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Abstract
Introduction. While most animals of the Muridae family are nocturnal, the gerbil displays diurnal activity and provides 
a useful model for visual system research. The purpose of this study was to investigate the localization of calcium-binding 
proteins (CBPs) in the visual cortex of the Mongolian gerbil (Meriones unguiculatus). We also compared the labeling 
of CBPs to those of gamma-aminobutyric acid (GABA)- and nitric oxide synthase (NOS)-containing neurons.
Material and methods. The study was conducted on twelve adult Mongolian gerbils (3–4 months old). We used 
horseradish peroxidase immunocytochemistry and two-color fluorescence immunocytochemistry with conventional 
and confocal microscopy to assess CBPs localization in the visual cortex.
Results. The highest density of calbindin-D28K (CB)- (34.18%) and parvalbumin (PV)-IR (37.51%) neurons was found 
in layer V, while the highest density of calretinin (CR)-IR (33.85%) neurons was found in layer II. The CB- (46.99%), 
CR- (44.88%), and PV-IR (50.17%) neurons mainly displayed a multipolar round/oval morphology. Two-color im-
munofluorescence revealed that only 16.67%, 14.16%, and 39.91% of the CB-, CR-, and PV-IR neurons, respectively, 
contained GABA. In addition, none of the CB-, CR-, and PV-IR neurons contained NOS.
Conclusions. Our findings indicate that CB-, CR-, and PV-containing neurons in the Mongolian gerbil visual cortex 
are distributed abundantly and distinctively in specific layers and in a small population of GABAergic neurons but are 
limited to subpopulations that do not express NOS. These data provide a basis for the potential roles of CBP-containing 
neurons in the gerbil visual cortex. (Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 2, 81–97)
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Introduction

Rats and mice are the two most commonly used 
small rodents in biomedical research due to their low 
maintenance costs, high reproductive capacity, and 
large availability of transgenic strains [1–8]. However, 
the gerbil, a small mammal in the rodent family, has 

recently emerged as a useful animal model in several 
areas of biomedical research owing to its distinctive 
anatomical and physiological characteristics [9]. For 
example, the gerbil has been used to study bacterial 
infection [10], parasitic disease [11–13], hormones 
[14], the immune system [15], nephropathy [16], 
type 2 diabetes [17], and cancer [18]. In the field of 
neuroscience, researchers have also used the gerbil for 
various studies, notably pertaining to brain develop-
ment [19], behavior [20], experimental epilepsy [21], 
ischemia [22–24], memory deficits [25], adaptation to 
auditory stimulation [26], and early sensory loss [27]. 
Recently, the genomes of the Mongolian gerbil [28, 29] 
and the great gerbil [30], along with the mitochondrial 
genome of the Mongolian gerbil [31] and Tamarisk 
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gerbil [32], have been sequenced. There have also 
been recent developments in the generation of gene 
knockout in the Mongolian gerbil using the CRISPR/ 
/Cas9 system [33], thus providing novel tools to further 
advance research.

When studying the visual system, the Mongolian 
gerbil (Meriones unguiculatus) has several advantages 
over other more commonly used rodents such as rats 
and mice. In particular, the gerbil’s diurnal nature can 
reveal unique features not found in other Muridae 
family members with mostly nocturnal lifestyles [19]. 
Although Mongolian gerbils have rod-dominant reti-
nas like many mammals, they have significantly more 
retinal cone cells compared to rats and mice [34]. The 
macula and area centralis are also not present in rats or 
mice; however, some gerbils have a specialized retinal 
region like the macular region of primates [35, 36]. 
These features support the use of gerbils over rats and 
mice in comparative studies concerning human vision. 
Therefore, many studies have been undertaken to pro-
vide an understanding of aspects of the gerbil’s visual 
system, including multisensory integration in the pri-
mary auditory, somatosensory, and visual cortices [37], 
auditory and visual development during the postnatal 
stage [38], and outcomes of visual cortical lesions [39]. 
Other groups have assessed parallel channels for visual 
orientation [40], changes in supragranular pyramidal 
neurons in early visual deprivation [27], calretinin 
(CR)-immunoreactive (IR) neuron distribution in the 
retina [41], and neuropeptide Y-IR neuron localization 
in the visual cortex [42].

Calcium is a significant regulatory factor in 
cellular homeostasis and metabolism. The EF-hand 
motif-containing calcium-binding proteins (CBPs) cal-
bindin-D28K (CB), calretinin (CR), and parvalbumin 
(PV) play crucial roles in maintaining proper levels of 
intracellular calcium ions [43–46]. Many studies have 
been conducted to unveil the roles of CB, CR, and PV 
in the central nervous system (CNS). For example, 
CB was shown to be a significant factor in control of 
the circadian rhythm [47, 48]. CR is important for the 
modulation of neuronal excitability and was shown 
to play a neuroprotective role in diabetic neuropathy  
[49, 50]. PV modulates intracellular oxidative pro-
cesses, and PV-positive interneurons of the visual 
cortex determine multineuronal activity dynamics 
that increase network synchrony [51, 52]. Although 
many functions of CBPs are still undetermined, these 
proteins were found to be distributed abundantly and 
distinctively in the CNS of various mammalian spe-
cies. Abundant CB-, CR-, and PV-expressing neurons 
show distinctive distributional patterns in the visual 
cortices of animals, including mice [53], hamsters [54], 

bats [55], rats [56], rabbits [57], cats [58], dogs [59], 
monkeys [60, 61], and humans [62, 63].

