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Abstract
Introduction. Transplantation of mesenchymal stem cells (MSCs) has been reported to be a novel promising target 
for the regeneration of degenerated intervertebral discs (IVDs). However, the culture and survival limitations of MSCs 
remain challenging for MSC-based biological therapy. Myricetin, a common natural flavonoid, has been suggested 
to possess antiaging and antioxidant abilities. Therefore, we investigated the biological function of myricetin, and its 
related mechanisms involving cell senescence in intervertebral disc degeneration (IDD).
Material and methods. The nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated from 4-month- 
-old Sprague-Dawley (SD) rats and identified by examining surface markers and multipotent differentiation. Rat NPM-
SCs were cultured in an MSC culture medium or culture medium with different concentrations of H2O2. Myricetin or 
the combination of myricetin and EX527 were added to the culture medium to investigate the effects of myricetin. Cell 
viability was evaluated by cell counting kit-8 assays (CCK-8). The apoptosis rate was determined using Annexin V/PI 
dual staining. The mitochondrial membrane potential (MMP) was analyzed by a fluorescence microscope after JC-1 
staining. The cell senescence was determined by SA-β-Gal staining. MitoSOX green was used to selectively estimate 
mitochondrial reactive oxygen species (ROS) Apoptosis-associated proteins (Bax, Bcl2, and cleaved caspase-3), se-
nescence markers (p16, p21, and p53), and SIRT1/PGC-1α signaling pathway-related proteins (SIRT1 and PGC-1α) 
were evaluated by western blotting.
Results. The cells isolated from nucleus pulposus (NP) tissues met the criteria for MSCs. Myricetin showed no cyto-
toxicity up to a concentration of 100 μM in rat NPMSCs cultured for 24 h. Myricetin pretreatment exhibited protective 
effects against H2O2-induced apoptosis. Myricetin could also alleviate H2O2-induced mitochondrial dysfunctions of 
increased mitochondrial ROS production and reduced MMP. Moreover, myricetin pretreatment delayed rat NPMSC 
senescence, as evidenced by decreased exppression of senescence indicators. Pretreatment of NPMSCs with 10 μM 
EX527, a selective inhibitor of SIRT1, prior to exposure to 100 μM H2O2, reversed the inhibitory effects of myricetin 
on cell apoptosis. 
Conclusions. Myricetin could affect the SIRT1/PGC-1α pathway to protect mitochondrial functions and alleviate cell 
senescence in H2O2-treated NPMSCs. (Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 2, 98–108)
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Introduction

Low back pain (LBP) is a prevalent sequela of spinal 
conditions [1]. As the most common musculoskeletal 
disorder, intervertebral disc degeneration (IDD) ac-
counts for nearly 40% of LBP etiologies [2]. Tissue 
weakenings from loading history, nutritional compro-
mise, genetic inheritance, and aging are causes of IDD 
[3]. Approximately 90% of individuals are diagnosed 
with IDD when they are over 50 years old [4]. Curren-
tly, vertebrectomy, decompression, and drug therapy 
slightly relieve the pain [5]. In practice, however, disc 
degeneration of adjacent segments and recurrent pain 
are adverse reactions accompanying these therapies 
[6]. Therefore, novel effective therapeutic options for 
IDD treatment should be initiated.

An intervertebral disc (IVD), which consists of an 
inner nucleus pulposus (NP) core and outer annulus 
fibrosus (AF), is a gel-like structure that separates the 
vertebrae. IVDs allow the motion of vertebrae and 
distribute pressure while resisting compressive loading 
[7]. NP, composed of nucleus pulposus cells (NPCs) 
and extracellular matrix (ECM) components, plays 
a key role in the function of IVDs [8]. However, NPCs 
are characterized by poor proliferative, differentiative, 
and self-renewal abilities [9]. Mesenchymal stem cells 
(MSCs) have the potential to self-renew, proliferate, 
and differentiate into specific types of cells [10]. Ac-
cumulating evidence has suggested the therapeutic 
value of MSCs in IDD treatment [11–13]. However, 
for MSC-based biological therapy, culture conditions 
and survival limitations of MSCs remain challenging 
[14]. Nucleus pulposus-derived MSCs (NPMSCs) are 
suggested to improve IVD repair and regeneration 
[15–17]. Unfortunately, microenvironmental inflam-
mation and oxidative stress can cause cell senescence 
and apoptosis [18]. Therefore, the investigation of 
approaches to protect NPMSCs from apoptosis and 
senescence is necessary for IDD treatment.

