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Abstract
Introduction. Hemorrhagic shock (HS) is an important cause of high mortality in traumatized patients. Cryptotanshi-
none (CTS) is a bioactive compound extracted from Salvia miltiorrhiza Bunge (Danshen). The current study aimed to 
explore the effect and underlying mechanism of CTS on the liver injury induced by HS.
Material and methods. Male Sprague-Dawley rats were used to establish the HS model by hemorrhaging and 
monitoring mean arterial pressure (MAP). CTS was intravenously administered at concentration of 3.5 mg/kg,  
7 mg/kg, or 14 mg/kg 30 minutes before resuscitation. Twenty-four hours after resuscitation, the liver tissue and serum 
samples were collected for the following examinations. Hematoxylin and eosin (H&E) staining was used to evaluate 
hepatic morphology changes. The myeloperoxidase (MPO) activity in liver tissue and the serum activities of aspartate 
aminotransferase (AST) and alanine aminotransferase (ALT) were examined to reveal the extent of liver injury. The  
protein expression of Bax and Bcl-2 in liver tissue was detected by western blot. The TUNEL assay determined  
the apoptosis of hepatocytes. Oxidative stress of liver tissue was assessed by the examination of reactive oxygen 
species (ROS) generation. The content of malondialdehyde (MDA), glutathione (GSH), and adenosine triphosphate 
(ATP), the activity of superoxide dismutase (SOD) and oxidative chain complexes (complex I, II, III, IV), as well as 
cytochrome c expression in cytoplasm and mitochondria, were also used to determine the extent of oxidative injury 
in the liver. Immunofluorescence (IF) was employed to estimate nuclear factor E2-related factor 2 (Nrf2) expres-
sion. The mRNA and protein levels of heme oxygenase 1 (HO-1), NAD(P)H: quinone oxidoreductases 1 (NQO1),  
cyclooxygenase-2 (COX-2), and nitric oxide synthase (iNOS) were assessed by real-time qPCR, western blot to  
investigate the mechanism of CTS regulating HS-induced liver injury.
Results. H&E staining and a histological score of rat liver suggested that HS induced liver injury. The activity of 
ALT, AST, and MPO was significantly increased by HS treatment. After CTS administration the ALT, AST, and MPO 
activities were suppressed, which indicates the liver injury was alleviated by CTS. The HS-induced upregulation of 
the TUNEL-positive cell rate was suppressed by various doses of CTS. HS-induced ROS production was decreased 
and the protein expression of Bax and Bcl-2 in the HS-induced rat liver was reversed by CTS administration. In the 
liver of HS-induced rats, the upregulation of MDA content and the downregulation of GSH content and SOD activity 
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were suppressed by CTS. Additionally, CTS increases ATP content and mitochondrial oxidative complexes activi-
ties and suppressed the release of cytochrome c from mitochondria to the cytoplasm. Moreover, IF and western blot 
demonstrated that the activation of Nrf2 blocked by HS was recovered by different doses of CTS in liver tissue. The 
expression of downstream enzymes of the Nrf2 pathway, including HO-1, NQO1, COX-2, and iNOS, was reversed 
by CTS in the HS rat model.
Conclusions. The current study for the first time revealed the protective effect of CTS in HS-induced liver injury. CTS 
effectively recovered hepatocyte apoptosis, oxidative stress, and mitochondria damage induced by HS in the rat liver 
partly via regulating the Nrf2 signaling pathway. (Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 2, 109–122)
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Introduction

Hemorrhagic shock (HS) as an important cause of 
high mortality in traumatized patients [1] is a form 
of hypovolemic shock [2]. In severe cases, cellular 
hypoxia-induced cell damage results in multiple or-
gan failure. This process is accompanied by oxidative 
stress, mitochondrial damage, inflammatory response, 
and apoptosis [3]. Due to the important role of the liver 
in metabolism and homeostasis, hemorrhagic shock 
(HS) disrupts hepatic cellular development and leads 
to liver dysfunction and injury [4–6]. The degree of 
liver damage is closely associated with mortality in 
traumatized patients [1]. Currently, effective treatment 
for HS is still required imminently [7]. Therefore, it 
is urgent to investigate the molecular mechanism of 
HS in the liver and to explore effective drugs for the 
treatment of liver injury. 

