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Abstract
Introduction. Glioma is characterized by hypoxia that activates the hypoxia inducible factor (HIF) pathway and 
controls a myriad of genes that drive cancer progression. HIF-1α promotes GLI1 transferring to the nucleus by 
activating the hedgehog pathway under hypoxic conditions. However, their mechanisms in glioma cells under 
hypoxia remain unknown.
Material and methods. Human glioma cell lines (LN229 and LN18) were transfected with HIF-1α or GLI1-spe-
cific short hairpin RNAs (shRNAs) and cultured under normoxic or hypoxic conditions. The protein levels of 
HIF-1α, GLI1, and epithelial-mesenchymal transition (EMT) markers including E-cadherin and vimentin were 
measured by Western blot analysis. RT-qPCR analysis was performed for the detection of HIF-1α and GLI1 
mRNA expression. Cell migratory and invasive capacities were evaluated by wound healing and Transwell 
assays, respectively.
Results. Hypoxia blocked the breakdown of the HIF-1α protein and upregulated GLI1 expression in glioma 
cells. Downregulation of HIF-1α expression inhibited hypoxia-induced cell migration and invasion, as well as 
reversed the effects of hypoxia on GLI1, E-cadherin, and vimentin expression in LN229 and LN18 cells. Depletion 
of GLI1 inhibited glioma cell migration and invasion induced by hypoxia. Silenced GLI1 did not affect HIF-1α 
expression but completely offset hypoxia-regulated expression of E-cadherin and vimentin in glioma cells.
Conclusions. GLI1 is involved in HIF-1α-induced migration, invasion, and EMT in glioma cells, thus revealing a 
novel molecular mechanism for glioma research. (Folia Histochemica et Cytobiologica 2022, Vol. 60, No. 2, 156–166)
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Introduction

Glioma is one of the most common primary intracra-
nial tumors, which represents 81% of malignant brain 
tumors in humans [1]. The most important feature of 
glioma is its extensive aggressiveness represented by 
invasion and migration, which are also the main cause 
of therapeutic failure and recurrence [2]. Glioma cells 
with widespread invasiveness always respond poorly 
to treatment since they destroy the function of normal 
brain parenchyma [3]. Patients afflicted with glioma 

have unfavorable prognoses although great advances 
have been made in the treatment of this disease with 
chemotherapy and radiation following surgical re-
section [4–6]. Identifying the underlying mechanisms 
regarding the invasiveness of glioma is significant to 
designing effective therapeutic interventions.

Ever-increasing evidence has indicated that the 
tumor microenvironment (TME) equal importance to 
the intrinsic properties of tumor cells in determining 
tumor invasiveness. As one of the basic features of 
TME, hypoxia is well-known as an important stimu-
lator of tumor invasion, metastasis, and angiogenesis 
[7–9]. In recent years, hypoxia has been validated to 
stimulate cell migration and invasion in tumors includ-
ing glioma, but the mechanism is still not well studied 
[10]. Hypoxia inducible factor 1 (HIF-1) consists of 
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HIF-1α and HIF-1β subunits, which can be activated 
by hypoxic conditions. Under normoxic conditions, 
HIF-1α subunit is degraded rapidly, whereas under 
hypoxic conditions, HIF-1α tends to be stabilized 
[11]. It has been shown that hypoxia-activated HIF-
1α can elevate the expression of related genes such 
as vascular endothelial growth factor (VEGF) and 
matrix metalloproteinases (MMPs) in glioblastoma 
cells, thereby regulating cell migration, invasion, and 
angiogenesis [12]. Epithelial-mesenchymal transition 
(EMT) is crucial for cancer metastasis, which can be 
promoted by the tumor microenvironment. During 
the EMT process, E-cadherin expression is downreg-
ulated, and vimentin and fibronectin expression is up-
regulated [13–16]. Previous studies revealed that the 
EMT, invasion, and proliferation of cancer cells can 
be directly modulated by HIF-1α [17–19]. Moreover, 
they can be promoted by HIF-1α through crosstalking 
with some signal pathways, such as Wnt/β-catenin, 
Hedgehog (Hh), and NF-κB [20–22]. However, the 
molecular mechanisms of HIF-1α-induced glioma cell 
migration, invasion, and EMT under hypoxia have not 
been fully elucidated.