Nitric oxide (NO) is a gaseous molecule and 
an important neurotransmitter synthesized from 
L-arginine by the enzyme NO synthase (NOS), 
activation of which requires Ca2+ influx [64, 65]. 
NOS has three isozymes: neuronal NOS in neu-
rons, inducible NOS in macrophages, and endothe-
lial NOS in endothelial cells [66]. Neuronal NOS 
plays many important roles in the nervous system, 
including neurotransmission, synaptic plasticity, 
neurogenesis, and learning and memory [67, 68].  
Neuronal NOS is also related to neurodegenerative 
diseases such as Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease [69–71]. Neuronal 
NOS is present in both the peripheral nervous system 
and CNS, including various visual areas, such as the 
visual cortex and superior colliculus [54, 56, 72–81]. 
NOS is activated through calmodulin by elevated 
intracellular calcium ion levels [82, 83]. CBPs play 
important roles in maintaining intracellular calcium 
ion levels in the CNS. Therefore, the relationship 
between NOS and CBPs has been extensively studied 
[56, 84–88]. For example, in the rat neocortex, CB, 
CR, and PV are absent or found at very low levels 
in NOS-containing neurons [89], whereas, in the rat 
cerebral cortex, 24–34% of CB-containing cells also 
contained NOS [84, 85]. A minority of CB, CR, and 
PV-containing neurons also contained NOS in the rat 
claustrum [75], and in the hippocampi of mice and rats, 
some CR-containing cells also contained NOS [86, 
87]. Small cell body-sized NOS-containing neurons 
often colocalized with CB but not with CR or PV in 
the human temporal cortex [90].

Currently, the distribution of CB-, CR-, and 
PV-containing neurons in the gerbil visual cortex is 
unknown. We have conducted a comprehensive study 
of these neurons in the visual cortex to provide a better 
understanding of gerbil vision. The first goal of our 
study was to assess the distribution and morphology 
of CB-, CR-, and PV-IR neurons quantitatively, using 
immunocytochemistry, brightfield microscopy, and 
confocal microscopy. Next, we examined whether 
CB-, CR-and PV-IR neurons express gamma-aminobu-
tyric acid (GABA), as many CBP-containing neurons 
are GABAergic interneurons in other areas of the brain 
[56, 72, 91, 92]. Finally, we examined whether CBP-IR 
neurons express NO, which is associated with elevated 
intracellular calcium concentration.

Material and methods

Animals and tissue preparation. Twelve Mongolian gerbils 
(Meriones unguiculatus), all 3–4 months old and weighing  
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70–90 g, were obtained from an in-house breeding facility for 
use in this study. Animals were group housed under a 12-h 
light:12-h dark cycle until use. Temperature and humidi-
ty levels in animal housing facilities ranged from 23°C to 
26° and from 45% to 65%, respectively. The animals were 
anesthetized by isoflurane inhalation (1.5% in 70% nitro-
us oxide), then perfused intracardially with approximately 
10 mL of phosphate-buffered saline (PBS, pH 7.4) over 
a period of 3 min, followed by 30 mL of fixative (4% para-
formaldehyde and 0.3–0.5% glutaraldehyde in 0.1 M PBS 
containing 0.002% calcium chloride) over 20–30 min,  
using a syringe needle inserted through the left ventricle and 
aorta. The extracted brains were postfixed overnight and then 
cut into 50 μm coronal sections using a Vibratome 3000 Plus 
Sectioning System (Vibratome, St. Louis, MO, USA). All animal 
experiments were approved by the committee of Kyungpook 
National University (permission NO. 2021-0072). Guide for 
the Care and Use of Laboratory Animals (https://grants.nih.gov/
grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.
pdf) was followed.

Horseradish peroxidase (HRP) immunocytochemistry. The 
primary antibodies used in this study were as follows: mouse 
anti-CB (Sigma-Aldrich, St. Louis, MO, USA), mouse anti-CR 
(Millipore, Burlington, MA, USA), and mouse anti-PV (Sigma-
-Aldrich). The primary antibodies were diluted 1:500. Tissues 
were processed free-floating in small vials at room temperature 
with gentle agitation. For immunocytochemistry, the tissues 
were incubated in 1% sodium borohydride (NaBH4) for 30 min.  
Afterward, the tissues were rinsed for 3 × 10 min in PBS, 
then incubated in PBS with 4% normal horse serum (Vector 
Laboratories, Burlingame, CA, USA) with 0.5% Triton X-100 
for 2 h. Next, the tissues were incubated for 24 h with primary 
antibodies diluted 1:500 in PBS containing 4% normal serum 
with 0.5% Triton X-100. After three 10-minute rinses with 
PBS, the tissues were incubated in a 1:200 dilution of biotiny-
lated secondary goat anti-mouse IgG (Vector Laboratories) in 
a blocking solution. The tissues were again rinsed for 3 × 10 min  
in PBS, then incubated in a 1:50 dilution of avidin-biotinyla-
ted horseradish peroxidase complex (Vector Laboratories) in 
PBS for 2 h. Next, tissues were rinsed in 0.25 M Tris buffer 
for 3 × 10 min. Finally, staining was visualized by reaction 
with 1,3’-diaminobenzidine tetrahydrochloride (DAB) and 
hydrogen peroxide in 0.25 M Tris buffer for 30–60 sec using 
a DAB reagent kit (Seracare, Milford, MA, USA). All tissu-
es were then rinsed in 0.25 M Tris buffer before mounting.  
As a negative control, some sections were incubated in the same 
solutions without the addition of the primary antibodies, and 
these control tissues exhibited no immunoreactivity. After the 
immunocytochemical staining, the tissues were mounted on 
Superfrost Plus slides (Fisher, Pittsburgh, PA, USA) and dried 
overnight in a 37°C oven. The mounted sections were dehydra-
ted with alcohol, cleared with xylene, and then coverslips were 
applied with Permount (Fisher). The tissues were examined 
and photographed on a Zeiss Axioplan microscope (Carl Zeiss 

Meditec Incorporation, Jena, Germany) using conventional or 
differential interference contrast (DIC) optics.