Cryptotanshinone (CTS, CAS: 35825-57-1) is a di-
terpenoid compound extracted from Salvia miltiorrhiza 
Bunge that has been verified to resist oxidative stress, 
mitochondrial damage, and inflammatory response [8–10]. 
In recent years, CTS has attracted more and more attention 
as an effective anticancer substance [11]. Studies have re-
vealed that CTS protects renal tubular epithelial cells from 
oxidative stress and apoptosis induced by hepatic ischemia/
reperfusion (IR) [10]. Besides, CTS inhibits cardiomyocyte 
apoptosis induced by chronic hypoxia [12]. In addition, 
CTS could ameliorate the damage to placental and ovarian 
tissue via regulating oxidative stress, inflammation, and 
apoptosis [13, 14]. Moreover, it has been reported that the 
anti-inflammatory, antioxidant, and antifibrotic activities 
of CTS are mediated by the PI3K/Akt signaling pathway 
[15, 16]. However, the effect of CTS on HS-induced liver 
injury remains unclear. The present study explores the 
effect of CTS in the liver of rats subjected to HS and its 
possible mechanism. 

Nuclear factor erythroid 2-related factor 2 (Nrf2) is 
an important transcription factor involved in the process 
of redox reactions. Excessive reactive oxygen species 
(ROS) production will activate the Nrf2 pathway, and 
the activation leads to a cascade reaction of antioxidative 

response element (ARE) in downstream genes [17, 18]. 
The activity of endogenous antioxidant enzymes, inclu-
ding heme oxygenase-1 (HO-1) and NAD(P)H: quinone 
oxidoreductases 1 (NQO1), can be further stimulated by 
the activation of Nrf2 in the cascade reactions of oxidati-
ve stress [19, 20]. The previous research showed that the 
Nrf2 pathway mediates the protective effects of herbal me-
dicine on atherosclerosis [21]. The Nrf2 pathway can also 
be activated by oxyphylla A to alleviate neuropathology 
and ameliorate cognitive deficits in Alzheimer’s murine 
models [22]. Moreover, the activation of the Nrf2 pathway 
has antioxidant and anti-inflammatory properties and con-
tributes to the recovery of liver injury models [23–25]. It 
is still unknown whether the Nrf2 pathway is involved in 
the impact of CTS on liver injury. 

In this study, we established rat model of HS-induced 
liver injury and resuscitation to identify the protective 
effects of CTS on hepatic injury and its mechanism. Re-
sults revealed that CTS effectively alleviated HS-induced 
liver injury, and inhibited hepatocyte apoptosis, oxidative 
stress, and mitochondria damage induced by HS through 
activating the Nrf2 pathway. This study provides powerful 
evidence for the effective therapeutic effect of CTS on liver 
injury in rats subjected to HS. 

Material and methods 

Establishment of a hemorrhagic shock rat model. Expe-
riments were performed on male Sprague-Dawley rats (age 
9 weeks, weight 275–325 g), which were free access to food 
and water in a comfortable environment with controlled tem-
perature (21–23°C), humidity (45–55%) and lighting (12 h 
light/dark cycle). Before experiments, the rats were allowed 
to adapt to the environment for one week and then were fasted 
overnight, however, water was provided ad libitum. Before 
HS induction, the blood pressure value of rats was 103.7 ±  
± 2.1 mmHg, which was measured on right femoral artery of rats 
using the BL420S physiological function experimental system 
(Techman Software, Chengdu, China). They were randomly 
divided into 5 groups, including a control group, HS group, HS 
+ CTS 3.5 mg/kg group, HS + CTS 7 mg/kg group, and HS ± 
+ CTS 14 mg/kg group. The establishment of a hemorrhagic 
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shock and resuscitation model was performed according to 
previous studies [26, 27]. Briefly, the left femoral artery was 
used for hemorrhaging, and the right femoral artery was used 
for monitoring mean arterial pressure (MAP) at 35–40 mmHg 
for 90 min. Rats were then resuscitated by shedding blood with 
Ringer lactate solution for 60 min. During this period, the rats 
received inhalation anesthesia of isoflurane. Subsequently, CTS 
(Aladdin, Shanghai, China) was dissolved in physiological 
saline to make solutions of different concentrations. Thirty 
minutes before the end of resuscitation, 1 mL of CTS (3.5, 7, 
or 14mg/kg) was intravenously injected into the rat tail. After 
24 hours, we collected liver tissue samples of rats, and the blood 
samples from the inferior vena cava of rats. The blood samples 
were centrifuged at 3000 rpm for 10 min after 60 min rest at 
room temperature, and the supernatant (serum) was collected 
for subsequent analyses. 

The chemical structure of CTS and experimental schedule 
were displayed in Fig. 1. This study was performed according 
to guidelines provided by the Animal Care Use Committee of 
Wuxi 9th People’s Hospital Affiliated to Soochow University and 
was approved by the committee (Certificate No. KT2021026).

