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Abstract
Introduction. Acute pulmonary embolism (APE) is a clinical syndrome of pulmonary circulation disorder caused 
by obstruction of the pulmonary artery or its branches. Histone deacetylase 6 (HDAC6) has been reported to play an 
important role in lung-related diseases. However, the functional role of HDAC6 in APE remains unclear.
Material and methods. Male Sprague Dawley rats were used. The APE model was constructed by inserting an intrave-
nous cannula into the right femoral vein and injecting Sephadex G-50 microspheres (12 mg/kg; 300 µm in diameter). 
After 1 h, the control and APE rats were intraperitoneally injected with tubastatin A (TubA) (40 mg/kg, an inhibitor 
of HDAC6) and sampled at 24 h after modeling. H&E staining, arterial blood gas analysis, and wet/dry (W/D) weight 
ratio were used to evaluate the histopathological changes and pulmonary function in APE rats. ELISA, Western blot, 
and immunohistochemistry were used to explore the potential mechanism of HDAC6-mediated inflammation in APE.
Results. The results indicated that HDAC6 expression was significantly increased in lungs of APE rats. TubA treat-
ment in vivo decreased HDAC6 expression in lung tissues. HDAC6 inhibition alleviated histopathological damage and 
pulmonary dysfunction, as evidenced by decreased PaO2/FiO2 ratio and W/D weight ratio in APE rats. Furthermore, 
HDAC6 inhibition alleviated APE-induced inflammatory response. Specifically, APE rats exhibited increased production 
of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-18, 
however, this increase was reversed by HDAC6 inhibition. Meanwhile, the activation of the NLRP3 inflammasome was 
also observed in lungs of APE rats, while HDAC6 inhibition blocked this activation. Mechanically, we demonstrated 
that HDAC6 inhibition blocked the activation of the protein kinase B (AKT)/extracellular signal-regulated protein 
kinase (ERK) signaling pathway, a classic pathway promoting inflammation.
Conclusions. These findings demonstrate that the inhibition of HDAC6 may alleviate lung dysfunction and pathological 
injury resulting from APE by blocking the AKT/ERK signaling pathway, providing new theoretical fundamentals for 
APE therapy. (Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 1, 56–67)
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Introduction

Pulmonary embolism is a common venous embolism 
associated with tremendous morbidity and mortality [1]. 
Statistically, approximately 20% of patients with pulmo-
nary embolism die within two hours after the onset of 
the acute phase [2]. Acute pulmonary embolism (APE) 
has been recognized as a pathophysiological syndrome 
of severe respiratory and circulatory disorders characte-
rized by thrombosis blocking the main trunk or branch of 
the pulmonary artery [3]. Clinical manifestations of APE 
include the triad of dyspnea, chest pain, and hemoptysis, 
further leading to pulmonary hypertension, right heart 
failure, obstructive shock, circulatory failure, and even 
death [4, 5]. Notably, APE is the third most common 
disease of the cardiovascular system following coronary 
heart disease and hypertension, which dramatically 
endangers the physical and mental health of patients 
[6]. To date, the methods for drug treatment of APE 
are thrombolytic therapy and anticoagulant therapy [7]. 
Although diagnostic techniques and therapy treatment 
for APE are constantly improving, APE mortality is 
still as high as 50% or even more [8]. Therefore, it  
is of clinical significance to explore more effective drugs 
and methods to treat APE.