Fluorescence immunocytochemistry. For the double-labeling 
of CBPs and GABA, the primary antibodies used in this study 
were as follows: mouse anti-GABA (Millipore), rabbit anti-CB 
(Sigma-Aldrich), rabbit anti-CR (Millipore), and rabbit anti-PV 
(Sigma-Aldrich). For the double-labeling of CBPs and NOS, the 
primary antibodies used were mouse anti-NOS (BD biosciences, 
San Jose, CA, USA), mouse anti-CB (Sigma-Aldrich), mouse 
anti-CR (Millipore), and mouse anti-PV (Sigma-Aldrich). The 
primary antibodies were diluted either 1:400 (GABA), 1:200 
(NOS), or 1:200-1:500 (CB, CR, and PV). For the staining of 
CB, CR, and PV, the secondary antibodies were fluorescein 
(FITC)-conjugated anti-rabbit IgG (Vector Laboratories) 
or FITC-conjugated anti-mouse IgG (Vector Laboratories).  
A Cy3-conjugated anti-mouse IgG (Jackson ImmunoResearch 
Inc, Baltimore, PA, USA) secondary antibody was used to 
identify GABA and NOS. Labeled sections were preserved 
under coverslips in the Vectashield mounting medium (Vector 
Laboratories).

Quantitative analysis. The laminal distribution of the CB-, CR-, 
and PV-IR neurons were examined in three different 500 μm  
sections from each of the three animals (9 sections total). 
Imaging was conducted using a Zeiss Axioplan microscope 
(AxioVision 4; Carl Zeiss Meditec Inc.). Double-labeled neu-
rons stained for GABA and CBPs were counted in three different 
500 μm sections from each of the three animals (9 sections 
total). Double-labeled neurons stained for NOS and CBPs were 
counted in three different 1,000 μm sections from each of the 
three animals (9 sections total). Double-labeled images were 
obtained on a Zeiss LSM800 laser scanning confocal microscope 
(Carl Zeiss Meditec Inc.) using a 40× objective. The morpho-
logical types of CB-, CR-, and PV-IR neurons were further 
analyzed from fluorescence-stained or DAB-reacted sections. 
Fluorescence images were photographed with a Zeiss LSM800 
laser scanning confocal microscope (Carl Zeiss Meditec Inc.) 
using a 40× objective. DIC images were acquired with a Zeiss 
Axioplan microscope (AxioVision 4; Carl Zeiss Meditec Inc.) 
using 40× or 63× objectives.

Results

Distribution of CBP- immunoreactive (IR)  
neurons
As shown in Fig. 1, the laminar distribution of CB- 
(Fig. 1B), CR- (Fig. 1C), and PV- (Fig. 1D) IR neu-
rons was first examined. Thionin staining was used 
to visualize cortical lamination (Fig. 1A). Fig. 1E 
shows the distribution of GABA-IR neurons. Each 
type of CBP-IR neuron was found to be distributed 
differently in the gerbil visual cortex. The highest 
density of CB-IR neurons was observed in layer V. The 
quantitative histogram of the cell distribution shown 
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in Fig. 2 shows the density of CB-IR neurons in each 
cortical layer: 2.75% (1.56 cells on average) of labeled 
neurons were found in layer I, 13.36% (7.56 cells on 
average) in layer II, 26.33% (14.89 cells on average) 
in layer III, 16.11% (9.11 cells on average) in layer 
IV, 34.18% (19.33 cells on average) in layer V, and 
7.27% (4.11 cells on average) in layer VI. The highest 
density of CR-IR neurons was observed in layer II. The 

quantitative histogram of the cell distribution provi-
ded in Fig. 2 shows the density of CR-IR neurons in 
each layer: 8.17% (4.67 cells on average) of labeled 
neurons were found in layer I, 33.85% (19.33 cells on 
average) in layer II, 13.04% (7.44 cells on average) in 
layer III, 11.67% (6.67 cells on average) in layer IV, 
22.96% (13.11 cells on average) in layer V, and 10.31%  
(5.89 cells on average) in layer VI. The PV-IR neurons 

Figure 1. Low-power photomicrographs showing the laminal distribution of calcium-binding proteins (CBPs) and GABA-IR neu-
rons in the gerbil visual cortex. A. Thionin-stained section illustrating cortical lamination. B. CB-IR neurons. C. CR-IR neurons.  
D. PV-IR neurons. E. GABA-IR neurons. Abbreviations: CB — calbindin-D28K; CR — calretinin; GABA — gamma-aminobutyric 
acid; IR — immunoreactive; PV — parvalbumin. Scale bar = 100 μm.