Histopathological analysis. Hepatic tissue was fixed in 4% pa-
raformaldehyde and embedded in paraffin. The specimens were 
sliced into 5 μm sections and then dewaxed. Tissue slides were 
stained by hematoxylin (Solarbio, Beijing, China) and eosin 
(Sangon, Shanghai, China). The slides were observed using 
a BX53 microscope (Olympus, Tokyo, Japan) and were captured 
using the DP73 camera (Olympus, Tokyo, Japan). The grade of 
liver injury was assessed by histological score according to the 
standards described by El-Emam et al. [28]. One section per 
rat was evaluated in six animals per group. Three random fields 
were examined per slide and scores were averaged. A higher 
score implied more severe injury of liver tissue. Liver injury 
was scored according to the following changes of hepatocytes: 
(1) degree of fatty change and intracellular edema: 0 means 
none, 1 means mild, 2 means moderate, 3 means severe; (2) 
degree of vacuolation and necrosis: 0 means none, 1 means 
a few cells damage, 2 means submassive necrosis, 3 means 
massive necrosis and infarction. The sum of the two aspects is 
the histological score of liver injury. 

Biochemical analysis. Myeloperoxidase (MPO) in liver tissue 
was detected using an MPO kit (Nanjing Jiancheng, Nanjing, 
China). Before detection, part of the liver tissue was weighted 
and homogenized in the prepared reagent II solution to gain 
5% w/v homogenate. Tissues were homogenized using a glassy 
hand-pestled homogenizer on ice until they were completely 
homogenized. Then 0.9 mL homogenate and 0.1 mL reagent III 
solution were mixed, followed by warming in a 37°C water bath 
for 15 min. The same amount of mixture was mixed with reagent 
IV, chromogenic agent, and distilled water, and then reacted at  
37°C for 30 min. After adding reagent VII and incubating  
at 60°C in a water bath for 10 min, the absorbance value of 
the mixture was immediately detected at 460 nm in a UV752N 
spectrophotometer (Yoke Instrument, Shanghai, China). 

Collected liver tissue was weighed and added in physiolo-
gical saline (0.9% NaCl) to obtain 10% (w/v) homogenate in 
an ice-cold water bath, and then centrifuged at 2500 rpm for 
10 min. The supernatant was collected for the following assays. 
Malondialdehyde (MDA), glutathione (GSH), superoxide 
dismutase (SOD), and adenosine triphosphate (ATP) were 
measured using corresponding kits purchased from Nanjing 
Jiancheng Bioengineering Institute (Nanjing, China). 

Liver tissue was homogenized in extract solution to get 10% 
(w/v) homogenate, which was then centrifuged at 600 × g for 
10 min. The collected supernatant was transferred to another 
tube and centrifuged at 11000×g at 4°C for 15 min. Subsequen-
tly, extract solution was added to the sediment, and the mixture 
was sonicated with ultrasonic at 0°C (ultrasonic treatment for 
5 s, intervals of 10 s, repeated 15 times). These samples were 
used to determine the activity of oxidative chain complexes 
(complex I, II, III, IV), which were examined using kits pur-
chased from Solarbio Science and Technology (Beijing, China).

The generation of ROS in liver tissue was assessed using 
a frozen section ROS detection kit (BestBio, Shanghai, China). 
Fresh liver tissue was embedded with optimal cutting tempera-
ture compound (OCT) and pre-cooled on a frozen slicer. It was 
cut into 10 μm-thick slices. These liver sections were incubated 
with ROS fluorescent probe O13 solution at 37°C for 30 min. 
O13 is a fluorescent probe with cell membrane permeability. It 
is specifically oxidized by ROS to produce red fluorescence. 

Figure 1. The information on cryptotanshinone (CTS) and model establishment. A. Chemical structure of CTS. B. The diagram of 
model establishment and experimental schedule.
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The red fluorescence intensity corresponds to the level of ROS. 
The fluorescence was observed and captured using a BX53 mi-
croscope (Olympus, Tokyo, Japan). 

Assessment of serum AST and ALT activity. The serum acti-
vities of aspartate aminotransferase (AST) and alanine amino-
transferase (ALT) were evaluated using a Glutamic Oxalacetic 
transaminase (AST/GOT) kit and Alanine aminotransferase 
(ALT/GPT) kit (Wanleibio, Shenyang, China) separately. 