Glioma-associated oncogene homolog 1 (GLI1) is 
a transcriptional factor of the Hh pathway, facilitating 
EMT and related to proliferation and invasion of 
multiple tumor cells. Several reports show that GLI1 
promotes the proliferative and invasive abilities of 
glioma cells and exerts effects on glioma cell apoptosis 
by the regulation of Cyclin D1 and Bcl-2 expression 
[23, 24]. GLI1 expression has been found to be upreg-
ulated in breast cancers and is related to breast cancer 
aggressiveness [25]. Of note, it has been found that 
EMT can be induced by hypoxia that promotes the 
invasiveness of pancreatic cancer cells via elevation 
of GLI1 expression [26]. Nonetheless, the functions 
of GLI1 in hypoxia-induced migration, invasion, and 
EMT of glioma cells as well as its relationship with 
HIF-1α have not been elucidated.

In our current study, an in vitro hypoxia culture 
model was established to make a hypoxic microenvi-
ronment of human glioma LN229 and LN18 cells. We 
hypothesized that GLI1 is related to HIF-1α-induced 
migration, invasion, and EMT in glioma cells and we 
focused on the biological functions and the mecha- 
nisms of HIF-1α and GLI1 in hypoxia-stimulated 
glioma cells, which might provide a novel therapeutic 
target for the treatment of glioma patients.

Material and methods

Cell culture. Human glioma cell lines (LN229 and LN18) 
were purchased from American Type Culture Collection 
(ATCC; Rockville, MD, USA) and were cultured in Dul-

becco’s Modified Eagle’s Medium (DMEM; Catalog No. 
30-2002, ATCC) containing 5% fetal bovine serum (FBS; 
Catalog No. 30–2020, ATCC). Normoxic condition for cell 
incubation was 37°C with 5% CO2. To assess the influence 
of hypoxia, LN229 and LN18 cells were cultured under 
normoxic conditions until 65–70% confluence and were 
then cultured under hypoxic conditions with consistent 3% 
O2 for 2 days.

Cell transfection. The shRNA vector pGPU6/GFP/Neo-
shRNA-HIF-1α (sh-HIF-1α; GenePharma, Shanghai, 
China) or pGPU6/GFP/Neo-shRNA-GLI1 (sh-GLI1; Ge-
nePharma) was used to transfect cells to silence HIF-1α or 
GLI1. Plasmids (0.6 µg) in the shRNA and control groups 
were diluted in 250 µL Opti-Mem medium (Thermo Fisher 
Scientific, Inc.) in one tube. Similarly, 5 µL Lipofectamine 
2000 (Invitrogen; Thermo Fisher Scientific, Inc.) was dilut-
ed in 250 µL Opti-MEM in another tube. The contents of 
the two tubes were mixed and incubated for 5 min at room 
temperature (RT). The mixture was subsequently added 
to the cells in 6-well plates and the plates were cultured at 
37°C. After 24 h, the medium was replaced with DMEM 
containing 10% FBS. The cells were collected for subsequent 
experimentation following 48 h of further culture. Trans-
fection efficiency was determined by counting the number 
of GFP-positive cells under a fluorescent microscope. 
Empty vector pGPU6/GFP/Neo-shRNA (sh-NC) acted as 
negative control. The sequences for shRNA are presented 
as follows: HIF-1α: 5′-UUUAAUUCAUCAGUGGU-
GGTT-3′, 5′-CCACCACUGAUGAAUUAAATT-3′; 
GLI1 5′-AUUACACACAAGCUGAGCCTT-3′, 5′-GG-
CUCAGCUUGUGUGUAAUTT-3′; sh-NC 5′-ACGUGA-
CACGUUCGGAGAATT-3′, 5′-UUCUCCGAACGUGU-
CACGUTT-3′.

Reverse transcription quantitative polymerase chain 
reaction (RT-qPCR) analysis. TRIzol Reagent (B0201, 
HaiGene, Ha’erbin, China) was used to extract total RNA 
from LN229 and LN18 cells when cells reached 90% con-
fluence. Reverse transcription of mRNA into cDNA was 
performed using a PrimeScript RT reagent Kit (DRR037A, 
TaKaRa, Dalian, China). According to the product man-
uals, RT-qPCR was conducted to determine the relative 
levels of mRNA transcripts using SYBR Green Master 
Mix (Q131-02/03, Vazyme, Nanjing, China) on a 7500 
Realtime PCR System (4351151, Thermo Fisher, USA). 
The sequences of primers are shown as below: GLI1 for-
ward 5′-GGGATGATCCCACATCCTCAGTC-3′, reverse 
5′-CTGGAGCAGCCCCCCCAGT-3′; HIF-1α forward 
5′-CGCAAGTCCTCAAAGCACAGTTAC-3′, reverse 
5′-GCAGTGGTAGTGGTGGCATTAGC-3′; 18S RNA 
forward 5′-CAGATCAAAACCAACCCG-3′, reverse 
5′-GCCCTATCAACTTTCGATGG-3′. The 2-ΔΔCt method 
was used for the calculation of the relative expression of 
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target gene mRNA transcripts with 18S RNA as a house-
keeping gene [27].