Figure 2. Histogram showing the distribution of CBP-IR neurons in the gerbil visual cortex. The density of CB-IR neurons is highest 
in layer V, whereas CR-IR neurons are predominantly located in layer II. The majority of PV-IR neurons were found in layers IV–V, 
but none were observed in layer I. Abbreviations as in the description of Fig. 1.
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were predominantly located in layers IV and V, with 
none found in layer I. The quantitative histogram of the 
cell distribution provided in Fig. 2 shows the density 
of the PV-IR neurons in each layer: 0.00% of labeled 
neurons were found in layer I, 2.96% (2.33 cells on 
average) in layer II, 16.36% (12.89 cells on average) 
in layer III, 32.44% (25.56 cells on average) in layer 
IV, 37.51% (29.56 cells on average) in layer V, and 
10.72% (8.44 cells on average) in layer VI.

Morphology of CB-IR neurons
The CB-IR neurons displayed various shapes in the 
gerbil visual cortex, including multipolar round/oval, 
vertical fusiform, multipolar stellate, horizontal, 
pyriform, and Martinotti types (Fig. 3). Most CB-IR 
neurons in the gerbil visual cortex were found to be 
round/oval. Fig. 3A shows a multipolar cell type with 
a round/oval cell body and multiple processes. Fig. 3B 
shows a stellate type, displaying a polygonal-shaped 
cell body with extending dendrites in various direc-
tions. Some of the CB-IR multipolar stellate neurons 
also had varicosities (arrowheads in Fig. 3B). Fig. 3C 
shows a pyriform type with a pyriform cell body and 
a bouquet of dendrites directed toward the pial surface. 
Fig. 3D shows a horizontal type, with a horizontally 
oriented cell body and dendrites. Fig. 3E shows a ver-
tical fusiform type, presenting a vertical fusiform cell 
body with a long main process ascending toward the 
pial surface and another descending process. Fig. 3F 
shows a Martinotti cell type displaying a long process 
toward the pial surface and some dendrites stretching 
sideways. Quantitatively, 46.99% ± 3.51% (156 of 332 
cells) of CB-IR neurons were of the multipolar round/ 
/oval type, 16.87% ± 5.15% (56 of 332 cells) were of 
the multipolar stellate type, 21.39% ± 4.60% (71 of 
332 cells) were of the vertical fusiform type, 3.01% ± 
± 2.50% (10 of 332 cells) were of the horizontal type, 
11.45% ± 3.20% (38 of 332 cells) were of the pyriform 
type, and 0.30% ± 0.72% (1 of 332 cells) were of the 
Martinotti type (Fig. 4).

Morphology of CR-IR neurons
The CR-IR neurons also varied in shape within the 
gerbil visual cortex, displaying multipolar round/ 
/oval, vertical fusiform, multipolar stellate, horizontal, 
and pyriform cell morphologies (Fig. 5). Most CR-IR 
neurons were of the multipolar round/oval (Figs. 5A, 
5B, arrowhead in 5C) and vertical fusiform (arrow in 
Figs. 5C, 5D) types. The multipolar round/oval cells 
had several dendrites extending in various directions. 
Some CR-IR round/oval neurons also had varicosities 
(enlarged box in Fig. 5A). The arrows in Figs. 5C and 
5D indicate a vertical fusiform type, which displays 
a vertical fusiform cell body with a process ascending 

toward the pial surface as well as a descending process. 
The stellate types shown in Figs. 5E and 5F had several 
dendrites oriented in various directions. Fig. 5G provi-
des an example of a pyriform type with a pyriform cell 
body and a dendrite directed toward the pial surface. 
Some horizontal-type cells, with horizontal fusiform 
cell bodies and horizontally oriented processes, also 
contained CR (Fig. 5H). Quantitatively, 44.88% ± 
± 4.52% (136 of 303 cells) of CR-IR neurons were 
of the multipolar round/oval type, 12.87% ± 5.23% 
(39 of 303 cells) were of the multipolar stellate type, 
31.02% ± 5.49% (94 of 303 cells) were of the vertical 
fusiform type, 1.32% ± 1.72% (4 of 303 cells) were 
of the horizontal type, and 9.90% ± 5.04% (30 of 303 
cells) were of the pyriform type (Fig. 4).

Morphology of PV-IR neurons
The PV-IR neurons also consisted of various shapes in 
the gerbil visual cortex, resulting in multipolar round/ 
/oval, vertical fusiform, multipolar stellate, horizontal, 
pyriform, and Martinotti cell types (Fig. 6). Most PV-IR 
neurons that we observed were round/oval. Figs. 6A  
and 6B show representative multipolar round/oval 
cells with round/oval cell bodies and many dendrites 
coursing in different directions. Fig. 6C shows a ver-
tical fusiform cell displaying a vertical fusiform cell 
body with an ascending process toward the pial sur-
face and another descending process. Fig. 6D shows 
a stellate type, presenting a polygonal-shaped cell body 
and many dendrites coursing in several directions. 
Fig. 6E provides an example of a pyriform type, with 
a pyriform cell body and thick, proximal dendrites 
directed toward the pial surface. Fig. 6F illustrates 
a horizontal type, with a horizontally oriented cell 
body and dendrites. Fig. 6G shows a Martinotti type 
displaying a long process toward the pial surface and 
some dendrites stretching sideways. Quantitatively, 
50.17% ± 7.97% (147 of 293 cells) of PV-IR neurons 
were of the multipolar round/oval type, 16.72%±  
± 6.51% (49 of 293 cells) were of the multipolar stella-
te type, 20.82% ± 3.68% (61 of 293 cells) were of the 
vertical fusiform type, 1.02% ± 1.37% (3 of 293 cells) 
were of the horizontal type, 10.92% ±5.23% (32 of 293 
cells) were of the pyriform type, and 0.34% ± 1.23% 
(1 of 293 cells) were of the Martinotti type (Fig. 4).