Real-time qPCR. Total RNA was extracted from fresh liver 
tissue of the rats using TRIpure regent (BioTeke, Beijing, 
China) and was reverse-transcribed into cDNA using BeyoRT 
II M-MLV reverse transcriptase (Beyotime, Shanghai, China) 
following the manufacturer’s instructions. Real-time qPCR was 
performed using 2 × Taq PCR Master Mix and SYBR Green 
(Solarbio, Beijing, China) to examine the mRNA expression 
of heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidore-
ductases-1 (NQO-1), cyclooxygenase (COX)-2 and inducible 
nitric oxide synthase (iNOS), which was normalized by β-actin 
expression. The primers used in this part were listed as follows: 
HO-1 F: 5’-CATGTCCCAGGATTTGTC-3’, R: 5’-GGGT-
TCTGCTTGTTTCG-3’; NQO1 F: 5’-GCCTACACGTAT-
GCCACC-3’, R: 5’-CCAGACGCTTCTTCCACC-3’; iNOS 
F: 5’-TTGGAGCGAGTTGTGGATTG-3’, R: 5’-GTGAGG-
GCTTGCCTGAGTGA-3’; COX-2 F: 5’-GAACACGGACT-
TGCTCACTT-3’, R: 5’-ACGATGTGTAAGGTTTCAGG-3’; 
β-actin F: 5’-GGAGATTACTGCCCTGGCTCCTAGC-3’, R: 
5’-GGCCGGACTCATCGTACTCCTGCTT-3’. Amplification 
was performed in Exicycler 96 Real-Time PCR system (Bioneer, 
Daejeon, Korea). The protocol used was as follows: denaturation 
at 94°C for 5 min, 40 cycles of 10 s at 94°C, 20 s at 60°C and 
30 s at 72°C, followed by 2 min 30 s at 72°C, 1 min 30 s at 40°C, 
melting at 60°C to 94°C, every 1.0°C for 1 sec, 1–2 min at 25°C.

Western blot. Total protein was isolated from fresh liver tissue 
by RIPA lyase and PMSF (Beyotime, Shanghai, China). Follo-

wing the instructions, a nuclear protein extraction kit (Beyotime, 
Shanghai, China) and a mitochondrial protein extraction kit 
(Boster, Wuhan, China) were used to extract nuclear protein 
and mitochondrial protein respectively. The concentration of 
protein was evaluated using a BCA protein assay kit (Beyotime, 
Shanghai, China). Proteins were separated by SDS-PAGE and 
transferred to polyvinylidene difluoride (PVDF) membranes 
(Thermo Fisher Scientific, PA, USA). After blocking for 1 h, 
membranes were incubated with primary antibodies overnight 
at 4°C and then were incubated with secondary antibodies for 
40 min at 37°C. The blots were visualized by enhanced che-
miluminescence substrate (7 Sea Biotech, Shanghai, China) 
and recorded using an imaging system (Beijing Liuyi, Beijing, 
China). The information on antibodies was listed in Table 1. 

TUNEL assay. Cell apoptosis in the liver was examined using 
In Situ Cell Death Detection Kit (Roche, Basel, Switzerland). 
Briefly, the slides were permeabilized with 0.1% Triton 
X-100 (Beyotime, Shanghai, China) for 8 min at room tempe-
rature. Subsequently, the TUNEL reaction solution was added 
to the slides and incubated for 60 min at 37°C in the dark. After 
being washed with phosphate buffer saline (PBS), the slides 
were counterstained by DAPI (Aladdin, Shanghai, China) for 
5 min in the dark. 

Immunofluorescence of Nrf2. Liver tissue slides were treated 
with antigen retrieval solution (pH = 6.0) at 60–80°C for 10 min. 
The sections were incubated with Nrf2 antibody (dilution 1: 
100, AF0639, Affinity, Changzhou, China) overnight at 4°C, 
and then were incubated with Cy3 labeled Goat anti-rabbit IgG 
(dilution 1: 200, A27039, Invitrogen, CA, USA) for 60 min. 
Then, DAPI was used to redye cell nuclei after PBS washing. 
The expression of Nrf2 was observed by immunofluorescence 
(IF) under a BX53 microscope (Olympus, Tokyo, Japan).