Western blot analysis. LN229 and LN18 cells (1 × 106) 
under hypoxic or normoxic conditions were lysed in RIPA 
lysis buffer (CST Biological Reagents Co., Ltd.) containing 
phenylmethylsulphonyl fluoride (Thermo Fisher Scientific, 
Inc.), protease inhibitor cocktail (TransGen Biotech Co., 
Ltd.) and phosphatase inhibitor cocktail (TransGen Biotech 
Co., Ltd.). The protein lysates were centrifuged at 15,000 g 
for 15 min at 4°C. The protein concentration was measured 
by a Pierce BCA protein assay kit (Pierce; Thermo Fisher 
Scientific, Inc.). Protein samples (50 µg/lane) were separat-
ed by 10% SDS-PAGE and were transferred onto PVDF 
membranes (FFP24, Beyotime, Shanghai, China). The mem-
branes were blocked with 5% skimmed milk powder, fol-
lowed by incubation with primary antibodies including rabbit 
anti-HIF-1α (ab179483; 1:1000), anti-GLI1 (ab134906; 
1:1000), anti-E-cadherin (ab40772; 1:10000), anti-Vimentin 
(ab92547; 1:1000), and anti-GAPDH (ab181602; 1:10000) 
at 4°C overnight. After washing with phosphate-buffered 
saline (PBS), the membranes were incubated with HRP-con-
jugated anti-rabbit secondary (ab205718; 1:5000) for 1.5 h 
at RT. Protein bands were visualized using an enhanced 
chemiluminescence detection system (EMD Millipore). 
Densitometric analysis was performed using ImageJ 1.48 
software. GAPDH acted as a reference protein.

Wound healing assay. The migratory ability of cells was eval-
uated by wound healing assay as previously described [28]. 
LN229 and LN18 cells under hypoxic or normoxic conditions 
were seeded in 6-well plates and cultured in DMEM with 
10% FBS to 80% confluence. A 200-µL pipette tip was ap-
plied to make a scratch on the cell monolayer. After washing 
with PBS, cells ere cultured in serum-free DMEM at 37°C 
and then imaged at 0 h and 24 h using a light microscope 
(magnification 100×) in five randomly selected fields of 
view. The cell migratory distance into the wound area was 
calculated using ImageJ 1.48 software.

Transwell assay. The invasive ability of glioma cells under 
hypoxic or normoxic conditions was assessed using invasion 
assays in a Millicell invasion chamber (MCHT06H48, Merck, 
USA). Briefly, 3 × 104 glioma cells in serum-free DMEM 
were plated on the membrane pre-coated with Matrigel 
(wlb1062, BD, Shanghai, China) in the upper chamber. 
DMEM supplemented with 5% FBS was added to the lower 
chamber as a chemoattractant. After incubation for 24 h at 
37°C, non-invaded cells on the upper face of the membrane 
were removed with a cotton swab. Then, 0.1% crystal violet 
was used to stain the cells invaded to the lower surface. The 
images in five randomly selected fields were captured by  
a microscope at a magnification 100× and the number of 
invaded cells was calculated using ImageJ 1.48 software.

Statistical analysis. The data were analyzed using SPSS18.0 
software (SPSS, Chicago, IL, USA) and are expressed as 
means ± standard errors. Each experiment was repeated 
at least three times. For comparison of the differences 
between the two groups, student’s t-test was adopted. One-
way ANOVA followed by Tukey’s multiple comparison test 
was utilized for the analysis of statistical differences among 
multiple groups. P value less than 0.05 was considered sta-
tistically significant.