Colocalization of CBPs and GABA
We next determined whether CB-, CR-and PV-IR 
neurons in the gerbil visual cortex co-localized with 
GABA. While some neurons were clearly labeled 
by both anti-GABA and an anti-CBP antibody, 
other neurons were labeled only by one or the other  
(Fig. 7, Table 1). Fig. 7 shows neurons labeled for CBPs  
(Figs. 7A, D, G), GABA (Figs. 7B, E, H), and  
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the superimposition of combined CBP and GABA 
staining (Figs. 7C, F, I). Arrowheads in Figs. 7C, F, 
and I show neurons with colocalization of CBP and 
GABA. Quantitatively, 16.67% ± 2.90% (75 of 450 
cells) of CB-IR neurons were double-labeled with 
GABA, 14.16% ± 2.58% (63 of 445 cells) of CR-IR 
neurons were double-labeled with GABA, and 39.91% 

± 6.61% (269 of 674 cells) of PV-IR neurons were 
double-labeled with GABA (Table 1).

Colocalization of CBPs and NOS
Finally, we assessed whether CB-, CR-and PV-IR 
neurons in the gerbil visual cortex colocalized with 
NOS. Fig. 8 shows neurons labeled with CBPs  

Figure 3. High-power DIC and fluorescence photomicrographs revealing the morphology of calbindin-IR neurons in the gerbil 
visual cortex. A. Multipolar round/oval type. B. Multipolar stellate type with multiple processes with varicose fibers (arrowheads). 
C. Pyriform type with a bouquet of dendrites. D. Horizontal type with a fusiform cell body extending horizontally oriented pro-
cesses. E. Vertical fusiform type with cell body extending vertically oriented processes. F. Martinotti type with processes ascending 
toward the pial surface. Abbreviations: CB — calbindin-D28K; DIC — differential interference contrast; IR — immunoreactive. 
Scale bar = 20 μm.
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(Figs. 8A, D, G), NOS (Figs. 8B, E, H), and the supe-
rimposition of images stained for both (Figs. 8C, F, I). 
None of the CB-, CR-, and PV-IR cells coexpressed NOS  
(Figs. 8C, F, I, Table 1).

Discussion

Our results demonstrate that CB, CR, and PV are 
contained within various types of neurons in the gerbil 

visual cortex, with the three CBPs displaying diffe-
rential laminal distribution. Compared to the numbers 
reported for other animals by other studies, fewer CBP 
neurons express GABA in the gerbil visual cortex, and 
none contain NOS.

The density of CB-IR neurons in the gerbil visual 
cortex was the highest in layer V. This distribution 
pattern is very similar to previous descriptions in 
mice [53], hamsters [54], rats [56], and rabbits [57]. 
However, the distribution pattern of CB-IR neurons 
in the gerbil visual cortex significantly differs from 
flying foxes [93], cats [94], dogs [59], monkeys  
[60, 95], and humans [63], in which CB-IR neurons 
are mostly II distributed in layer II–III, and bats [55], 
in which CB-IR neurons are most abundant in layer 
IV. The highest density of CR-IR neurons in the gerbil 
visual cortex was observed in layer II. Unlike CB-IR 
neurons, the distribution of CR-IR neurons displays 
a similar pattern among many mammals, showing the 
highest density in layers II/III of the visual cortex in 
gerbils (current study), mice [53], hamsters [54], bats 
[55], rats [56], rabbits [57], cats [58], monkeys [61], 
and humans [62]. Most PV-IR neurons in the gerbil 
visual cortex were distributed in layers IV–V, without 
any PV-IR neurons observed in layer I. Similarly, PV-
-IR neurons are mostly distributed in layer IV in bats 
[55], rats [56], cats [96], monkeys [60], and humans 
[63]. Although not drastically different, most PV-IR 
neurons in the visual cortices of hamsters and mice 

Figure 5. Fluorescence photomicrographs revealing the morphology of calretinin-IR neurons in the gerbil visual cortex. A. Multipolar 
round/oval type with varicose fibers, enlarged in box. B. Round/oval type. C. Fusiform type with vertically oriented cell body and 
processes (arrow), as well as round/oval type (arrowhead). D. Vertical fusiform type with vertically oriented cell body and processes. 
E, F. Multipolar stellate type. G. Pyriform type with a dendrite directed toward the pial surface. H. Horizontal fusiform type with 
horizontally oriented cell body and processes. Abbreviations as in the description of Fig. 1. Scale bar = 20 μm.

Figure 4. Histogram showing the distribution of morphologi-
cally different types of neurons labeled by CBPs in the gerbil 
visual cortex. The major types of CB-, CR-, and PV-IR neurons 
are multipolar round/oval cells. Many other CR-IR neurons are 
vertical fusiform cells. Martinotti cells were the least commonly 
observed type for CB- and PV-IR neurons. Abbreviations as in 
the description of Fig. 1.
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are distributed in layers IV–VI [97]. Diverging further, 
PV-IR neurons are mostly distributed in layers II–VI 
of New World monkey and Marmoset visual cortices 
[95], and in layers III–VI in rabbits [57]. Thus, altho-
ugh CBPs display some common laminar distribution 
patterns between species, unique patterns can also be 
found. The functional significance of these unique, 
species-specific laminar distribution patterns is unk-
nown. In addition, considering that each visual cortical 
layer performs different functions, subtle differences in 
their structural and functional connectivity associated 
with CBP-containing neurons will be an important area 
of future exploration.