Histone deacetylase 6 (HDAC6), a cytoplasmic 
enzyme unlike many other HDACs, contains two 
catalytic domains and a zinc finger ubiquitin binding 
protein domain [9]. HDAC6 can bind to various sub-
strate proteins in the cytoplasm, and participate in the 
regulation of important biological processes [10]. The 
acetylation level of α-tubulin is a substitutive marker 
of HDAC6 activity. HDAC6 inhibition protected rat 
cardiac myocytes from cellular injury by α-tubulin 
acetylation [11]. Treatment with ACY1215, a selec-
tive HDAC6 inhibitor, has been shown to alleviate 
myocardial ischemia-reperfusion injury by reducing 
heart infarct size in rats [12]. In the diabetic rat model, 
inhibition of HDAC6 activity was found to reduce my-
ocardial ischemia/reperfusion injury [13]. Additionally, 
honokiol treatment mitigated angiotensin II-induced 
hypertension and endothelial dysfunction by inhibiting 
HDAC6-mediated cystathionine γ-lyase degradation 
[14]. CM-695, a small molecule compound, increased 
HSP70 expression by inhibiting HDAC6 expression, 
thereby effectively reducing thromboses and bleeding 
risk in mice [15]. Furthermore, HDAC6 inhibition 
attenuated inflammatory indices in lipopolysaccharide 
(LPS)-induced acute lung injury in C57BL/6 mice [16]. 
Studies have reported that HDAC6 inhibition alleviated 
inflammatory responses via the activation of the protein 
kinase B (AKT) and the extracellular signal-regulated 
protein kinase (ERK) pathways in vitro [17, 18]. Tuba-

statin A (TubA), a highly selective HDAC6 inhibitor, 
has received extensive attention [19, 20]. Indeed, TubA 
alleviated the destruction of the pulmonary endothelial 
cell barrier and LPS-induced pulmonary edema by in-
hibiting tumor necrosis factor-alpha (TNF-α)-induced 
microtubule disassembly in mice [21]. Accumulating 
evidence has demonstrated that HDAC6 plays an im-
portant role in regulating pulmonary function. A pre-
vious study showed that HDAC6 inhibition alleviated 
endothelial barrier dysfunction and acute lung injury 
by inhibiting lipopolysaccharide-mediated heat shock 
protein 90 phosphorylation in mice [22]. Importantly, 
HDAC6 is implicated in the regulation of pulmonary 
hypertension. For instance, TubA treatment promoted 
cell survival and proliferation and relieved pulmonary 
injury in arterial hypertension rat models [23]. Howe-
ver, the effects of HDAC6 on APE-induced pulmonary 
injury remain unclear. Based on the above research 
background, we speculated that inhibition of HDAC6 
might alleviate inflammatory reactions and pulmonary 
injury in the APE process.

Material and methods

Animal experiments. Healthy male Sprague Dawley rats (aged 
8–9 weeks; 300–320 g) were maintained at 21–23° and 45–55% 
humidity on a 12 h light/dark cycle for one week. All experi-
mental procedures were performed in strict conformity with the 
Ethics Committee of Wuxi 9th People’s Hospital (KT2021017 
certificate). Rats were stochastically separated into 4 groups: 
Control group, Control + TubA group, APE group, and APE 
+ TubA group. To establish the APE model, rats in APE and 
APE + TubA groups were injected with 12 mg/kg suspension 
of Sephadex G-50 microspheres (300 µm in diameter, Macklin 
Biotechnology, Shanghai, China) by inserting an intravenous 
cannula into the right femoral vein based on the previous study 
[24]. Rats in Control and Control + TubA groups were injected 
with the equivalent volume of normal saline instead of the mi-
crospheres. After 1 h, rats in Control + TubA and APE + TubA 
groups were intraperitoneally injected with TubA (40 mg/kg,  
MedChemExpress, Shanghai, China). Then, at 24 h after 
modeling, the pulmonary function of rats in different groups 
was measured. Afterward, all rats were euthanized by carbon 
dioxide asphyxiation, and the lung tissues were collected. Part 
of the lung tissues was fixed in 4% paraformaldehyde, whereas 
the remaining lung tissues were frozen at –70° for subsequent 
experimental detection.