Overproduction of reactive oxygen species (ROS) 
is observed in rat degenerative discs and human NP 
specimens with IDD advancing [19]. A mitochondrion 
is the main cellular energy and also the target of ROS 
generation [20]. Mitochondrial membrane potential 
(MMP) collapse can be induced by ROS [21]. Sene-
scence is a cellular response characterized by a stable 
cell cycle arrest that limits the proliferative potential 
of cells. During cellular senescence, levels of p16, p53, 
and p21 are shown to be upregulated, and inhibiting 
p16, p21, or p53 expression may reduce the number 
of senescent MSCs or restore their proliferative ability 
[22, 23]. The most studied mechanisms implicated in 
the process of MSC senescence are ROS production, 
DNA damage, and mitochondrial dysfunctions [24]. 

Hence, attenuation of ROS production and mitochon-
drial dysfunction is beneficial in preventing NPMSC 
senescence.

The silent information regulator of transcription 1 
(SIRT1) is a highly conserved member of NAD+-de-
pendent histone deacetylases. Apart from acting on 
histones and other substrates, SIRT1 deacetylates its 
substrate peroxisome proliferator-activated receptor 
Gamma Coactivator-1α (PGC-1α) and consequently 
increases PGC-1α activity [25]. The SIRT1/PGC-1α 
pathway, a classic pathway related to mitochondrial 
function, is reported to be involved in antiaging and 
antioxidant activities [26, 27].

Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxy-
phenyl)-4chromenone) is a common flavonoid com-
pound present in tea, berries, fruits, vegetables, and 
medical herbs. Myricetin has been suggested to play 
an antioxidative role in cell membranes and mito-
chondria [28]. Additionally, myricetin can recover 
the mitochondrial impairments in N2a-SW cells [29]. 
Moreover, myricetin has been found to promote the 
activation of the SIRT1/PGC-1α pathway in mouse 
skeletal muscle to enhance mitochondrial activity 
[30]. Therefore, this study was designed to investigate 
whether myricetin could improve suppressed mito-
chondrial function via the SIRT1/PGC-1α pathway and 
inhibit the expression of cell senescence markers. We 
hypothesized that myricetin would protect NPMSCs 
from cell senescence. The results of our study suggest 
that myricetin would be a promising therapeutic option 
for IDD treatment.

Material and methods

Animals. Sprague-Dawley (SD) rats (male, 4 month-old; SLAC 
Laboratory Animal Company, Shanghai, China) were housed in 
a 12 h light/dark cycle at 23 ± 2° with 50 ± 5% humidity. All rats 
were given free access to food and water. The protocols for the 
animal care and use of the laboratory animals were approved by 
the Ethics Committee of Wuhan Hospital of Traditional Chinese 
Medicine (Wuhan, China).

Isolation of nucleus pulposus-derived mesenchymal stem 
cells (NPMSCs). To isolate NPMSCs, 20 SD rats were anesthe-
tized by an overdose of sodium pentobarbital (100 mg/kg) and 
sacrificed. Coccygeal IVD tissues were harvested under aseptic 
conditions as previously described [31]. Then gel-like NP tissues 
were isolated under a light microscope. The isolated NP tissues 
were subsequently washed three times with phosphate-buffered 
saline (PBS) containing 1% penicillin-streptomycin (NovoBio-
technology, Beijing, China) and digested in 0.2% collagenase II 
(Yeasen, Shanghai, China) for 2 h at 37°. After centrifugation at 
800 g for 5 min, the cell pellets were cultured in MSC medium 
(Cyagen, Jiangsu, China) containing 20% fetal bovine serum 
(FBS; Biorab, Beijing, China) and 1% penicillin/streptomycin. 