In the gerbil visual cortex, the major type of CB-IR 
neurons was round/oval. Similarly, in the visual cor-
tices of mice [53], hamsters [54], bats [55], rats [56], 
flying foxes [93], rabbits [57], cats [94], dogs [59], 
monkeys [60], and humans [63], the predominant types 
of CB-IR neurons are stellate and round/oval cells. 
In the gerbil visual cortex, most CR-IR neurons were 
round/oval, followed by vertical fusiform, like those 
identified in many other animals. In mice [53] and 
rabbits [57], most CR-IR neurons in the visual cortex 
are also fusiform. In the visual cortex of hamsters 
[54], bats [55], rats [56], cats [58], dogs [59], monkeys 
[60], dolphins [62], and humans [63], the main type of 
CR-IR neurons were round/oval and vertical fusiform. 

Figure 6. Fluorescence photomicrographs revealing the morphology of parvalbumin-IR neurons in the gerbil visual cortex.  
A, B. Multipolar round/oval type. C. Fusiform type with a vertically oriented cell body and processes. D. Multipolar stellate 
type with multiple processes. E. Pyriform type with a pyriform cell body and a thick dendrite directed toward the pial surface.  
F. Horizontal type with a horizontally oriented cell body and processes. G. Martinotti type with a process ascending toward the pial 
surface. Abbreviations as in the description of Fig. 1. Scale bar = 20 μm.
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The predominant type of PV-IR neurons in the gerbil 
visual cortex was round/oval, like those identified in 
mice and hamsters [97], bats [55], rats [56], rabbits 
[57], cats [94], dogs [59], monkeys [60, 98], and hu-
mans [98]. In addition to the round/oval, stellate, and 
vertical fusiform types of cells, a few pyriform and 
horizontal fusiform cells were also found to contain 
CB, CR, and PV. Martinotti cell morphology was also 
found rarely in CB- and PV-IR neurons. These results 
align with previous studies showing a similar organiza-
tion and suggest that these neurons are nonpyramidal 

interneurons [99, 100]. However, CBP-IR neurons 
consist of both pyramidal and nonpyramidal neurons 
in some species. For example, in the human neocor-
tex, CB-IR neurons represent a large population of 
pyramidal neurons [101]. In the cat visual cortex, only 
a few CB-IR neurons were pyramidal neurons [94].  
In the visual systems of other species, some CB-, CR-, 
and PV-IR cells were projection neurons. For exam-
ple, many retinal ganglion cells are CB- [102], CR-  
[103, 104], or PV-IR neurons [105, 106], and a signi-
ficant proportion of CB-IR neurons in the cat superior 

Figure 7. Fluorescence confocal photomicrographs of the gerbil visual cortex immunostained for calcium-binding proteins (CBPs) 
(A, D, G) or GABA (B, E, H), and superimposed images of CBP and GABA staining (C, F, I). Some of the CB-IR (arrowhead in C), 
CR-IR (arrowhead in F), and PV-IR (arrowhead in I) neurons are double-labeled with GABA. Abbreviations as in the description 
of Fig. 1. Scale bar = 50 μm.
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colliculus [4] are projection neurons. The localization 
of CBPs not only in interneurons but also in projection 
neurons depending on brain location and species might 
suggest the functional and connectional diversity of 
CBP-containing neurons.

In the gerbil visual cortex, some CB-IR multipo-
lar stellate and some CR-IR multipolar round/oval 
neurons had varicose fibers. In the visual system, 
for example, varicosities are notably found in CB-IR 
multipolar stellate neurons from the cat [4] and dog 
superior colliculus [107]. CR-IR multipolar stellate 
neurons are found in the rabbit [108] and dog superior 
colliculus [109], and PV-IR multipolar stellate neu-
rons are found in the hamster visual cortex [97]. The 
varicosities observed in specific subtypes of CB- and 
CR-IR neurons in the present study might suggest 
their involvement in subtly distinct roles. Although 
the function of dendritic varicosities is still not fully 
understood, it is known that amacrine dendritic vari-
cosities electrically isolate local input-output neuronal 
circuits [110]. Axonal varicosities, which are involved 
in the antidromic propagation of action potentials to the 
soma in a retrograde manner [111], likely play a role in 
neuron mechanosensation [112] and protection [113] 
in the CNS, and contribute to blood flow regulation 
in the peripheral nervous system [114]. The observed 
varicosities suggest the activation of neurons. When 
visual or electrical stimulation was performed at cho-
linergic fibers from the horizontal diagonal band of 
Broca projecting to the prefrontal cortex, the density 
of choline acetyltransferase-IR varicosities on acti-
vated pyramidal neurons of the prefrontal cortex was 
significantly increased compared with nonactivated 
pyramidal neurons in the stimulation group or control 
rats [115]. Thus, the varicosity-containing CB- and 
CR-IR neurons may play key roles in the differential 
encoding of visual signals and in regulating the con-
duction of synaptic potentials locally.