Blood gas analysis. Before euthanizing the rats, arterial blood 
was extracted from the right common carotid artery, and then 
a blood gas analysis was performed. The partial pressure of 
oxygen (PaO2), fraction of inspired oxygen (FiO2), and the 
partial pressure of carbon dioxide (PaCO2) were measured 
using a blood gas analyzer (RAPIDPoint500, Siemens, UK). 
Subsequently, the values for the PaO2/FiO2 ratio were calculated.
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Inflammatory cells detection in bronchoalveolar lavage fluid 
(BALF). BALF was collected as previously described [25]. 
Briefly, a tracheostomy was performed to expose the trachea, 
and the lungs were gently injected with 8 mL of bolus of sterile 
saline three times to collect a total of 5.0–6.5 mL of BALF. Sub-
sequently, the smear was prepared by dropping the resuspension 
liquid onto a clean glass slide and allowed to air–dry. After fixing 
with methanol, cells in BALF were stained with Giemsa staining 
solution (Jiancheng Bioengineering Institute, Nanjing, China). 
After depigmentation, the slides were washed and naturally 
dried. Finally, total and differential cell counts (eosinophils, 
neutrophils, lymphocytes, and macrophages) were evaluated in 
BALF under a microscope (Olympus, Tokyo, Japan).

Wet/dry (W/D) weight ratio of lung tissues. After euthanizing 
the rats, the lung tissues were weighed immediately to obtain 
the wet lung weight. Subsequently, the tissues were oven-dried 
at 80° until constant weight to obtain the dry lung weight. The 
W/D weight ratio was used to evaluate the degree of pulmonary 
edema.

Morphological analysis of lung tissue. The fixed lung samples 
were embedded in paraffin as previously described [26], and 
sectioned serially at 5 μm slices by using a rotary microtome 
(Leica, Nussloch, Germany). Subsequently, the samples were 
stained with hematoxylin and eosin (H&E) [27, 28]. Finally, 
the stained sections were observed and photographed under 
a BX53 microscope (Olympus, Tokyo, Japan). According to 
previous studies [29], the scoring system was used to estimate 
the severity of acute lung injury as shown in Table 1.

Immunohistochemistry. For immunohistochemistry, the lung 
tissue sections were permeabilized in a 3% hydrogen peroxide 
solution (Sinopharm, Shanghai, China) for 15 min after antigen 
repair. Subsequently, the sections were blocked with 1% bovi-
ne serum albumin (BSA) (Sangon Biotechnology, Shanghai, 
China) for 15 min, and incubated with primary antibodies 
against HDAC6 (1:100, ABclonal Biotechnology, Wuhan, 
China) and NLRP3 (1:100, Affinity Biosciences, Changzhou, 
China) overnight at 4°. On the next day, the sections were 
incubated with the secondary antibody (1:500, ThermoFisher 
Scientific, Pittsburgh, PA, USA) at 37° in a humid chamber 
for 1 h. Afterward, images were observed and captured under 
a microscope (BX-53, Olympus).

Determination of myeloperoxidase (MPO) activity. The 
activity of MPO was measured using the MPO ELISA Kits 
(Jiancheng Bioengineering Institute, Nanjing, China). Brie-
fly, wet lung tissues were weighed, and the homogenization 
buffer (1:19) was added to prepare a 5% tissue homogenate 
by a glass-glass homogenizer according to the manufacturer’s 
instructions. Subsequently, the tissue homogenate (0.9 mL) 
was mixed with MPO assay buffer (0.1 mL) at 37° for 15 min. 
Thereafter, according to the manufacturer’s instructions, MPO 
activity was calculated according to the formula.

MPO activity (U/g tissue wet weight) = (measured OD value  
– control OD value)/[11.3 × sample volume (g)]

Determination of proinflammatory cytokines content in rat 
lungs. Lung tissues were weighed, and normal saline was added 
at a ratio of weight (g)/volume (mL) = 1:9. Subsequently, 10% 
homogenate was prepared by homogenizing with a glass-glass 
homogenizer under an ice water bath, centrifuged for 10 min, 
and then the supernatant was collected for detection. The levels 
of TNF-α, interleukin (IL)-6, IL-1β, and IL-18 in the lungs 
were detected with specific kits. TNF-α, IL-6, and IL-1β were 
provided by MultiSciences Biotechnology (Hangzhou, China). 
IL-18 was provided by Wuhan Fine Biotechnology (Wuhan, 
China). All experimental steps were carried out referring to the 
manufacturer’s instructions.