www.journals.viamedica.pl/folia_histochemica_cytobiologica
©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2023
10.5603/FHC.a2023.0007
ISSN 0239-8508, e-ISSN 1897-5631

100 Tian Xie et al.

Afterward, the cells were seeded into 25 cm2 culture flasks with 
2 × 105 cells/mL and incubated at 37° with 5% CO2. The medium 
was removed twice a week. The cells were passaged at a 1:3 
ratio at 80–90% confluence. The rat NPMSCs subsequently 
used were at passage 3.

Immunophenotypic characterization. According to the 
standards proposed by the International Society for Cellular 
Therapy (ISCT), the expression of MSC surface markers 
(CD73, CD90, CD105) and hematopoietic stem cell markers 
(CD34, CD45, HLA-DR) was determined. Briefly, 2 × 105 rat 
NPMSCs at passage 3 were incubated at room temperature in 
the dark with antibodies against HLA-DR (ab239283, 10 μL for 
106 cells; Abcam), CD34 (sc7324, 1 μg per 1 × 106 cells; Santa 
Cruz Biotechnology, Santa Cruz, CA, USA), CD45 (ab33916, 
1:50; Abcam), CD73 (ab282789, 0.2 μg/mL; Abcam), CD90 
(ab226, 1:500; Abcam), and CD105 (sc18893, 1 μg per 1 × 
106 cells; Santa Cruz) for 30 min. Subsequently, the cells were 
washed twice with PBS and resuspended in 500 μL of PBS. The 
labeled cells were analyzed by flow cytometry (FACSCalibur, 
BD Bioscience, Franklin Lakes, NJ, USA).

Multipotent differentiation. To assess the multilineage dif-
ferentiation potential of NPMSCs, osteogenic and adipogenic 
differentiation were induced by osteogenic and adipogenic 
differentiation assay kits (Cyagen) separately [32]. Briefly, 
harvested rat NPMSCs at passage 3 were resuspended at a den-
sity of 5 × 103 cells/mL and seeded onto six-well plates. For 
osteogenic differentiation, NPMSCs were cultured with osteo-
genic differentiation medium (medium containing 87.5% basal 
media, 10% FSB, 1% penicillin-streptomycin, 1% glutamine, 
1% β-glycerophosphate, 0.2% ascorbate, and 0.01% dexame-
thasone). The medium was changed every 3 days. After 21 days 
of differentiation, the cells were fixed and stained with Alizarin 
red (Sigma-Aldrich, St-Louis, MO, USA) and then observed 
under an inverted microscope as described in kit instructions. 
For adipogenic differentiation, NPMSCs were incubated with 
adipogenic differentiation medium A (medium containing 87.5% 
basal media, 0.1% 3-isobutyl-1-methylxanthine, 1% glutamine, 
1% penicillin-streptomycin, 0.1% dexamethasone, 0.1% rosigli-
tazone, 0.2% insulin, and 10% FBS) for 3 days. Then, medium 
B (medium containing 87.5% basal media, 0.2% insulin, 1.0% 
penicillin-streptomycin, 1.0% glutamine, and 10% FBS) was 
changed and incubated for 1 day. This 4-day cycle was repeated 
four times and then incubated with medium for 1 day. After that, 
the cells were fixed and stained by oil red O (Sigma-Aldrich) 
and then observed with an inverted microscope.

