therapy of 

A. baumannii infections, introduction of beta-lactamase inhibitors could be an effective 

strategy to conquer this clinical challenge. Unfortunately, among commercially available 

beta-lactamase inhibitors represented by clavulanic acid, sulbactam and tazobactam neither 

are effective against clinically relevant carbapenemases [101]. 
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Further studies regarding novel beta-lactamase inhibitors represented by Avibactam 

(formerly NXL104), Relebactam (formerly MK7655) and RPX7009 are currently in progress 

[102]. The data concerning inhibition activity of Avibactam among carbapenem-resistant 

A. baumannii isolates, carrying class B and D carbapenemases, suggested the lack of the 

enzymes inhibition. Furthermore, research data regarding inhibition activity of Relebactam 

and RPX7009 are limited [103–105]. Therefore, extensive studies are carried out in order to 

develop effective inhibitors, particularly against class D and B carbapenemases [101]. 

 

Inhibitors of class D enzymes 

One of the approaches to the inhibition of class D carbapenemases is represented by the use of 

modified penicillin sulphones. These mechanism-based beta-lactamase inactivators are 

characterised by high affinity for the enzymes active site and ability to form stable reaction 

intermediates. In the study of Drawz and co-authors, effective inhibition of OXA-40/24 

enzyme was obtained by application of C-2-substituted 6-alkylidene penicillin sulphone 

(JDB/LN-1-255) [106]. Another approach to class D enzyme inhibition concerns application 

of boronic acid compounds. The first report on boronic acid-based beta-lactamase inhibitor 

(4,7-dichloro-1-benzothien-2-yl sulphonylaminomethyl boronic acid; DSABA) able to inhibit 

class D beta-lactamases was carried out by Tan and co-authors. The mechanism of DSABA 

action is based on docking into the catalytic pocket of serine hydrolases and forming of 

a transition-state tetrahedral complex with the serine hydroxyl group, resulting with shutting 

down the hydrolytic cycle of the enzyme. In these studies, the application of DSABA caused 

the reduction of MIC of imipenem against OXA-40 carrying A. baumannii strain [107]. 

 

Inhibitors of class B enzymes 

One of the promising groups of MBL inhibitors is represented by thiol derivatives (TD). The 

mechanism of TD mediated inhibition involves zinc halation and hydrolytic displacement. 

The TD group is represented by captopril – medication used in the therapy of blood pressure 

diseases. It turned out that this agent effectively inhibits metallo-beta-lactamases including 

NDM-1 and subclass B1, B2 enzymes in carried out in vitro studies [101, 108, 109]. 

Another novel MBL inhibitor, able to remove zinc ions, similarly to known in vitro 

chelators, is represented by aspergillomarasmine A (AMA) [110, 111]. This natural fungal 

product was described as a rapid and potent inactivator of several subclass B1 enzymes, 

represented by NDM-1 and VIM-2, while on contrary showed weak inhibition potential 

towards SPM-1 and IMP beta-lactamases. According to King and co-authors, AMA reinstated 
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meropenem activity against selected strains of Enterobacteriaceae, as well as Acinetobacter 

and Pseudomonas genus, expressing VIM and NDM-type alleles. This feature suggests that 

combination of AMA and a carbapenem antibiotic has therapeutic potential in challenging the 

threat of MBL-positive Gram-negative pathogens [110]. 

An additional MBL inhibitor – ME1071 (disodium 2,3-diethylmaleate), was first 

described by Ishii and co-workers [112]. This dicarboxylic acid derivative binds to the zinc 

ions, therefore preventing beta-lactam from access and resulting with certain MBL inhibition. 

In the study of Livermore and co-authors, ME1071 activity was examined against 

Enterobacteriaceae and Acinetobacter spp. isolates carrying several MBL enzymes (incl. IMP, 

VIM and NDM). The authors observed two patterns concerning ME1071 carbapenemase 

inhibition: 1) the reduction of MICs of carbapenems for strains carrying NDM-1 revealed 

weaker synergy than for isolates with IMP and VIM MBL, 2) the inhibitor potentiation 

towards Acinetobacter spp. isolates with NDM carbapenemases was weaker than against 

NDM-1-positive Enterobacteriaceae [113]. 
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TABLES 

 

Table 1  

Acquired carbapenem-hydrolysing OXA-type beta-lactamases carried by Acinetobacter 

baumannii strains 

 

Group Enzymes References 

OXA-23-like 

OXA-23  [12] 

OXA-27  [48] 

OXA-49  [49] 

OXA-146 [50] 

OXA-165-OXA-171  [51] 

OXA-225  [52] 

OXA-239 [53] 

OXA-40-like* 

OXA-40/24  [25] 

OXA-25 [48] 

OXA-26 [48] 

OXA-72  [54] 

OXA-139 [55] 

OXA-160 [36] 

OXA-58-like 

OXA-58 [37] 

OXA-96 [56] 

OXA-97 [57] 

OXA-164 [40] 

OXA-143-like 

OXA-143 [40] 

OXA-182 [43] 

OXA-231 [44] 

OXA-253 [44, 45] 

OXA-48-like NFD [46] 

*Also described as OXA-40/24-like 

NFD – not fully described 
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Table 2  

Metallo-beta-lactamases reported among Acinetobacter baumannii strains 

 

Group Enzymes References 

IMP 

IMP-1 [82] 
IMP-2 [83] 
IMP-4 [84] 
IMP-5 [85] 
IMP-6 [86] 
IMP-8 [65] 
IMP-10 [87] 
IMP-11 [88] 
IMP-19 [89] 

VIM 

VIM-1 [68] 
VIM-2 [67] 
VIM-3 [90] 
VIM-4 [91] 
VIM-11 [69] 

SIM SIM-1 [70] 

NDM NDM-1 [92] 
NDM-2 [74, 78] 

 