Western blot analysis. Western blot was applied to measure the 
expression levels of proteins. Total proteins were extracted from 
rat lungs by using Cell lysis buffer for Western and IP (Beyotime 

Table 1. Scoring system of lung injury 

Score Description

0 Normal appearance

1 Mild interstitial congestion

2 Perivascular oedema and moderate pulmonary 
structural damage

3 Massive cell infiltration and moderate 
alveolar structure destruction

4 Massive cell infiltration and severe lung 
structural damage

Table 2. The primary antibodies used in this study

Antibody name Dilution 
ratio

Source

HDAC6 1:1000 ABclonal Biotechnology, 
Wuhan, China

α-tubulin 1:1000 Affinity Biosciences,  
Changzhou, China

ace-α-tubulin 1:500 Affinity Biosciences,  
Changzhou, China

NLRP3 1:1000 ABclonal Biotechnology, 
Wuhan, China

ASC 1:1000 ABclonal Biotechnology, 
Wuhan, China

cleaved caspase-1 1:1000 Affinity Biosciences,  
Changzhou, China

AKT 1:1000 Affinity Biosciences,  
Changzhou, China

p-AKT 1:500 Affinity Biosciences,  
Changzhou, China

ERK 1:1000 Affinity Biosciences,  
Changzhou, China

p-ERK 1:500 Affinity Biosciences,  
Changzhou, China

β-actin 1:50000 ABclonal Biotechnology, 
Wuhan, China
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Biotechnology, Shanghai, China) together with phenylmethane-
sulfonyl fluoride (PMSF; Beyotime). Subsequently, a BCA kit 
assay was used to quantify concentrations of the protein. Protein 
samples were separated on 12% SDS-PAGE gels, blocked with 
5% nonfat milk for 1 h, and incubated with primary antibodies 
overnight at 4°C. The primary antibodies, their sources, and 
dilution concentrations were listed in Table 2. β-actin was the 
reference protein. On the second day, samples were incubated 
with the secondary antibody (1:10000, ABclonal Biotechnology, 
Wuhan, China) for 40 min at 37°C. Finally, the protein bands 
were visualized by an enhanced chemiluminescence reagent 
(ECL; Beyotime).

Statistical analyses. Statistical analysis was performed using 
GraphPad Prism (version 8.0). The data analysis for the two 
groups was performed via an unpaired t-test. Additionally, data 
from four groups were submitted to one-way ANOVA with Tu-
key’s multiple comparison test. The results were presented as the 

means ± standard deviations. Data were considered statistically 
significant at P < 0.05.

Results

HDAC6 was highly expressed in the lung tissues 
of APE rats
Initially, we detected HDAC6 expression in rat lung 
tissues under APE conditions. As shown in Fig. 1, im-
munohistochemical analysis revealed that HDAC6 was 
predominantly localized in the cytoplasm. In addition, 
it was shown that HDAC6 expression was increased in 
the lung tissues of APE rats compared with the control. 
Therefore, these data demonstrated that high expression 
of HDAC6 might participate in the progression of APE.