Measurements of cell viability by Cell counting kit-8 (CCK-8)  
assay. The cytotoxicity of H2O2 and the effects of myricetin on 
NPMSCs were detected by CCK-8 assays. Briefly, rat NPM-
SCs were seeded onto 96-well plates (5 × 103 cells/well) at 37° 
with 5% CO2. When reaching 80–90% confluency, the cells 
were treated with 0–400 μM of H2O2 for 0–6 h or 0–100 μM of 
myricetin (purity 98.08%; MedChemExpress, Shanghai, China) 
for 0-24 h followed by addition of 10 μL of CCK-8 reagent 
(MedChemExpress). After 4 h of incubation, the optical den-

sity at 450 nm was estimated in a microplate reader (Bio-Rad, 
Hercules, CA, USA).

Cell treatment. According to the results of the CCK-8 assay, 
we treated rat NPMSCs with 50 μM myricetin for 24 h prior to 
exposure to 100 μM H2O2 for 6 h in the subsequent studies. To 
further determine whether the protective effects of myricetin 
were associated with SIRT1/PGC-1α activity, the rat NPMSCs 
were pre-conditioned with 10 μM EX527 (a selective inhibitor 
of SIRT1) prior to exposure to 100 μM H2O2 for 6 h at room 
temperature. Collectively, the rat NPMSCs were divided into 
the control, the H2O2, the H2O2 + myricetin, and the H2O2 + 
myricetin + EX527 groups. The concentration of EX527 was 
selected according to a previous study [33].

Cell apoptosis analysis. The rat NPMSCs were seeded onto 
a six-well plate (5 × 105 cells/well) and incubated with MSC 
culture medium at 37° with 5% CO2. When the cells grew to 
80% confluence, they were subjected to different interventions 
as designed. Then the cells were washed with PBS and collected 
by trypsinization. Finally, the rat NPMSCs were incubated with 
an Annexin V-FITC/PI Apoptosis Detection Kit (Research-Bio, 
Shanghai, China) at room temperature in the dark for 30 min, and 
then cell apoptosis was analyzed by flow cytometry. Apoptosis 
rates were calculated as the sum of early-apoptotic (Annexin 
V+/PI–) and late-apoptotic (Annexin V+/PI+) cells.

Western blotting. Total protein was isolated from the rat NP-
MSCs using Radioimmunoprecipitation Assay (RIPA) lysis 
buffer (Absin Biotech, Shanghai, China) with phosphatase 
and protease inhibitor cocktails (MedChemExpress, Shanghai, 
China). Protein concentration was examined using an Enhanced 
Bicinchoninic Acid Assay (BCA) Protein assay kit (Beyotime, 
Shanghai, China). Proteins (30 μg) were separated on 10% 
acrylamide gels using sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and subsequently transferred 
onto polyvinylidene fluoride (PVDF) membranes (Millipore, 
Shanghai, China). After 2-h blocking in 5% skimmed milk, 
the membranes were incubated overnight with primary an-
tibodies against p21 (ab109199, 1:1000; Abcam, Shanghai, 
China), cleaved caspase-3 (#9661, 1:1000; Cell Signaling 
Technology, Shanghai, China), p16 (ab51243, 1:2000; Abcam), 
Bax (ab182733, 1:2000; Abcam), Bcl-2 (ab196495, 1:2000; 
Abcam), β-Actin (ab8227, 1:3000; Abcam), p53 (ab90363, 
1:250; Abcam), SIRT1 (ab189494, 1:1000; Abcam) and PGC-
-1α (ab191838, 1:1000; Abcam) at 4°. After being washed with 
Tris-buffered saline three times, the membranes were incubated 
with secondary antibodies for 2 h at room temperature. The 
blots were then developed using enhanced chemiluminescence 
(Yeasen) and imaged using the chemiluminescence detection 
system (Bio-Rad). The band density was quantified using 
ImageJ software (National Institutes of Health, Bethesda, MD, 
USA). β-Actin was used as the loading control.