The present study also showed that some CB-, 
CR-, and PV-IR neurons in the gerbil visual cortex 

also contained GABA. The relatively low percentage 
of neurons double-labeled for GABA and CBPs is 
surprising, given that the morphologies of CB-, CR-, 
and PV-IR neurons were nonpyramidal, and many 
reports have found high percentages of CB-, CR-, and 
PV-IR in GABAergic neurons of the visual cortex. 
However, in our experiment we consistently found 
a low percentage of neurons double-labeled with 
GABA, suggesting differences in double-labeling 
are clear even among rodent species. Contrary to the 
present result, 100% of CR-IR neurons and 100% of 
PV-IR neurons express GABA in the mouse visual 
cortex [72], and 97% of CB-IR neurons, 94% of 
CR-IR neurons, and 100% of PV-IR neurons express 
GABA in the rat visual cortex [56]. Additionally, 
95% of CR-IR neurons express GABA in the monkey 
visual cortex [61], whereas 80% of CR-IR and 93% 
of PV-IR neurons express GABA in the cat visual 
cortex [96]. Varying slightly, 66% of CB-IR neurons,  
92% of CR-IR neurons, and 96% of PV-IR neurons 
express GABA in the dog visual cortex [59]. In the bat 
visual cortex, 66% of CB-IR neurons, 24% of CR-IR 
neurons, and 77% of PV-IR neurons express GABA 
[55]. However, the present results indicate that most 
CBP-IR neurons are not GABA-containing interneu-
rons in the gerbil visual cortex. 

The double-labeling ratio of CBPs and GABA 
also significantly differs based on the brain area.  
For example, in the mouse superior colliculus [116], 
36% of PV-IR neurons in the superficial layer and 81% 
of PV-IR neurons in the intermediate layer contain 
GABA. In the bat superior colliculus [117], CB-IR 
neurons and CR-IR neurons do not stain for GABA, 
but 10.27% of PV-IR neurons do. Only 4% of CB-IR 
neurons express GABA in the cat’s superior colliculus 
[4], and CR-IR neurons in its superficial layers do not 
contain GABA [118]. In the dog superior colliculus, 
no CR-IR neurons express GABA, but 11.20% of 
CB-IR neurons and 11.67% PV-IR neurons do [107, 
109, 119]. These results illustrate that there are variable 

Table 1. Quantitative analysis of CBP-IR neurons colocalized with GABA and NOS in the Mongolian gerbil visual cortex

Antibody Width per 
Section

No. of Sections No. of CBP-IR 
Cells

No. of double 
IR

% double IR
(Mean ± SD)

GABA calbindin-D28K 500 μm 9 450 75 16.67 ± 2.90

calretinin 500 μm 9 445 63 14.16 ± 2.58

parvalbumin 500 μm 9 674 269 39.91 ± 6.61

NOS calbindin-D28K 1,000 μm 9 922 0 0.00 ± 0.00

calretinin 1,000 μm 9 982 0 0.00 ± 0.00

parvalbumin 1,000 μm 9 1466 0 0.00 ± 0.00

Abbreviations: CBP — calcium-binding protein; GABA — gamma-aminobutyric acid; IR — immunoreactive; NOS — nitric oxide synthase; SD — standard 
deviation.
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expression ratios of GABA in a variety of CB-, CR-, 
and PV-IR neurons across different brain areas and 
species. Although the physiological significance of 
the interspecies and interregional differences in the 
differential expressional pattern of GABA in CB-, 
CR-, and PV-IR neurons is not yet fully understood, 
it appears that the contribution of GABA signaling to 
CBP-containing neurons might be very diverse.

Based on the expression patterns of various neuro-
nal markers, including CR and PV, at least 13 distinct 
groups of GABAergic neurons were identified in the 
mouse visual cortex [72]. In fact, it has been predicted 
that there are 1,000 different types of neurons present 

in the visual cortex [99]. In the retina, a recent study 
revealed 32 functionally different [120] and 46 tran-
scriptionally distinct types [121] of retinal ganglion 
cells. Moreover, approximately 10 different subtypes 
of CB- [102], CR- [103, 104], and PV- [105, 106] 
containing retinal ganglion cells have been identified. 
These findings indicate that a diversity of cell subtypes 
work together in concert. To fully understand how the 
brain mediates visual processing, more information on 
function, connection, neurochemical processing, and 
morphology of the diverse subsets of neurons will be 
required.

Figure 8. Fluorescence confocal photomicrographs of the gerbil visual cortex immunostained for calcium-binding proteins (CBPs) 
(A, D, G) or NOS (B, E, H), and superimposed images of CBP and NOS staining (C, F, I). None of the CB-, CR-, and PV-IR neurons 
expressed NOS. Abbreviations: as in the description of Fig. 1. Scale bar = 50 μm.
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In the present study, CB-, CR-, and PV-IR neu-
rons did not contain NOS in the gerbil visual cortex. 
In accordance with the present study, CB-, CR-, 
and PV-IR neurons in the bat visual cortex also do  
not express NOS [73]. In the rat visual cortex, CR- and 
PV-IR neurons do not coexpress NOS, and it is only 
found in 1% of CB-IR neurons [56]. However, there 
are large differences in the expression patterns of NOS 
in CBP-IR neurons, even among rodent species. For 
example, 16.7% of CB-IR neurons, 51.7% of CR-IR 
neurons, and 25.0% of PV-IR neurons in the mouse 
visual cortex contain NOS [76]. Similarly, 14.7% of 
CB-IR neurons and 27.5% of CR-IR neurons in the 
hamster visual cortex contain NOS [54]. In the rabbit 
visual cortex, 92.4% of CB-IR neurons and 2.5% of 
CR-IR neurons coexpress NOS, whereas the PV-IR 
neurons do not [76]. These results show the variable 
expression patterns of NOS in CBP-IR neurons in the 
visual cortex between species. 