Figure 1. HDAC6 was highly expressed in lungs of rats with induced APE. Representative images of HDAC6 immunoreactivity  
were assessed as described in Methods. Scale bar = 50 µm. Abbreviations: APE — acute pulmonary edema; HDAC6 — histone  
deacetylase 6.
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Effects of TubA on HDAC6 expression in APE 
lung tissues
Subsequently, we detected whether TubA is sufficient 
to downregulate HDAC6 expression in the rat lung. 
As shown in Fig. 2A and B, western blot analysis sho-
wed that TubA inhibited the increased expression of 
HDAC6. Acetylation of α-tubulin reflected the activity 
of HDAC6. Therefore, we detected α-tubulin and ace-
-α-tubulin at the protein level. Notably, ace-α-tubulin 
expression was decreased in APE-treated rats, but 
this decrease was restored by TubA treatment. There 
was no significant difference in α-tubulin expression 
between APE and control rats (Fig. 2C–E). Therefore, 
the above results suggested that the HDAC6 inhibitor 
successfully suppressed the increased expression of 
HDAC6 in APE rats.

Effects of HDAC6 inhibition on APE in rats
PaO2/FiO2 represents the efficiency of inhaled oxygen 
delivered to blood, which is an important indicator to 

judge the severity of lung injury. As shown in Fig. 3A, 
the ratio of PaO2/FiO2 was decreased in the APE group, 
and this decrease was restored by TubA treatment (Fig. 
3A). Further, the PaCO2 level was detected under APE 
conditions. As shown in Fig. 3B, APE rats exhibited 
increased PaCO2 levels, while TubA treatment reversed 
the level in PaCO2. These results indicated that HDAC6 
inhibition alleviated pulmonary dysfunction in APE rats.

Effects of HDAC6 inhibition on lung injury  
in APE rats
The lung W/D ratio of rats was used to evaluate the 
degree of pulmonary edema. Compared with the control 
group, the W/D ratio in the APE group was significantly 
increased but HDAC6 inhibition decreased the ratio 
(Fig. 4A). MPO is regarded as marker of neutrophil 
infiltration [30]. As shown in Fig. 4B, MPO activity 
increased significantly under APE conditions, which 
was blocked by TubA treatment. Subsequently, the 
number of inflammatory cells in BALF was detected. 

Figure 2. TubA suppressed the increased expression of HDAC6 in APE lung tissues. A, B. Western blot and quantitative analysis 
for the expression of HDAC6 protein in relation to the expression of b-actin. C–E. Western blot and quantitative analysis for the 
expression of ace-α-tubulin and α-tubulin. Abbreviations: APE — acute pulmonary edema; HDAC6 — histone deacetylase 6; 
TubA — Tubastatin A.



www.journals.viamedica.pl/folia_histochemica_cytobiologica
©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2023
10.5603/FHC.a2023.0006
ISSN 0239-8508, e-ISSN 1897-5631

61HDAC6 inhibition alleviates acute pulmonary embolism

The number of total cells, eosinophils, neutrophils, 
macrophages, and lymphocytes was increased in BALF 
of APE rats. TubA treatment reversed this increase, indi-
cating that HDAC6 inhibition alleviated the infiltration 
of inflammatory cells (Fig. 4C–G). Lung H&E staining 
results showed normal and complete structure without 
obvious inflammatory cell infiltration in the control 
group (Fig. 4H). 

In APE lung tissues, destructive alveolar structure, 
massive inflammatory cell infiltration, and visible pul-
monary congestion were observed. Remarkably, TubA 
treatment relieved the pathological changes induced by 
APE. Likewise, the lung injury score in the APE group 
was higher than that in the control group, but the score 
was decreased with TubA treatment (Fig. 4I). Thus, 
HDAC6 inhibition alleviated inflammatory injury and 
pathological damages in the lung tissues of APE rats.