Determination of mitochondrial membrane potential. Mi-
tochondrial membrane potential (MMP) was measured using 
the Tetraethylbenzimidazolycarbocyanine iodide (JC-1) assay 
(ab113850; Abcam). After PBS washing, the cells from different 
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groups were collected by trypsinization. Then, the cells were 
washed with PBS twice and suspended with 2 μM JC-1 dye for 
20 min. Next, the cells were washed with an incubation buffer 
two times. JC-1 could accumulate in functional mitochondria 
with high MMP and form JC-1 aggregates that emit red flu-
orescence, while dysfunctional mitochondrial with low MMP 
would release JC-1 monomers that emit green fluorescence. 
A fluorescence microscope was used to observe and image the 
rat NPMSCs. The ratio of green to red fluorescence intensity 
was calculated using the ImageJ software.

Mitochondrial reactive oxygen species analysis. MitoSOX 
green (Beyotime) was used to selectively estimate mitochondrial 
reactive oxygen species (ROS) levels following the manufactu-
rer’s instructions. The NPMSCs were seeded on a 24-well plate 
(5 × 104 cells/well), cultured at 37° overnight, and treated as the 
experimental design. Then, the rat NPMSCs were stained with 
MitoSOX green in the dark at 37° for 15 min and then washed 
with PBS three times. The ROS-specific fluorescence was as-
sessed using a confocal microscope (Olympus, Tokyo, Japan). 
The mean fluorescent intensity of each group was normalized 
to that of the control group.

Senescence-associated β-Galactosidase staining. The sene-
scence of cells was assessed using a Senescence β-Galactosidase 
(SA-β-Gal) staining Kit (Beyotime) according to the manufac-
turer’s instructions. After indicated treatments, the cells were 
seeded onto a six-well plate (1 × 104 cells/well) and washed 
twice with PBS, followed by being fixed with fixation solution 
at room temperature for 15 min. Then, the cells were washed 
with PBS two times and incubated overnight with a freshly 
prepared staining solution at 37° in an incubator without CO2. 
The SA-β-Gal-stained NPMSCs were observed using a light 
microscope and analyzed by ImageJ software. The blue-stained 
cells represented senescent NPMSCs.

Statistical analysis. All experiments were performed in at least 
three independent repeats. Statistical analysis was performed 
using GraphPad Prism 8 (GraphPad Software, San Diego, CA, 
USA). Data were described as the mean ± standard deviation. 
One-way analysis of variance followed by Tukey’s post hoc 
analysis and Student’s t-test were used for comparative analyses. 
P < 0.05 was considered statistically significant.

Results

Identifications of rat NPMSCs
The MSC-associated surface markers were analyzed 
by flow cytometry. The isolated cells expressed high 
levels of CD73, CD90, and CD105 (MSC markers) 
and low levels of CD34, CD45, and HLA-DR (hema-
topoietic stem cell markers) (Fig. 1A). As Alizarin red 
staining revealed, the cells presented visible calcium 
deposits after osteogenic differentiation induction. 
After adipogenic differentiation, the oil droplets for-
med, as Oil Red O staining suggested (Fig. 1B). These 

results suggest that the isolated rat NPMSCs meet the 
criteria of MSCs, as defined by ISCT.

Pretreatment with myricetin attenuates  
the H2O2-induced decrease in cell viability
The dose and time-response experiments were per-
formed to choose an optimal concentration and time 
of myricetin and H2O2. The inhibitory effects of H2O2 
on cell viability were most optimal at the dose of  
100 μM after 6 h of treatment. Therefore, in the sub-
sequent experiments, the rat NPMSCs were treated 
with 100 μM of H2O2 for 6 h (Fig. 2A). Additionally, 
0–100 μM of myricetin had no cytotoxicity to rat 
NPMSCs with different exposure times (0–24 h)  
(Fig. 2B). Moreover, pretreatment with 50 μM myri-
cetin for 24 h showed the maximum inhibitory effects 
on H2O2-induced decrease in cell viability (Fig. 2C). 
Therefore, we subsequently treated rat NPMSCs with 
100 μM of H2O2 for 6 h and 50 μM myricetin for 24 h.