Statistical analysis. All statistical analyses were performed 
using GraphPad Prism 8.0 (GraphPad Software, San Diego, 

Table 1. The information of antibodies used for western blot

Name Catalog number Dilution Company

Bax A19684 1:500 ABclonal

Bcl-2 A0208 1:500 ABclonal

Cytochrome C 12245-1-AP 1:500 Proteintech

HO-1 A19062 1:1000 ABclonal

NQO1 A19586 1:1000 ABclonal

COX-2 A3560 1:1000 ABclonal

iNOS A0312 1:500 ABclonal

Nrf2 A1244 1:1000 ABclonal

β-actin 60008-1-Ig 1:2000 Proteintech

COX IV A11631 1:500 ABclonal

Histone H3 17168-1-AP 1:500 Proteintech

Goat anti-Rabbit IgG SA00001-2 1:10000 Proteintech

Goat anti-Mouse IgG SA00001-1 1:10000 Proteintech



www.journals.viamedica.pl/folia_histochemica_cytobiologica
©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2023
10.5603/FHC.a2023.0009
ISSN 0239-8508, e-ISSN 1897-5631

113Protective effect of cryptotanshinone on liver injury

CA, USA). The results were presented as mean ± standard 
deviation (SD). All our results were tested for homogeneity of 
variance. Statistical differences among different groups were 
analyzed by one-way ANOVA followed by Dunnett’s multiple 
comparisons tests. The results with inconsistent variance were 
analyzed by the Kruskal-Wallis test. P < 0.05 was considered 
statistically significant.

Results

CTS ameliorates hepatic injury induced by he-
morrhagic shock
Histopathological examination of liver sections in the 
control group showed that hepatic lobule structure was 
complete and hepatocytes were regularly arranged. 
The incomplete structure of the hepatic lobule was 
observed in the HS group, and necrosis, and vacu-
olation occurred in hepatocytes. After treatment with 
different concentrations of CTS treatment, liver injury 
presented various degrees of recovery from the HS-
-induced injury (Fig. 2A). The H&E-stained sections 
and data from each rat are shown as Supplementary  

Figures S1–S5. The histopathological scores suggested 
that HS significantly induced the injury, and CTS 
treatment remarkably suppressed the damage of liver 
tissues induced by HS (Fig. 2B). Additionally, MPO 
activity was dramatically raised by HS in rat liver, 
and was remarkably suppressed by the treatment with 
14 mg/kg CTS. The high dose of CTS was associated 
with a significant decrease of MPO activity in liver 
tissue (Fig. 2C). Serum ALT and AST activities as 
crucial indicators of liver injury [29] were highly in-
creased by HS. The 7 mg/kg CTS treatment resulted 
in a marked decrease in serum AST, and 14 mg/kg 
CTS significantly downregulated serum ALT and AST  
(Fig. 2D). These findings confirmed the protective 
role of CTS against liver injury induced by HS in vivo.

CTS suppresses hemorrhagic shock-induced  
hepatic cell apoptosis
Subsequently, we investigated the effects of CTS on 
HS-induced cell apoptosis in the liver tissue of the rat 
model. As shown in Fig. 3A, the number of TUNEL-
-positive liver cells was remarkably increased in the 
HS group. The results of statistical analysis showed 

Figure 2. CTS ameliorates hemorrhagic shock (HS)-induced liver injury. A. The liver injury was evaluated by hematoxylin and 
eosin staining of liver sections (CV: central vein and sublobular vein; black arrows: hepatocyte necrosis; white arrows: hepatocyte 
vacuolation). Scale bar: 300 μm. B. The histopathological scores of liver injury in different groups. C. The myeloperoxidase (MPO) 
activity of liver tissue was assessed as described in Methods. D. The activities of aspartate aminotransferase (AST) and alanine ami-
notransferase (ALT) in the rat serum were measured as described in Methods. Data are shown as mean ± SD, n = 6 for each group.
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that various doses of CTS effectively suppressed 
hepatocyte apoptosis. Western blot results exhibited 
that the protein expression of apoptotic gene Bax was 
increased and the antiapoptotic gene Bcl-2 was reduced 
in the liver of HS-treated rats. With the increase of 
CTS concentration, Bax expression was suppressed 
and Bcl-2 expression was enhanced in liver tissue  
(Fig. 3B). The above findings proved that CTS inhibi-
ted the hepatocyte apoptosis induced by HS in rat liver.

CTS protects the liver from oxidative stress  
induced by hemorrhagic shock
As displayed in Fig. 4A, the production of ROS was 
dramatically upregulated in the liver tissue of the HS 
rat model. CTS blocked the excessive ROS production 
and suppressed the oxidative stress in the liver. The 
increase of MDA content induced by HS was signifi-

cantly reduced by 14 mg/kg CTS treatment (Fig. 4B). 
The GSH content was decreased in the liver tissue 
under HS condition, and it was rescued by the treat-
ment with 14 mg/kg CTS. Meanwhile, HS-induced 
downregulation of SOD activity was dramatically re-
versed by 7 mg/kg and 14 mg/kg CTS (Fig. 4C). These 
findings indicated that CTS attenuated the oxidative 
stress induced by HS in liver tissue. 

