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Abstract 
Introduction. Sepsis is characterized by an overactive inflammatory response. Acute lung injury (ALI) is the most 
common type of organ injury in sepsis, with high morbidity and mortality. 6-Gingerol is the main bioactive compound 
of ginger, and it possesses anti-inflammatory bioactivity in different diseases. This study is aimed to explore the specific 
function of 6-Gingerol in sepsis-induced ALI.
Material and methods. Lipopolysaccharide (LPS) was intraperitoneally injected into Sprague-Dawley rats for esta-
blishing the ALI models in vivo. The ALI rats were intraperitoneally injected with 20 mg/kg 6-Gingerol. The contents of 
oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected 
in the lung tissues of ALI rats. The concentrations of inflammatory factors [Tumor Necrosis Factor alpha (TNF-α), 
interleukin (IL)-6, and IL-1β] were measured by ELISA. Inflammatory cell infiltration in bronchoalveolar lavage fluid 
(BALF) of rats was tested. Western blot was utilized to test the protein levels of nuclear factor erythroid 2-related 
factor (Nrf2) and heme oxygenase-1 (HO-1) in lung tissues. Furthermore, immunohistochemical staining was applied 
for testing the expression of NLRP3 inflammasome in lung tissues.
Results. The pathological changes in ALI rats were characterized by increased accumulation of inflammatory cells, 
alveolar hemorrhage, and pulmonary interstitial edema. However, the degree of pathological injury of lung tissues was 
significantly improved after 6-Gingerol treatment. Additionally, 6-Gingerol significantly attenuated the lung wet/dry 
ratio and protein permeability index (PPI) of LPS-induced rats. Furthermore, 6-Gingerol repressed oxidative stress and 
inflammatory reaction in LPS-induced rats by reducing the contents of MDA, GSH, SOD, TNF-α, IL-6, and IL-1β in the 
lung. LPS-induced infiltration of eosinophils, macrophages, neutrophils, and lymphocytes into lung was suppressed by 
6-Gingerol administration. Moreover, 6-Gingerol activated Nrf2/HO-1 signaling and repressed LPS-induced-NLRP3 in-
flammasome expression in lung tissues of LPS-induced rats. Intraperitoneal injection of ML385 (Nrf2 inhibitor) treatment
into rats reversed the effects of 6-Gingerol on lung injury, inflammation, and oxidative stress in LPS-subjected rats.
Conclusions. 6-Gingerol attenuates sepsis-induced ALI by suppressing NLRP3 inflammasome activation via stimulation
of Nrf2. (Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 1, 68–80)
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Introduction 

Acute lung injury (ALI) is a severe multifactorial lung 
pathology with high incidence rate [1]. The clinical 
features of ALI include inflammatory cell infiltration, 

pulmonary edema, and arterial hypoxemia, which can 
damage the alveolar epithelium, thus weakening pul-
monary function [2, 3]. Sepsis is a deadly syndrome 
characterized by the overactive systemic inflammatory 
response caused by the infection of bacteria, fungi, and 
viruses [4]. ALI is one of the most common compli-
cations of serious sepsis [5]. During the progression 
of sepsis-induced ALI, the overwhelming release of 
inflammatory factors leads to the disruption of alveolar 
epithelial cells, the increase of epithelial permeability, 
and the influx of edema fluid into the alveolar space [6, 
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7]. However, at present, there is no effective treatment 
for ALI. Thus, it is essential to explore new approaches 
for the treatment of ALI.

Emerging studies have confirmed that inflam-
mation plays a vital role in ALI pathogenesis [8, 9]. 
Lipopolysaccharide (LPS), a major biologically active 
component of the cell walls of Gram-negative bacteria, 
has been extensively utilized to establish the animal 
models of ALI [10, 11]. The LPS-induced animal mo-
del is similar to the pathological characteristics of ALI 
in humans [12]. For instance, NEAT1 downregulation 
represses LPS-induced ALI and inflammatory respon-
se by HMGB1-RAGE signaling [13]. Dehydrocostus 
lactone inhibits LPS-induced ALI and macrophage ac-
tivation by modulating NF-κB pathway [14]. Further-
more, the NLRP3 inflammasome is a crucial signaling 
node that facilitates the maturation of proinflammatory 
factors such as IL-6 and IL-1β [15]. The NLRP3 in-
flammasome is a critical component of the innate 
immune system that mediates caspase-1 activation 
and the secretion of proinflammatory cytokines IL-1β/ 
/IL-18 in response to microbial infection and cellular 
damage [16]. Some agents, e.g., β-hydroxybutyrate 
can deactivate NLRP3 inflammasome to repress gout 
flares [17]. Glycine alleviates LPS-induced ALI by 
regulating NLRP3 inflammasome and Nrf2 signa-
ling [18]. Thus, focusing on the potential targets of 
inflammatory processes is conducive to exploring new 
treatment strategies for ALI.