Myricetin at 50 μM alleviates H2O2-induced cell 
apoptosis and mitochondrial dysfunction

As flow cytometry demonstrated, H2O2 significan-
tly increased the apoptotic rate of rat NPMSCs, while 
myricetin abolished the H2O2-induced promotion in 
cell apoptosis. However, EX527 treatment reversed 
the inhibitory effects of myricetin on cell apoptosis 
(Fig. 3AB). The protein levels of cleaved caspase-3 
and Bax were upregulated post-H2O2, while myricetin 
attenuated the H2O2-mediated increase in the protein 
levels of caspase-3 and Bax. However, after the EX527 
treatment, the decreased protein levels were elevated. 
In parallel, the H2O2-induced inhibition in the pro-
tein level of Bcl-2 was rescued by myricetin, while 
EX527 attenuated the protective effects of myricetin, 
as western blotting showed (Fig. 3C). The reduction 
of MMP reflects mitochondrial dysfunction which is  
usually used for predicting early apoptosis. JC-1  
is a specific fluorescent dye that accumulates in ener-
gized mitochondria. A significant MMP loss was found 
in the H2O2 group and myricetin treatment recovered 
the MMP loss (Fig. 3D, E). Moreover, the H2O2-in-
duced increased mitochondrial ROS was decreased 
by myricetin, while EX527 limited the suppressive 
effect of myricetin on mitochondrial ROS production  
(Fig. 3F). Collectively, myricetin attenuates the H2O-
2-induced cell apoptosis and mitochondrial dysfunc-
tion, and EX527 treatment limits the protective effect 
of myricetin against H2O2-induced cell apoptosis and 
mitochondrial dysfunction.
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Myricetin at 50 μM protects rat NPMSCs from se-
nescence by affecting the SIRT1/PGC-1α pathway

As SA-β-Gal staining revealed, H2O2 increased the 
number of SA-β-Gal-positive cells, while myricetin 
inhibited the promotion of the SA-β-Gal-positive 
rate induced by H2O2. However, EX527 reversed 
the inhibitory functions of myricetin on the number 
of SA-β-Gal-positive cells (Fig. 4A). The levels of 
senescence-associated proteins (p16, p21, p53) were 
upregulated following H2O2 treatment, while myricetin 
decreased their protein level. However, EX527 abo-
lished the suppressive effects of myricetin (Fig. 4B). 
Finally, the decreased protein levels of SIRT1 and 
PGC-1α induced by H2O2 were increased following 
myricetin treatment, while EX527 counteracted the 
enhancing effect of myricetin (Fig. 4C, D). Figure 5 
presents the schematic diagram depicting the mecha-

nisms by which myricetin alleviates H2O2-induced 
senescence. 

Discussion

Mesenchymal Stem Cells have been recognized as 
a novel therapeutic option for IVD regeneration [34]. 
However, limitations have been found to exist in the 
survival and adaptation of transplanted MSCs [35]. 
Myricetin at 50 μM possesses antioxidant, anti-sene-
scent, and anti-inflammatory activities [36, 37]. This 
study investigated the protective effects of myricetin 
(50 μM) against senescence, apoptosis, and mitochon-
drial dysfunctions of rat NPMSCs.

H2O2 is one of the most common agents used 
to induce oxidative stress and damage cell bio-
logy by increasing intracellular ROS generation.  

Figure 1. Identifications of rat nucleus pulposus derived mesenchymal stem cells (NPMSCs). A. The MSC-associated surface 
markers were detected on NPMSCs by flow cytometry as described in Methods. The x-axis means the signal intensity. The y-axis 
means cell counts. B. Osteogenic and adipogenic differentiation of NPMSCs were induced to examine the multilineage differenti-
ation potential of rat NPMSCs as described in Methods. Then, the cells were stained with Alizarin red and Oil Red O, respectively, 
as described in Methods.
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In the current study, we found that H2O2 at the con-
centration of 100 μM promoted intracellular ROS 
generation. This is in line with a previous study on 
NP cells [38], and indicates that excessive ROS gene-
ration may be responsible for H2O2-induced NPMSC 
apoptosis and mitochondrial dysfunction. Myricetin at 
20 μM attenuates the ROS production induced by ar-
senite and reduces the oxidative stress in natural killer 
cells [39]. Additionally, in bovine mammary epithelial 
cells, myricetin at 20 μM significantly attenuates the 