CTS attenuates hemorrhagic shock-induced  
mitochondrial damage in liver tissue
Previous studies have demonstrated that HS reduced 
the production of mitochondrial ATP and the activities 
of respiratory chain complexes, and increased the rele-
ase of cytochrome c into cytoplasm in animal models, 
indicating the mitochondria were damaged [30–32]. 
As depicted in Fig. 5A, the activity of complexes  

Figure 3. CTS inhibits HS-induced hepatic cell apoptosis. A. The hepatocyte apoptosis was examined in liver sections by TUNEL 
staining as described in Methods. Cell nuclei were stained by DAPI. Scale bar: 100 μm. B. The protein expression of Bax and Bcl-2 
in the liver tissue was measured by western blot. Data are shown as mean ± SD, n = 6 for each group.
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Figure 4. CTS protects against oxidative stress in liver tissue of HS-induced rats. A. The generation of reactive oxygen species 
(ROS) was detected by staining liver sections with a sensitive fluorescent probe O13. Scale bar: 100 μm. B, C. The malondialde-
hyde (MDA), glutathione (GSH) content, and superoxide dismutase (SOD) activity were determined in the liver. Data are shown 
as mean ± SD, n = 6 for each group.

Figure 5. CTS attenuates HS-induced mitochondrial damage in liver tissue. A, B. The oxidative chain activities (complexes I–IV) 
and adenosine triphosphate (ATP) generation were evaluated in rat liver as described in Methods. C. The protein expression of cy-
tochrome c in the cytoplasm and in mitochondria was examined by western blot. Data are shown as mean ± SD, n = 6 for each group.
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(complex I, II, III, and IV) was remarkably down-
regulated in the liver of the HS group. With the in-
creased doses of CTS, the activity of complexes was 
upregulated and was significantly raised by 14 mg/
kg CTS. Besides, the mitochondrial ATP production 
was significantly decreased in the liver of HS-indu-
ced rats. Meanwhile, the increased concentration of 
CTS upregulated the ATP level in the liver (Fig. 5B). 
Moreover, western blot results indicated that cytochro-
me c expression was increased in the cytoplasm and 
decreased in mitochondria of hepatocytes induced by 
HS, while these changes were significantly reversed 
in rats that received various doses of CTS (Fig. 5C). 
These phenomena indicated that CTS attenuated mi-
tochondrial damage in liver tissue of HS rat model. 

The Nrf2 pathway mediates the effects of CTS  
on hemorrhagic shock-induced liver injury
The follow-up experiments were performed to explore 
whether Nrf2 mediates the effect of CTS on liver injury 
in the HS rat model. IF results suggested the activation 
of Nrf2 was significantly blocked in the liver tissue 
of the HS rat model compared with the control group. 
After being treated with different doses of CTS, the 
expression of Nrf2 in the nucleus was increased in 
liver tissue (Fig. 6A). The mRNA levels of HO-1 and 
NQO1 were markedly reduced in the liver tissue of 
the HS rat model, and were significantly up-regulated 
by CTS (Fig. 6B). Meanwhile, the upregulation of 
COX-2 and iNOS induced by HS was suppressed by 
various doses of CTS (Fig. 6C). These results illu-
strated that the Nrf2 pathway was activated by CTS 
in HS rat model.

Figure 6. CTS activates the nuclear factor E2-related factor 2 (Nrf2) pathway. A. The expression and distribution of Nrf2 were 
evaluated by immunofluorescence (IF) in liver sections. Scale bar: 100 μm. B, C. The relative mRNA levels of heme oxygenase 
1 (HO-1), NAD(P)H: quinone oxidoreductases 1 (NQO1), cyclooxygenase-2 (COX-2), and nitric oxide synthase (iNOS) were 
measured by RT-qPCR. Data are shown as mean ± SD, n = 6 for each group.
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Furthermore, the protein expression of Nrf2 in the 
nucleus was obviously decreased in the HS group compa-
red with the control group. CTS activated Nrf2 expression 
and promoted the transfer of Nrf2 from the cytoplasm to 
the nucleus (Fig. 7A). Additionally, HO-1 and NQO1 were 
obviously decreased in the HS rat model. The treatment of 

CTS remarkably upregulated the expression of HO-1 and 
NQO1 (Fig. 7B). In Fig. 7C, the protein expression of COX-
2 and iNOS was induced in HS rat model and was declined 
by different dosages of CTS. The above findings further 
demonstrated that CTS can activate the Nrf2 pathway.