6-Gingerol is the main bioactive compound of gin-
ger, and it has been confirmed to possess anti-inflam-
matory, anti-tumor, antioxidant and neuroprotective 
bioactivities [19–21]. Importantly, its protective effects 
on human diseases have also been confirmed by many 
studies [22, 23]. For example, 6-Gingerol inhibits 
sepsis-induced acute kidney injury by regulating me-
thylsulfonylmethane and dimethylamine production 
[24]. 6-Gingerol exerts an anti-inflammatory effect 
and protective properties in LTA-induced mastitis [25]. 
Furthermore, 6-Gingerol has been recently reported to 
reduce pulmonary fibrosis by activating sirtuin 1 [26]. 
However, there are few studies on the protective ef-
fect of 6-Gingerol on pulmonary dysfunction caused 
by sepsis. The transcription factor nuclear factor 
erythrocyte-2 related factor 2 (Nrf2) is involved in 
the regulation of oxidative stress and inflammatory 
reaction [27]. Nrf2 translocates into the nucleus un-
der oxidative stress and binds to antioxidant response 
elements, such as HO-1 [28]. The Nrf2/HO-1 axis 
can inhibit the activation of NLRP3 inflammasome 
in sepsis-induced ALI [29, 30]. Moreover, 6-Gingerol 
is reported to ameliorate sepsis-induced liver injury 
through the activation of Nrf2 [31]. However, whether 

6-Gingerol regulates the progression of sepsis-induced 
ALI via Nrf2 signaling is unclear.

In this study, the main purpose was to explo-
re the biological roles of 6-Gingerol in sepsis- 
-induced ALI. We utilized LPS to establish the sep-
sis-induced ALI rat models and performed a series of
assays. We hypothesized that 6-Gingerol could attenu-
ate sepsis-induced ALI by suppressing NLRP3 inflam-
masome through Nrf2 activation, which may provide
a novel therapeutic agent for ALI.

Materials and methods

Animal experiments. A total of 32 male Sprague-Dawley rats 
(180–220 g) were obtained from Vital River Co. Ltd. (Beijing, 
China). The animal study was approved by the Ethics Committee 
of Wuhan Hospital of Traditional Chinese Medicine (Wuhan, 
China). All animals were maintained in cages under a specific 
pathogen-free (SPF) condition at 23°C with free access to food 
and water on a 12 h light/dark cycle.

The rats were divided into 4 groups (n = 8 each): control group, 
LPS group, LPS + 6-Gingerol (20 mg/kg) group, and LPS + 6-Gin-
gerol + ML385 (30 mg/kg) group. Rats were intraperitoneally 
injected with 50 mg/kg sodium pentobarbital for anesthesia, and 
then they were subjected to intratracheal instillation of 5 mg/kg  
LPS in 50 μL PBS [32]. The control rats received an equal 
volume of PBS. After 30 min, rats in the LPS + 6-Gingerol 
group were intraperitoneally injected with 20 mg/kg 6-Gingerol 
dissolved in 0.5% 10 μL DMSO. Rats in the LPS + 6-Gingerol 
+ ML385 group were intraperitoneally injected with 30 mg/kg
ML385 [33] 30 min before LPS treatment followed by 20 mg/kg
6-Gingerol administration. After 24 h of LPS instillation,
100 mg/kg sodium pentobarbital in PBS was intraperitoneally
injected into rats for euthanasia.

Lung wet/dry (W/D) ratio analysis. After the rats were 
euthanized, their lungs were harvested and weighed (W, wet) 
immediately. Then, the lung in each experimental group was 
put in an oven at 80°C for 24 h and weighed (D, dry). The lung 
W/D ratio was counted for evaluating the lung edema.