Effects of HDAC6 inhibition on lung 
inflammatory response in APE rats
To further illustrate the effect of HDAC6 inhibition on 
the inflammatory response, the levels of inflammatory 
cytokines were detected in the rat lung. The contents of 
TNF-α, IL-6, IL-1β, and IL-18 in the APE group were 
markedly increased, while those factors in the APE + 
TubA group were decreased (Fig. 5A–D). As the core 
of the inflammatory process, the protein expression of 
NLRP3 was detected in the lungs by immunohistoche-
mistry (Fig. 5E). The results revealed that NLRP3 was 
intensely expressed in the APE group compared with 

the control group, which was attenuated with TubA 
treatment. The NLRP3 inflammasome is executed 
through cleaved caspase-1 and apoptosis-associated 
speck-like protein (ASC). The protein levels of NLRP3, 
cleaved caspase-1, and ASC were upregulated under 
APE conditions, but HDAC6 inhibition reversed the 
progression (Fig. 5F–I). These results suggested that 
HDAC6 inhibition exerted an inhibitory role in pulmo-
nary inflammation in APE rats.

Effects of HDAC6 inhibition on the AKT/ERK 
signaling pathway in APE rats
Subsequently, we further detected the specific mecha-
nism of HDAC6 inhibition in alleviating APE-induced 
lung inflammation. The AKT/ERK signaling pathway is  
a classical pathway that activates inflammation. The pro-
tein levels of p-AKT and p-ERK were increased in APE 
rats, and were blocked by TubA treatment (Fig. 6A–D). 
No significant difference in the expression of AKT and 
ERK was observed in all experimental groups. The do-
wnregulation of HDAC6 expression suppressed the acti-
vation of the AKT/ERK signaling pathway in APE rats. 

Discussion

APE is a potentially life-threatening disease that induces 
pulmonary inflammation and further causes function 
dysfunction [31]. A high level of HDAC6 has been 
shown to cause inflammatory injury in lung tissue, thus, 
HDAC6 downregulation apparently reverses pulmonary 

Figure 3. HDAC6 inhibition alleviated APE-induced pulmonary dysfunction. A. The PaO2/FiO2 ratio in the rat lung. B. The level 
of PaCO2 in the rat lung. Abbreviations: APE — acute pulmonary edema; HDAC6 — histone deacetylase 6.
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injury [32]. Whether the injury caused by APE may be 
affected by HDAC6 inhibition in the lung tissue remains 
to be solved [33]. In the present study, we demonstrated 
the protective effect of HDAC6 inhibition on APE-in-
duced lung injury. Data from the rat model suggested 
that APE rats showed pulmonary dysfunction and 
pathological damage in lung tissues, whereas HDAC6 
inhibition alleviated those symptoms by regulating the 
AKT/ERK pathway.

HDAC6 is a microtubule-associated deacetylase 
that regulates post-translational modification and in this 

way may modulate gene expression. HDAC6 has been 
reported to be involved in a variety of inflammatory 
diseases, such as myocarditis and cardiac dysfunction 
[34], rheumatoid arthritis [35], atopic dermatitis [36], 
and other diseases. As a special member of HDAC 
enzymes, HDAC6 also plays a vital role in other phy-
siological functions. Research has found that HDAC6 
possessed tumor-suppressing activities by affecting the 
immune system, providing a promising option for cancer 
treatment [37, 38]. Pulya et al. reported that HDAC6 
inhibition had an anti-proliferative effect on multiple 

Figure 4. HDAC6 inhibition alleviated APE-induced pulmonary injury. A. The ratio of wet/dry weight in the rat lung.  
B. MPO activity in the rat lung. C–G. Counts for total inflammatory cells, eosinophils, neutrophils, lymphocytes, and macrophages 
in bronchoalveolar lavage fluid (BALF). H. Representative H&E staining images of rat lung sections. Scale bar = 100 µm or 500 µm.  
I. Lung injury scoring system in rat. Abbreviations: APE — acute pulmonary edema; HDAC6 — histone deacetylase 6.
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myeloma [39]. Furthermore, HDAC6 has been reported 
to be involved in the progression of neurological dise-
ases, such as Alzheimer’s disease (AD). More impor-
tantly, evidence has demonstrated that HDAC6-induced 
hypoacetylation was harmful to neuronal transport and 
HDAC6 inhibitors might serve as therapeutic candidates 
for AD [40]. TubA, a selective inhibitor of HDAC6, 
can protect the physiological functions of critical or-

gans [41]. TubA relieved cigarette smoke-associated 
pulmonary dysfunction and infections of the lung [42]. 
The results in our present study were consistent with 
the aforementioned studies. 