Figure 7. The effect of CTS on the protein expression of Nrf2, HO-1, NQO1, COX-2, and iNOS. A. The nuclear Nrf2 expression 
in the nucleus was examined using a western blot. B, C. The protein levels of HO-1, NQO1, COX-2, and iNOS were determined 
in the liver by western blotting. Data are shown as mean ± SD, n = 6 for each group.
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Discussion

The protective effect of CTS on the liver injury induced 
by hemorrhagic shock was confirmed in the present 
study. The liver injury-related parameters, including 
MPO activity, AST and ALT concentrations, and 
hepatocyte morphology were recovered by different 
concentrations of CTS. CTS effectively suppressed 
the increase of Bax expression and decrease of Bcl-2  
expression induced by HS, which suggested that CTS 
reversed the HS-induced hepatocyte apoptosis. Me-
anwhile, CTS inhibited HS-induced oxidative stress 
and mitochondrial damage by activating the Nrf2 to 
enhance the expression of HO-1 and NQO1, as well 
as reducing the expression of COX-2 and iNOS  
(Fig. 8). Thus, the results of our study indicate that may 
serve as a potential therapeutic agent for ameliorating 
HS-induced liver injury. 

It is well-known that Chinese herbal medicine plays 
an effective role in various diseases due to its multiple 
bioactive substances [15]. CTS is one of the main active 
components of the traditional Chinese medicine Danshen, 
which has been widely used in the treatment of various 
disorders [11]. Till now, CTS has not been studied in a rat 
model of hemorrhagic shock. Since hemorrhagic shock is 
an acute disease, we planned to use intravenous injections 
to promote the effect of CTS in this study. In a study of 

cerebral ischemia-reperfusion injury, which is also an 
acute disease, CTS was intravenously administered at 
a concentration of 10 mg/kg for 0.5 h in a mouse model to 
ameliorate the injury [33]. After conversion by the surface 
area method, we determined a dose of 7 mg/kg for rats. 
Besides, CTS was found to improve type 2 diabetes and 
obesity in a dose-dependent manner [9]. Based on the 
information, the dosages of CTS were determined to be 
3.5 mg/kg, 7 mg/kg, and 14 mg/kg in this study. During 
the study, the rats did not exhibit abnormality or discom-
fort signs, so the dose of CTS was considered to be safe 
for rats. To the best of our knowledge, CTS has not been 
reported in clinical research. The current study prelimina-
rily revealed the alleviative effect of CTS on HS-induced 
liver injury. The security, dosage, and mechanism of CTS 
will be the important contents of our follow-up research, 
which aims to provide a more experimental basis for the 
clinical application of CTS.

In recent decades, increasing research have revealed 
the molecular and pathological mechanisms of CTS in 
a variety of diseases. For example, CTS suppressed the 
development of breast cancer by activating GPER to 
downregulate the PI3K/AKT signaling pathway [15]. Be-
sides, CTS protected ovarian tissue from polycystic ovary 
syndrome induced damage [14]. Moreover, the ischemia/ 
/reperfusion induced neurotoxicity and acute kidney injury 
were both ameliorated by the treatment of CTS [10, 33]. 

Figure 8. Molecular mechanism of CTS in rescuing HS-induced liver injury as described in the Discussion.



www.journals.viamedica.pl/folia_histochemica_cytobiologica
©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2023
10.5603/FHC.a2023.0009
ISSN 0239-8508, e-ISSN 1897-5631

119Protective effect of cryptotanshinone on liver injury

Our study further identified the therapeutic effects of CTS 
on liver injury induced by HS. In the HS rat model, the 
necrosis, vacuolation, and infiltration occurred in hepa-
tocytes and the hepatic MPO, and serum ALT and AST 
activities increased abnormally. The treatment of CTS in 
higher concentrations effectively alleviated the above phe-
nomenon. In the preliminary stage of the study, we found 
that most of the researchers used male animals to build 
this model [26, 27, 34–36], thus we speculate that there 
may be no gender difference in HS-induced liver injury. In 
addition, there are hormonal changes in the physiological 
cycle of female rats and mice, thus, in order to avoid the 
uncontrollable factors, we chose male rats for modeling. 
Our study demonstrated the ameliorative effect of CTS on 
HS-induced liver injury. 