BALF collection. After rats were euthanized by an overdose of 
anesthesia, the right lungs were ligated. BALF was gathered by 
cannulating and lavaging the left lungs three times with 1.0 mL 
PBS. After centrifuging BALF for 10 min at 1500 rpm at 4°C, 
supernatants were collected and stored in a −80°C freezer until 
use. The right lower lobe of the lung was fixed in 10% formalin 
for histopathological analysis.

Hematoxylin and eosin staining. Lung tissue samples were 
fixed with 10% formalin and then embedded in paraffin. Next, 
tissues were cut into 5-µm-thick slices and stained with he-
matoxylin and eosin (H&E) according to the standard method 
[34]. After that, slices were dehydrated, sealed with a neutral 
gel, and observed by an optical light microscope (OLYMPUS 
IX51, Tokyo, Japan). Lung injury score was determined by 
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4 categories: interstitial inflammation, neutrophil infiltration, 
edema, and congestion [35]. Those indexes were graded as 
follows: 0 means no injury; 1 means 25% injury; 2 means 50% 
injury; 3 means 75% injury; and 4 means 100% injury. Each 
specimen was analyzed in 10 randomly selected fields, and 
the severity of lung injury was evaluated by the average score.

Immunohistochemical (IHC) analysis. The paraffin-embed-
ded lung tissues were cut into 5 μm-thick slices, deparaffinized 
in xylene, and rehydrated by placing in decreasing ethanol 
concentrations. Then, slices were placed in 0.01 mol/L citrate 
buffer for antigen retrieval and blocked with 5% bovine serum 
albumin. After that, slides were incubated with the primary 
antibody against NLRP3 (SC06-23, 1:200, Thermo Fisher 
Scientific, Waltham, MA, USA) at 4°C overnight. Slices were 
then incubated with a secondary antibody (ab205718, Abcam, 
Cambridge, UK) for half an hour at room temperature. Next, 
DAB was used for color development for 5 min. Finally, a light 
microscope (OLYMPUS IX51) and Image-Pro Plus 6.0 softwa-
re (National Institutes of Health, Bethesda, MD, USA) were 
utilized for analysis.

Detection of lung protein permeability index (PPI). Blood 
samples were obtained from the left ventricle and then subjec-
ted to centrifugation at 4° at 3500 rpm for 15 min. Then, the 
plasma was gathered for assays. Protein concentration in BALF 
supernatant and plasma was tested utilizing the Quick Start™ 
Bradford protein assay (Bio-Rad Laboratories, Hercules, CA, 
USA). The calculation formula is as follows: PPI (%) ¼ protein 
content in BALF/protein content in plasma ×100 [36].

Detection of MDA, GSH, and SOD contents. Lung tissues 
were homogenized in 0.3 g/mL (wet mass w/v) precooled 0.9% 
normal saline by a high-speed homogenizer (Heidolph, DIAX 
900, Heidolph Instruments, Kelheim, Germany) five times 
for 10 seconds at 10,000 g. Following homogenization, the 
homogenates were subjected to centrifugation at 12000 g for 
10 min at 4°. After that, the supernatant was collected for assays. 
MDA, GSH and SOD contents were detected in the supernatant 
by respective kits according to the manufacturer’s instruction 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

ELISA. The concentrations of IL-1β, TNF-α and IL-6 in tissue 
homogenates and BALF were estimated. The detection of ab-
sorbance values was calculated utilizing respective ELISA kits 
(MultiSciences Biotechnology, Hangzhou China). The absor-
bance at 450 nm was analyzed by a Multiskan MK3 microplate 
reader (Thermo Fisher Scientific, Inc.).

Inflammatory cell counts. Total cell count was measured in 
BALF utilizing a hemocytometer. Cell pellets were subjected 
to resuspension in saline and then centrifuged onto slides. After 
that, they were stained with Wright-Giemsa method for 8 min. 
The differential cell count was measured by counting a total of 
200 cells/slide under a light microscope (Olympus).