Results

Effects of hypoxia on HIF-1α and GLI1 expression 
in glioma cells
HIF-1α, which can be induced by hypoxia, crosstalks 
with other signaling pathways and activates the NF-
κB pathway to modulate the metastasis, apoptosis, 
and proliferation of cancer cells [29]. It has been 
revealed by a previous report that the HIF-1α and 
GLI1 expression can be elevated by hypoxia in pan-
creatic cancer cells and breast cancer cells [26, 30]. 
To probe into the function of hypoxia in modulating 
the metastasis of glioma cells, LN229 and LN18 cells 
were cultured under hypoxic or normoxic conditions 
for 48 h and the expression levels of HIF-1α and GLI1 
were determined using Western blot and RT-qPCR 
analysis. As a result, the protein levels of HIF-1α 
and GLI1 were higher in hypoxia-cultured cells than 
in normoxia-cultured cells (Fig. 1A). Meanwhile, 
HIF-1α mRNA expression in LN229 and LN18 cells 
under hypoxic and normoxic conditions showed no 
significant change (Fig. 1B). Compared with the cells 
cultured under normoxic conditions, LN229 and LN18 
cells under hypoxic conditions exhibited high levels 
of GLI1 mRNA expression (Fig. 1C). Thus, hypoxia 
blocked the breakdown of the HIF-1α protein inside 
the cell and promoted GLI1 expression in glioma cells.

Silencing of HIF-1α inhibits hypoxia-induced  
glioma cell migration and invasion
To explore the biological function of HIF-1α in gli-
oma cells, LN229 and LN18 cells were transfected 
with HIF-1α-specific shRNA (sh-HIF-1α) or control 
shRNA (sh-NC). RT-qPCR analysis showed signif-
icantly reduced HIF-1α expression in LN229 and 
LN18 cells transfected with sh-HIF-1α compared with 
sh-NC (Fig. 2A). Successful knockdown efficiency 
of HIF-1α was also demonstrated by Western blot 
analysis showing that the protein level of HIF-1α was 
downregulated by sh-HIF-1α in LN229 and LN18 
cells (Fig. 2B). Wound healing and Transwell assays 
showed that glioma cell migration and invasion in the 
hypoxia group were significantly increased compared 
with the normoxia group. Downregulation of HIF-1α 
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had no effects on glioma cell migration and invasion 
under normoxic conditions compared with control. 
However, under hypoxic conditions, the migration and 
invasion of glioma cells were significantly decreased 
in the HIF-1α knockdown group compared with the 
control group (Fig. 2C, D). These results suggested 
that HIF-1α knockdown inhibited hypoxia-induced 
glioma cell migration and invasion.

HIF-1α knockdown reverses hypoxia-promoted 
GLI1 protein level and EMT
To investigate the impact of HIF-1α on GLI1 pro-
gression and EMT process in normoxia- and hypox-
ia-cultured glioma cells, Western blot analysis was 
carried out. In LN229 and LN18 cells transfected with 
sh-NC, the protein levels of GLI1 and vimentin were 
increased whereas the protein levels of E-cadherin 
were reduced by hypoxia compared with normoxia 
induction. No significant change was observed in sh-
HIF-1α-transfected cells under normoxic conditions. 
However, silencing of HIF-1α reversed hypoxia-in-
duced promotion of the protein levels of GLI1 and 
Vimentin as well as the suppression of the protein 
levels of E-cadherin (Fig. 3A, B). Overall, HIF-1α 
knockdown reversed the GLI1 levels and EMT in-
duced by hypoxia. 

Silenced GLI1 suppresses hypoxia-induced glioma 
cell migration and invasion
The influence of GLI1 on hypoxia-induced migration 
and invasion was further examined. GLI1 knockdown 
efficiency was determined by RT-qPCR and West-
ern blot analysis, and the results showed that GLI1 
expression levels were successfully downregulated 
by sh-GLI1 transfection in glioma cells (Fig. 4A, B). 
The migratory and invasive capacities of glioma cells 

were then measured by wound healing and Transwell 
assays. The results showed that, under either hypoxic 
or normoxic conditions, GLI1 downregulation signifi- 
cantly inhibited the migration and invasion of glioma 
cells compared with the control (Fig. 4C, D), show-
ing that silencing of GLI1 inhibited hypoxia-evoked 
migration and invasion of glioma cells.