Herein, we established an APE rat model and sho-
wed that HDAC6 expression was significantly increased 
in the lung tissues of APE rats. HDAC6 inhibition relie-
ved the pathological changes and pulmonary function 

Figure 5. TubA prevented APE-induced inflammatory response in rat lung. A–D. The contents of TNF-α, IL-6, IL-1β  
and IL-18 in the rat lung were measured as described in Material and methods. E. Immunoreactivity of NLRP3 in the rat lung.  
Scale bar = 50 µm. F–I. Western blot and quantitative analysis for the expression of NLRP3, apoptosis-associated speck-like protein (ASC)  
and cleaved caspase-1 in the rat lung. Abbreviations: APE — acute pulmonary edema; TubA — Tubastatin A.
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in APE rats, proving that HDAC6 inhibition may be an 
effective method to treat and prevent APE. Therefore, 
the function of other HDAC6 inhibitors needed further 
exploration. Previous studies indicated that several other 
members of the HDAC family, such as HDAC1 and 
HDAC11, could play a major role in the regulation of 
inflammatory response [43, 44]. Therefore, exploring 
the role of other members of the HDAC family in APE 
is a promising direction for further study [45].

The AKT/ERK signaling pathway is a classic 
signaling pathway mediating inflammation, which fur-
ther contributes to tissue injury. In the human primary 
gallbladder cell line, cadmium exposure increased the 
activities of phosphorylated AKT and ERK1/2, further 

elevating the levels of pro-inflammatory cytokines [46]. 
Wang et al. suggested that the AKT and ERK pathways 
were involved in lung injury in APE rat models [47]. 
The inhibition of baicalin is an essential strategy for 
preventing inflammation-induced pulmonary injury 
through the AKT/ERK pathway [48]. The NLRP3 
inflammasome assembles an ASC adaptor and recruits 
pro-caspase-1 to exert an inflammatory cascade reaction 
[49]. Following the above-mentioned studies, we found 
that the expression levels of proinflammatory cytokines 
were significantly increased in APE and that inflam-
matory reaction occurred through activating the AKT/ 
/ERK signaling pathway. Inhibiting HDAC6 reversed 
inflammatory injury to maintain the stability of the pul-

Figure 6. Tubastatin A inhibited AKT/ERK signaling pathway in APE-induced pulmonary injury in rat. A, B. Western blot and 
quantitative analysis for the expression of AKT and p-AKT in the rat lung. C, D. Western blot and quantitative analysis for the 
expression of ERK and p-ERK in the rat lung. Abbreviations: APE — acute pulmonary edema; TubA — Tubastatin A.
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monary environment. The AKT/ERK signaling pathway 
is a classic signaling pathway of inflammation. To note, 
the AKT and ERK pathways could be regulated by other 
cytokines during inflammation. Co-treatment of TNF-α 
and interferon-gamma enhanced AKT phosphorylation 
during intestinal inflammation in mice [50]. In addition, 
the ERK pathway could regulate inflammation by bin-
ding to PARP-1 in vitro [51]. It is certainly possible that 
other inflammatory signaling pathways are involved in 
the development of APE. Therefore, how inflammation 
regulates APE needs to be further explored.

In conclusion, our study elaborated a novel me-
chanism of therapeutic options in APE. TubA treatment 
alleviated pathological injury and lung dysfunction in 
the lungs. We further showed that pulmonary inflam-
mation was activated by APE through the AKT/ERK 
signaling pathway, whereas HDAC6 inhibition blocked 
this activation. Moreover, selective HDAC6 inhibition 
exerts a protective function against pulmonary injury 
and provides a novel approach to the treatment of APE.
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