Hemorrhagic shock remains a common and dangero-
us condition in traumatic patients. For the liver, a crucial 
organ controlling body’s metabolism, HS will lead to 
metabolic disorders, serious damage or even organ failu-
re [37]. In this study, the liver injury induced by HS was 
accompanied by oxidative stress, mitochondrial damage, 
and apoptosis of liver cells. It is well known that Bax as 
an inactive monomer is present in the cytoplasm under 
normal condition and the Bcl-2 family proteins maintain 
the mitochondrial integrity [38, 39]. These proteins regulate 
the release of cytochrome c and the intrinsic pathway of 
apoptosis [40]. Following the ischemia–hypoxia stimulus, 
the activated and upregulated Bax changes the structure of 
specific membrane proteins to allow the release of cyto-
chrome c from the mitochondrion to the cytoplasm [41], 
which is similar to the findings of our research. The mito-
chondrial apoptosis-induced channel regulated by Bcl-2  
family proteins might control the activation of Bax [42]. In 
our study, we verified that in the TUNEL-positive cells, the 
expression of Bax and cytochrome c in the cytoplasm were 
increased by HS treatment, and the expression of Bcl-2 
and mitochondrial membrane potentials were decreased, 
indicating that the mitochondrial damage and hepatic cell 
apoptosis were induced by HS. Additionally, the primary 
function of mitochondria is ATP production, which is exe-
cuted by the respiratory chain complexes (I, II, III, and IV) 
[43]. The levels of ATP and activity of respiratory chain 
complexes were significantly downregulated in the liver 
tissue of HS-induced rats. The CTS treatment remarkably 
rescued these changes and improved the expression of Bax, 
Bcl-2, ATP, complexes, and cytoplasmic cytochrome c to 
the normal level, resulting in the recovery of the mitochon-
drial damage and hepatic cell apoptosis. 

The Nrf2 pathway was shown to have hepatopro-
tective effects in toxic hepatitis [4]. The activation of  
Nrf2 has been reported to be beneficial in the models  
of liver injury caused by different causes [23, 24, 44, 45]. 
The Nrf2 as a member of the basic region of the leucine 
zipper (bZIP) transcription factor family interacts with 

Kelch-like ECH-associated protein 1 (Keap1), leading to 
the suppression of Nrf2 activation [46]. After dissociating 
from Keap1, Nrf2 transfers into the nucleus and then 
interacts with the ARE of downstream genes, mediating 
the expression of some antioxidant enzymes, including 
HO-1 and NQO1 [47]. The HO-1 and NQO1 regulated 
by the activation of Nrf2 exert antioxidant and anti-in-
flammatory activities [48, 49]. The Nrf2 was shown to 
significantly alleviate liver injury, while the silencing of 
Nrf2 aggravated oxidative stress and inflammation of liver 
tissue [50]. The activation of the Nrf2 pathway was found 
to reduce oxidative stress, further resulting in the allevia-
tion of liver injury [4]. A previous study has indicated that 
the Nrf2 pathway agonist exerts anti-inflammatory effects 
by blocking the expression of TNF-α, COX-2, and iNOS 
[51, 52]. Upregulation of COX-2 and iNOS was found in 
damaged cells [53]. In line with these findings, our results 
suggest that the expression of Nrf2 was suppressed in the 
liver of HS-induced rats and was downregulated in the 
cell nuclei. In this context, mRNA and protein expression 
of HO-1 and NQO1 were both significantly decreased, 
indicating the promotion of the oxidative stress that was 
confirmed by the increase of MDA and the decrease of 
GSH contents, and suppression of SOD activity. Mean-
while, the mRNA and protein expression of COX-2 and 
iNOS were upregulated, indicating that HS induced the 
inflammatory reaction of the liver tissue. Serum AST and 
ALT activities, useful indicators of hepatic injury, were 
upregulated in HS-induced liver. The administration of 
CTS activated the Nrf2 pathway and upregulated the 
expression of Nrf2 in the nucleus. All these markers of 
oxidative stress, inflammatory and hepatic injury were 
rescued by CTS treatment. These findings prove that CTS 
could effectively protect liver tissue and hepatocytes from 
the injury induced by HS via activating the Nrf2 pathway. 

Hemorrhagic shock is an acute lesion with predo-
minantly renal injury in the early stages and widespread 
multiorgan failure and multiorgan insufficiency, including 
liver and cardiovascular injury, in the middle and advan-
ced stages [54, 55]. While Nrf2 is an important anti-in-
flammatory and antioxidant factor, inhibition of Nrf2 or 
Nrf2-knockdown will exacerbate damage to a variety of 
organs and cause higher mortality [56–58]. We speculate 
that this is also the reason why Nrf2 inhibitors are rarely 
used in vivo for HS-related studies. 

In conclusion, cryptotanshinone ameliorates oxidati-
ve stress, mitochondrial damage, and hepatic cell apoptosis 
in the liver of rats subjected to hemorrhage shock and 
resuscitation. CTS may protect the liver from HS-induced 
injury partly by the activation of the Nrf2 pathway.
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