increase of ROS and MDA levels and alleviates the 
decrease of SOD and T-AOC levels induced by H2O2 
by activating the AMPK/NRF2/ARE signaling [40]. 
Moreover, myricetin supplementation at two doses (25 
and 50 mg/kg b.w.) demonstrated a protective effect in 
the colon of Wistar rats in cisplatin-induced toxicity by 
controlling oxidative stress and inflammation through 
normalizing the expression of both Nrf2 and NF-κB 
[41]. In addition to oxidative stress, accumulating 
evidence has proven the protective effects of myricetin 

Figure 3. Myricetin at 50 μM alleviates H2O2-induced cell apoptosis and mitochondrial dysfunction. A–B. Representative dot-plots 
and statistical analysis of NPMSC apoptosis rate by Annexin-V/PI staining in the control, the H2O2, the H2O2 + myricetin, and the 
H2O2 + EX527 (selective inhibitor of SIRT1) groups. The rat NPMSCs were pre-conditioned with 10 μM EX527 prior to exposure 
to 100 μM H2O2 for 6 h. C. The levels of apoptosis-associated proteins, Bax, Bcl-2, and cleaved caspase-3, were detected by western 
blotting. D–E. Fluorescence microscopy revealed mitochondrial membrane potential (MMP) changes after JC-1 staining of NPMSCs 
as described in Methods. F. The mitochondrial ROS levels in rat NPMSCs were examined by MitoSOX green staining as described 
in Methods. **P < 0.01, ***P < 0.001 vs. control cells.
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Figure 2. Pretreatment with myricetin attenuates the H2O2-induced decrease in cell viabilty of NPMSCs. The cells seeded onto  
96-well plates (5 × 103 cells/well) were treated with 0–400 μM H2O2 for 0–6 h (A), with 0–100 μM myricetin for 0–24 h (B) and 
were pretreated with 0–100 μM myricetin for 24 h and then with 100 μM H2O2 for 6 h (C). The cell viability was measured by 
CCK-8 assay. All data are the means of ± SEM in at least three independent experiments. For (A): *P < 0.05, **P < 0.01 compared 
with control cells incubated for 0 h with H2O2. For (C) *P < 0.05 compared with H2O2 (0 μM) + myricetin (0 μM) group; #P < 0.05, 

##P < 0.01 compared with H2O2 (100 μM) + myricetin (0 μM) group.

Figure 4. Myricetin at 50 μM reduces the expression of cell senescence markers in rat NPMSCs by affecting the SIRT1/PGC-1α 
pathway. A. Level of cell senescence was detected by SA-β-Gal staining. B. The levels of senescence-associated proteins (p16, 
p21, and p53) were detected by western blotting. C–D. NPMSCs treated with H2O2 for 6 h, NPMSCs pretreated with myricetin for  
24 h prior to H2O2 treatment for 6 h, or NPMSCs pretreated with myricetin and EX527 for 24 h prior to H2O2 treatment for 6 h were  
used for western blotting analysis of SIRT1 and PGC-1α protein levels. The levels of proteins determined by western blotting  
were expressed in relation to the expression of β-actin. **P < 0.01, ***P < 0.001.
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on mitochondrial function. For example, in skeletal 
muscles of hypoxia-exposed rats, pretreatment with 
myricetin at 50 μM can restore mitochondrial dysfunc-
tions by upregulating the AMPK and SIRT1 expres-
sion [42]. Additionally, myricetin at 40 and 80 μM  
effectively reduces the aluminum phosphide-induced 
mitochondrial dysfunction in rat cardiomyocytes [43]. 
In the current study, we found that myricetin at 50 μM 
abolished the H2O2-induced promotion in mitochon-
drial ROS production and limited the suppressive 
effect of H2O2 on mitochondrial membrane potential.