RT-qPCR. Total RNAs were extracted from lung tissues using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Then, RNA 
was utilized for reverse transcription to synthesize cDNA 

using Reverse Transcription Kit (205313; Qiagen, Hilden, 
Germany). The qPCR was conducted using SYBR Green 
(Qiagen) according to the manufacturer’s instruction on an Exi-
cyclerTM 96 fluorescence quantitative assay system (Bioneer 
Corporation, Daejeon, Korea). Nrf2 and HO-1 expression at the 
mRNA level was calculated by the 2−ΔΔCt method normalized 
to GAPDH. The sequences of primers used were as follows: 
Nrf2 forward, 5’-TCTGACTCCGGCATTTCACT-3’; Nrf2 re-
verse, 5’-TGTTGGCTGTGCTTTAGGTC-3’; .HO-1 forward, 
5’-GCCACCAAGGAGGTACACAT-3’; HO-1 reverse, 
5’-GGGGCATAGACTGGGTTCTG-3’; GAPDH forward, 
5’-AACTCCCATTCTTCCACCT-3’; GAPDH reverse, 5’-TTG-
TCATACCAGGAAATGAGC-3’.

Western blot. Lung tissues were lysed in RIPA lysis buffer and 
the supernatant was collected by centrifugation at 7000 g for 
10 min at 4°C. The protein concentrations were measured by 
BCA kit (Beyotime, Shanghai, China). Proteins were separated 
by 10% SDS–PAGE and transferred onto PVDF membranes 
(Millipore, MA, USA), followed by blocking with 5% skim 
milk for 1 h. Then, the membranes were incubated with primary 
antibodies (all from Abcam) against Nrf2 (ab92946, 1:1000), 
HO-1 (ab68477, 1:10000), NLRP3 (ab263899, 1:1000), ASC 
(ab180799, 1:1000), Caspase-1 (ab286125, 1:1000), and GA-
PDH (ab181602, 1:1000) as loading control overnight at 4°C. 
After that, membranes were rinsed and then incubated with 
secondary antibodies (ab205718, 1:2000) for 1 h. The bound 
antibodies were visualized with enhanced chemiluminescence 
(Advansta, Menlo Park, CA, USA). The relative densities of 
protein bands were analyzed by ImageJ (v. 8.0; National In-
stitutes of Health).

Statistical analyses. Data are displayed as the means ± SD from 
three individual repeats. GraphPad Prism 8 software (GraphPad 
Software, Inc., La Jolla, CA, USA) was applied for statistical 
analysis. Data were analyzed by one-way ANOVA followed 
by Tukey’s post hoc analysis. P < 0.05 represented statistical 
significance.

Results

6-Gingerol attenuates LPS-induced lung injury  
in the rat model
To investigate the effects of 6-Gingerol in LPS-induced 
lung injury, we established the model of ALI rats by 
peritoneal injection of 5 mg/kg LPS. ML385 is the 
inhibitor of Nrf2, and because Nrf2 can regulate oxida-
tive stress and inflammatory reaction in ALI [37], thus 
we also studied the effects of ML385 and 6-Gingerol 
in LPS-induced ALI. The groups of animals and time 
course of the experiment are shown in Fig. 1A. After 
24 h of LPS administration, all rats were euthanized 
and lung tissue samples were isolated for experiments. 
Additionally, the pulmonary permeability index was 
increased by LPS, and 6-Gingerol attenuated this 
change, while ML385 treatment reversed the effect 
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of 6-Gingerol (Fig. 1B). Lung wet/dry (W/D) weight 
ratio was determined to semi-quantitatively evaluate 
the extent of lung edema. We found the lung W/D 
ratio was elevated by LPS stimulation, while 6-Gin-
gerol administration decreased the ratio. However, 
ML385 elevated the lung W/D ratio again (Fig. 1C). 
H&E staining was performed to analyze the histopa-
thologic changes of lung tissues in different groups. 
The results indicated that the ALI scores in the LPS 
group were significantly higher than the control group 
and the pathological changes were characterized by 
increased accumulation of inflammatory cells, alveolar 
hemorrhage, and pulmonary interstitial edema. Howe-
ver, the degree of pathological injury of lung tissues 

and the ALI scores in LPS + 6-Gingerol groups were 
significantly improved and decreased. However, in 
the LPS + 6-Gingerol + ML385 group, we found the 
lung injury was aggravated again (Fig. 2A, B). Thus, 
we found that 6-Gingerol treatment alleviates LPS-in-
duced lung injury in rats.