The expression pattern of NOS in CBP-IR neurons 
is also different in other brain areas. For example, CB-
-containing neurons in the somatosensory cortex of the 
mouse [78], CR-containing neurons in the neocortex 
of the mouse, rat, guinea-pig, rabbit, cat, and monkey 
[122], and in the rat claustrum [75], and PV-containing 
neurons in the somatosensory cortex of the mouse 
[78], the cerebral cortex of the rat [85], neocortices of 
mouse, rat, guinea-pig, rabbit, cat, and monkey [122], 
and periaqueductal gray matter of the rat [84] do not 
contain NOS. However, NOS was found in a minority 
of CB-containing cells in the cerebral cortex of rats 
[85], some CB-containing cells in the neocortices of 
mice, rats, guinea pigs, rabbits, cats, and monkeys 
[122], and about 20% of CB-containing cells in the 
cerebral cortices of monkeys [80]. Additionally, NOS 
is found in 1.93% of CB-containing cells in the mouse 
basolateral amygdala [123], a minority of CB-conta-
ining cells in the rat claustrum [75], and 24–34% of 
CB-containing cells in rat periaqueductal gray matter 
[84]. NOS was contained in 8.2% of CR-containing 
cells in the somatosensory cortex of the mouse [78], 
42–49% of CR-containing cells in the hippocampus 
of the mouse [86], 36–42% of CR-containing cells in 
the hippocampus of the rat [87], 7.25% of CR-conta-
ining cells in the mouse basolateral amygdala [123], 
and 24.4% of CR-containing cells in the rat dentate 
gyrus [77]. Finally, NOS was contained in 25.25% of 
PV-containing cells in the mouse basolateral amygda-
la [123], a minority of PV-containing cells in the rat 
claustrum [75], and 1.8% of PV-containing cells in 
the rat dentate gyrus [77]. However, the functional 
significance of these variable expressions among 
different species, in different locations of the brain, is 
not yet fully understood. They might help elucidate 

the diversity and functional variation of NOS between 
species. The lack of colocalization of CB-, CR-, and 
PV-IR neurons with NOS in the present study suggests 
that these neurons are anatomically and functionally 
independent from subgroups of NOS-IR neurons in 
the gerbil visual cortex.

The function of CBPs in visual processing is still 
not well known, despite their abundant distribution  
in the visual cortex. For example, CB participates in 
the regulation of the circadian rhythm that modulates 
the response to light, notably via Ca2+ homeostasis and 
sensing [47, 48]. A recent study showed that the effect 
of activating CR+ neurons was inhibitory, whereas 
CR+ neurons were less selective to orientation and 
less surround-suppressed than the CR− neurons in 
the mouse visual cortex. The functional properties 
of CR+ neurons are distinguishable from those of 
PV-, somatostatin-, and vasoactive intestinal peptide-
-containing interneurons in the mouse visual cortex. 
The CR-containing neurons are also less selective 
to orientation than PV-containing interneurons in 
the mouse visual cortex [124]. PV participates in an 
excitatory visual pathway that mediates behavioral 
patterns during the detection of looming objects [125, 
126]. In addition, PV-expressing neurons target the 
somatic and perisomatic compartments of pyramidal 
neurons linearly to transform the visual responses of 
pyramidal neurons in the mouse visual cortex [127]. 
However, the morphological heterogeneity of CBP-
-IR neurons and their further subdivision depending 
on the expression of various other neurotransmitters 
and peptides suggest a great diversity of subtypes of 
CBP-IR neurons. Determining their precise roles thus 
warrants further investigation.

Although there are still many unknowns regarding 
the role of CBP, these proteins are closely associated 
with various neurological disorders. For example, 
in the human visual cortex, CB- and CR-IR neurons 
decrease during aging [128]. However, a significant 
difference is not observed for CB-IR neurons in the 
visual cortex of patients with schizophrenia [129], and 
the densities of CB-, CR-, and PV-IR neurons are not 
significantly altered in the visual cortex of patients 
with Alzheimer’s disease compared to healthy controls 
[130]. Although the density of CB-, CR-, and PV-IR 
interneurons does not significantly change in the visual 
cortex, the expression of PV mRNA is significantly 
reduced in the setting of dementia with Lewy bodies 
and significantly increased in Alzheimer’s disease 
[131]. These results suggest that additional studies 
are required to provide an in-depth understanding of 
precise CBP functions and relationships with various 
neurological disorders affecting the visual cortex.
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In conclusion, the present study shows that CB-, 
CR-, and PV-IR neurons have specific distribution 
patterns in the gerbil visual cortex, presenting simila-
rities and differences with other animals. These three 
CBP-IR neuron types mainly displayed a round/oval 
morphology. The finding that 16.67% of CB-, 14.16% 
of CR-, and 39.91% of PV-IR neurons in the gerbil 
visual cortex contained GABA, suggesting that many of 
the CBP-IR neurons were not GABAergic interneurons. 
None of the CB-, CR-, or PV-IR neurons contained 
NOS. Our study provides useful information for a bet-
ter understanding of the neurochemical heterogeneity 
of CB-, CR-, and PV-IR cortical interneurons of the 
diurnal gerbil visual system and for future functional 
studies investigating visual information processing in 
these rodents.
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