Nucleus pulposus-derived MSCs may differen-
tiate into intervertebral discs cells and protect IVD 
cells from apoptosis, thus increasing the repair and 
regeneration ability of the degenerative IVDs [44]. 
It is crucial to maintain the number of viable and 
functional NPMSCs in the process of endogenous 
NPMSC repair [45]. As reported, myricetin posses-
ses antiapoptotic properties. For example, myricetin 

at 20 μM exhibits protective effects against high 
glucose-induced apoptosis in INS-1 cells by attenu-
ating endoplasmic reticulum stress and mitochon-
drial dysfunction [46]. Additionally, myricetin at  
50 μM was shown to alleviate the epoxiconazole-indu-
ced apoptosis in F98 glial cells by preventing ROS ge-
neration and DNA damage [47]. Moreover, myricetin 
at 5 μM attenuates the low-density lipoprotein-induced 
apoptosis and ROS enhancement in human umbilical 
vein endothelial cells through the GAS5/miR-29a-3p/ 
/TLR4/NF-κB pathway, clarifying a new mechanism 
of myricetin protection against atherosclerosis [48]. 
Here, we found that myricetin at 50 μM alleviated 
the H2O2-induced apoptosis of rat NPMSCs, and this 
finding was confirmed by measuring the levels of 
apoptosis-associated proteins.

The generated ROS enhance the senescence and 
apoptosis of NP cells and NPMSCs, which are primary 
characteristics of IVDs [19, 49]. H2O2 at 100 μM can 

Figure 5. Schematic diagram depicting the mechanisms by which myricetin alleviates H2O2-induced senescence. Myricetin affects 
the SIRT1/PGC-1α pathway to facilitate antioxidation, enhance mitochondrial homeostasis and alleviate rat NPMSC senescence in 
vitro which may delay intervertebral disc degeneration.
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induce senescence of NPMSCs. Myricetin (25–100 
μM) is suggested to reduce ROS-induced oxidative 
stress and downregulates senescence markers in 
glaucomatous trabecular meshwork cells [36]. In the 
current study, we found that myricetin at 50 μM alle-
viated the H2O2-induced senescence of rat NPMSCs.

SIRT1/PGC-1α activation attenuates oxidative 
damage and prevents metabolic disease, while SIRT1/ 
/PGC-1α inactivation is involved in the pathome-
chanisms of mitochondrial disorders associated with 
xeroderma pigmentosum [50]. Myricetin at 60 μM was 
reported to increase SIRT1 activity to alleviate TNF-
-α-induced damage of A549 cells [51]. In the current 
study, we found that myricetin at 50 μM increased 
SIRT1 and PGC-1α protein levels, and the inactiva-
tion of SIRT1/PGC-1α pathway by the reversed the 
inhibitory effects of myricetin on cell apoptosis, cell 
senescence, and mitochondrial dysfunction. 

In conclusion, this study reveals that myricetin at 
50 μM attenuates the H2O2-induced senescence and 
apoptosis in rat NPMSCs by affecting the SIRT1/ 
/PGC-1α pathway.

However, there are limitations to our study. First, 
a previous study suggested that 50–100 μM H2O2 
promoted the viability and proliferation of NPMSCs, 
and pretreatment with 75 μM H2O2 can better reduce 
oxidative stress and cell apoptosis in NPMSCs in vitro 
[52]. However, other studies have verified that H2O2 at 
50–150 μM can lead to inhibition in the viability and 
proliferation of NPMSCs [53, 54]. Thus, the effect of 
H2O2 requires more investigation. Second, the eluci-
dation of in vivo mechanisms of myricetin function 
needs further studies. Despite these limitations, we 
suggest that myricetin should be tested as an effective 
agent to improve the use of nucleus pulposus-derived 
MSCs in regenerative medicine.
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