6-Gingerol represses oxidative stress and 
inflammatory reactions in LPS-induced ALI
Oxidative stress and inflammatory reactions are 
the two main contributing factors for ALI [38], and 
therefore we determined their indices. The contents 
of oxidative stress markers (MDA, GSH, and SOD) 
in the lung tissues of rats were detected. We found 

Figure 1. 6-Gingerol attenuates LPS-induced acute lung injury in rats. A. Rats were divided into four groups (the control group, the 
LPS group, the LPS + 6-Gingerol group, and the LPS + 6-gingerol + ML385 group). B. The detection of pulmonary permeability 
index. C. Lung W/D (wet/dry) ratio in different groups. **P < 0.01, ***P < 0.001.
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that MDA content was elevated in the lung tissues 
of LPS-treated rats. However, 6-Gingerol treatment 
decreased its content, which was then increased by 
ML385 (Fig. 3A). On the contrary, the contents of GSH 
and SOD in lung tissues were reduced in LPS-induced 
rats and increased by 6-Gingerol treatment. However, 

pretreatment with ML385 counteracted the effect of 
6-Gingerol (Fig. 3B, C). Then, ELISA was utilized to 
evaluate the contents of inflammatory factors (TNF-α, 
IL-6, and IL-1β) in lung tissues and BALF of rats in 
different groups. The results showed that, compared 
with the control group rats, the contents of TNF-α, IL-

Figure 2. Pathological changes in the lung tissues. A. H&E staining was utilized to assess the histopathological changes of lungs 
in different groups. B. The detection of lung injury score in different groups. **P < 0.01, ***P < 0.001.
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6, and IL-1β in lung tissues and BALF of LPS-treated 
rats were significantly increased, while their contents 
were decreased by 6-Gingerol treatment. However, 
ML385 treatment promoted their contents again (Fig. 
3D–I). Thus, these data suggested that 6-Gingerol 
represses oxidative stress and inflammatory reaction 
in LPS-induced rats.

6-Gingerol attenuates inflammatory cell 
infiltration in LPS-induced ALI
As shown in Fig. 4A–F, LPS markedly promoted the 
infiltration of inflammatory cells into the lung tissues 
as there was an elevation in the differential and total 
cell counts in BALF compared with the control group. 
Then, 6-Gingerol administration reduced the counts of 

Figure 3. 6-Gingerol represses oxidative stress and inflammatory reaction in LPS-induced acute lung injury. A–C. The contents of 
MDA, GSH, SOD in lung tissues of rats in different groups were tested by their corresponding kits. D–I. The contents of TNF-α, 
IL-6, IL-1β in lung tissues and BALF of rats in different groups were detected by ELISA. *P < 0.05, **P < 0.01, ***P < 0.001.
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eosinophil, macrophage, neutrophil, and lymphocyte, 
while ML385 treatment could offset 6-Gingerol effect.

6-Gingerol activates Nrf2 in the lungs of LPS-
induced ALI
Since our experiments have proved that ML385 
(Nrf2 inhibitor) counteracted the protective effect of 
6-Gingerol against oxidative stress and inflammatory 
response in the lungs of LPS-induced rats, we decided 
to find out whether Nrf2 and HO-1 could be activated 
in lungs of ALI rats. Results of RT-qPCR illustra-
ted that the mRNA and protein levels of Nrf2 and 

HO-1 were reduced in the lung tissues of LPS-treated 
rats. After the treatment with 6-gingerol, both Nrf2 and 
HO-1 levels recovered to the level found in the control 
group. However, ML385 treatment decreased their 
mRNA and protein levels again (Fig. 5A–C). Thus, 
we showed that 6-Gingerol activates Nrf2/HO-1 axis 
in the lungs of LPS-induced rats.

6-Gingerol represses NLRP3 inflammasome in 
lungs of LPS induced-rats by activating Nrf2
Finally, we detected the effect of 6-Gingerol on 
NLRP3 inflammasome expression in the lungs of 

Figure 4. 6-Gingerol attenuates infiltration of inflammatory cells in lungs of LPS-treated rats. A–F. The counts of total cells, 
eosinophil, macrophage, neutrophil, and lymphocyte in BALF of rats in different groups were measured using the Wright-Giemsa 
stained cells. **P < 0.01, ***P < 0.001.
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LPS-treated ALI rats. Western blot was utilized for  
measuring the alterations of main components  
for NLRP3 inflammasome. The results showed that 
NLRP3, Apoptosis-associated Speck-like protein 
containing a Caspase-recruitment domain (ASC), and 
caspase-1 levels induced by LPS administration in lung 
tissues of rats were reduced by 6-gingerol treatment, 
while they were increased in the LPS + 6-Gingerol 
+ ML385 group (Fig. 6A, B). Immunohistochemical 
staining further indicated that NLRP3 expression 
was increased in lung tissues of the LPS group and 
decreased in the LPS + 6-Gingerol group. In the LPS 
+ 6-Gingerol + ML385 group, NLRP3 expression was 
recovered to the level of the control group (Fig. 7A, B). 

Thus, these results suggested that 6-Gingerol represses 
NLRP3 inflammasome expression in LPS-treated rats 
by activating Nrf2.

Discussion

Sepsis has become a major etiology of ALI [39]. It 
is reported that the patients with sepsis-induced ALI 
had higher illness severity and mortality rates than 
the patients with non-sepsis-induced ALI [40]. Thus, 
it is urgent to find an effective treatment for sepsis-
-induced ALI. 6-Gingerol is one of the main bioactive 
compounds of ginger, and it has been confirmed as 
a potential therapeutic agent in different diseases due 

Figure 6. 6-Gingerol represses NLRP3 inflammasome by activating Nrf2. A–B. Western blot was applied for detecting NLRP3, 
ASC, and caspase-1 levels in lung tissues of rats of the control group, the LPS group, the LPS + 6-Gingerol group, and the LPS + 
6-gingerol + ML385 group. **P < 0.01, ***P < 0.001.

Figure 5. 6-Gingerol activates Nrf2 in LPS-induced acute lung injury. A–C. RT-qPCR and western blot were utilized to the mRNA 
and protein levels of Nrf2 and HO-1 in lung tissues of rats of the control group, the LPS group, the LPS + 6-Gingerol group, and 
the LPS + 6-gingerol + ML385 group. **P < 0.01, ***P < 0.001.
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to its effects against inflammation and oxidative stress 
[41–43]. Thus, we examined the specific function of 
6-Gingerol in ALI. In this study, we utilized LPS to 
establish the ALI rat model. Through histopathological 
analysis, we found that the lungs of rats treated with 
LPS showed infiltration of inflammatory cells into 
the alveolar space, peribronchial wall thickening, and 
vascular congestion. After 6-Gingerol treatment, these 
pathological alterations were significantly alleviated. 
Previously, 6-Gingerol was reported to attenuate ven-
tilator-induced lung injury by modulating the PPARγ/
NF-κB signaling pathway in rats [44]. Similarly, our 

study also confirmed the protective effect of 6-Ginge-
rol against LPS-induced lung injury in rats.

Inflammatory mechanism exerts vital function to 
eliminate pathogens from human bodies, while the 
excessive release of inflammatory cytokines may 
cause tissue injury [45]. The migration and activation 
of neutrophils is the earliest response to ALI, resulting 
in capillary permeability and edema [7]. Neutrophils 
promote inflammatory and immune reactions by acti-
vating the production of proinflammatory cytokines, 
chemokines, and metalloproteinases [46]. It has been 
confirmed that the severity of ALI is associated with 

Figure 7. Immunohistochemical staining of NLRP3 in the lung. A. Immunohistochemical staining was utilized to estimate NLRP3 
expression in lung tissues of different groups of rats. B. Quantification of NLRP3 expression. **P < 0.01, ***P < 0.001.
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the number of inflammatory cells in BALF [47, 48]. In 
this study, we found the contents of proinflammatory 
factors (TNF-α, IL-6, and IL-1β) in lung tissues and 
BALF of LPS-treated rats were significantly increased, 
while their contents were decreased by 6-Gingerol 
addition. Furthermore, 6-Gingerol treatment could 
reduce the counts of inflammatory cells (eosinophil, 
macrophage, neutrophil, and lymphocyte) in BALF. 
These findings suggested that 6-Gingerol repressed 
inflammatory reactions in LPS-induced ALI. Additio-
nally, the NLRP3 inflammasome also plays a crucial 
role in the process of inflammatory reactions [49, 50]. 
The NLRP3 inflammasome is the core of inflammatory 
response, and it can modulate caspase-1 activation 
and promote the secretion of cytokine precursors 
pro-IL-1β, thereby causing an inflammatory response 
[51]. In this study, we observed that NLRP3, ASC, 
and caspase-1 levels induced by LPS were reduced 
by 6-Gingerol administration. It has been reported that 
6-Gingerol represses the release of TNF-α and IL-6 in 
LPS-induced astroglioma cells [52]. Also, 6-Gingerol 
suppresses cerebral ischemia/reperfusion injury by 
repressing NLRP3 inflammasome [53]. 6-Gingerol re-
lieves renal damage in streptozotocin-induced diabetic 
rats by regulating oxidative stress and inflammation 
[54]. These studies further support our findings that 

6-Gingerol alleviated ALI by inhibiting inflammatory 
reaction via NLRP3 inflammasome.

Oxidative stress also plays a key role in ALI deve-
lopment [38, 55]. ROS attack different organs, leading 
to lipid peroxidation, mutations in the DNA matations, 
and protein inactivation [56]. ROS overproduction 
exacerbates the development of pulmonary edema and 
infiltration of inflammatory cells [57]. In this study, we 
found that the content of the lipid peroxidative marker 
MDA was elevated in lung tissues of LPS-treated rats, 
while 6-Gingerol treatment decreased its content. The 
contents of antioxidants GSH and SOD reduced by 
LPS stimulation were increased by 6-Gingerol tre-
atment. These results proved the antioxidant activity 
of 6-Gingerol against LPS-induced ALI. Previously, 
6-Gingerol is reported to repress liver injury by inhi-
biting oxidative stress [58]. 6-Gingerol relieves colonic 
injury via repressing oxidative stress in mice [59].

The Nrf2 is responsible for the regulation of the 
level of antioxidant proteins, such as HO-1 [60, 61]. 
It has been confirmed to be involved in regulating the 
progression of lung injury [37]. Accumulating eviden-
ce has confirmed that the Nrf2/HO-1 axis participates 
in the progression of the different diseases [62–64]. 
For example, suppression of the Nrf2/HO-1 axis causes 
the increased activation of NLRP3 inflammasome in 
osteoarthritis [65]. Furthermore, etomidate relieves 

Figure 8. Schematic overview of 6-Gingerol regulating LPS-induced acute lung injury (ALI). 6-Gingerol administration repressed 
LPS-induced activation of NLRP3 inflammasome, thereby repressing inflammation in ALI. Meanwhile, 6-Gingerol activates the 
Nrf2/HO-1 signal axis to repress NLRP3 inflammasome, the activities of MPO and MAD, and promote SOD activity,which results 
in the repression of oxidative responses in ALI.
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hyperoxia-induced ALI in mice by modulating the 
Nrf2/HO-1 axis [66]. In this study, we observed 
that Nrf2 and HO-1 levels that were reduced in 
lung tissues of LPS-induced rats were recovered by 
6-Gingerol administration. Moreover, we also found 
that ML385 (Nrf2 inhibitor) could counteract the 
protective effect of 6-Gingerol against oxidative stress 
and inflammatory response in the lungs of LPS-indu-
ced rats. Previously, 6-Gingerol was demonstrated 
to repress sepsis-induced liver injury by activating 
Nrf2 pathway [31]. In this study, we confirmed that 
6-Gingerol activated Nrf2/HO-1 axis in LPS-induced 
ALI rats for the first time.

Overall, this study demonstrates that 6-Gingerol 
attenuates sepsis-induced ALI by suppressing oxida-
tive stress and inflammatory reaction by inhibiting 
NLRP3 inflammasome via the Nrf2/HO-1 axis (Fig. 
6). These findings may provide a new therapeutic stra-
tegy for ALI. However, the limitation of this paper is 
that there is no in-depth study on the molecular mecha-
nism of how 6-Gingerol regulates the Nrf2/HO-1 axis, 
which will become the focus of our further research.
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