Silenced GLI1 reverses hypoxia-promoted EMT
We further explored the effects of GLI1 on the hy-
poxia-induced HIF-1α expression and EMT process. 
After transfection of LN229 and LN18 cells with sh-
GLI1 or sh-NC under hypoxic or normoxic conditions, 
Western blot analysis was conducted for the exami-
nation of the protein levels of GLI1, E-cadherin, and 
vimentin. There was an increase in the protein levels 
of HIF-1α and vimentin and a decrease in the protein 
levels of E-cadherin in sh-NC- or sh-GLI1-transfected 
cells cultured under hypoxic conditions relative to 
normoxic conditions. Compared with normoxia- or 
hypoxia-cultured cells with the transfection of sh-NC, 
GLI1 knockdown significantly increased E-cadherin 
protein expression and decreased vimentin protein 
expression but had no effects on HIF-1α protein ex-
pression (Fig. 5A, B). Therefore, GLI1 knockdown 
mitigated hypoxia-induced EMT process in glioma 
cells.

Discussion

EMT exerts a crucial role in the migration, invasion, 
and metastasis of cancers [31]. Previous literature 
manifested that hypoxia contributes to the EMT pro-
cess via upregulation of HIF-1α expression and upreg-
ulation of other transcription factors associated with 
EMT, such as SNAIL [32, 33]. In addition, it has been 

Figure 1. Effects of hypoxia on HIF-1α and GLI1 expression in glioma cells. LN229 and LN18 cells were cultured in hypoxic or 
normoxic conditions for 48 h and subjected to Western blot (A) and RT-qPCR analysis (B, C) for the measurements of the protein 
and mRNA levels of HIF-1α and GLI1. All bars were normalized to normoxia control (= 1). ***P < 0.001.
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Figure 2. Silencing of HIF-1α inhibits hypoxia-induced glioma cell migration and invasion. Glioma cells were transfected with 
sh-NC or sh-HIF-1α for 48 h; A, B. HIF-1α knockdown efficiency examined by RT-qPCR and Western blot analysis. C. Effects of 
silenced HIF-1α on the migration of glioma cells cultured under hypoxic or normoxic conditions examined by wound healing assay 
D. Transwell assays of cell invasion were performed under hypoxic or normoxic conditions. ***P < 0.001.
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discovered that hypoxia induces HIF-1α to increase 
the expression level of GLI1 and promote EMT and 
invasion of breast cancer cells and pancreatic cancer 
cells [26, 30]. In our current investigation, we probed 
into the functions of GLI1 and HIF-1α in hypoxia-in-
duced cell migration, invasion, and EMT in glioma 
as well as the relationship between GLI1 and HIF-1α 
expression under hypoxic conditions. The obtained 
results showed that hypoxia strengthened the protein 
expression of both GLI1 and HIF-1α in glioma cells. 
Suppression of HIF-1α abolished hypoxia-promoted 
migration, invasion, GLI1 expression, and EMT of 
glioma cells. Additionally, depletion of GLI1 sig-
nificantly mitigated hypoxia-induced-promotion of 
migration, invasion, and EMT. These novel findings 
indicate that GLI1 is involved in hypoxia-promoted 
migration, invasion, and EMT of glioma cells and 
HIF-1α promotes hypoxia-elevated GLI1 expression 
to accelerate cell migration, invasion, and EMT in 

glioma. These findings imply that GLI1 might become 
a novel target to intervene in glioma metastasis.

HIF-1 is composed of two subunits, one of which 
is HIF-1α, which is sensitive to hypoxia and has two 
O2-dependent modifications at the posttranslational 
level [34, 35]. Under normoxic conditions, HIF-1α 
is hydroxylated on proline residues by O2 sensitive 
prolyl hydroxylase domain (PHD) proteins [36, 37]. 
The hydroxylated HIF-1α is then recognized by the 
von Hippel–Lindau (VHL) protein for subsequent 
ubiquitination and degradation [38]. In contrast, 
under hypoxic conditions, the hydroxylation of HIF-
1α is reduced due to the decreased activity of PHDs 
[39], resulting in HIF-1α stabilization and nuclear 
translocation. Interestingly, our study manifested 
that the protein levels of HIF-1α but not the mRNA 
levels of HIF-1α were elevated by hypoxia in glioma 
cells. This suggests that hypoxia blocks the degrada-
tion of the HIF-1α protein and increases the lifespan 
of the HIF-1α protein in glioma cells and thereby 

Figure 3. HIF-1α knockdown reverses hypoxia-promoted GLI1 protein level and EMT; A, B. Western blot analysis of the protein 
levels of GLI1, E-cadherin, and vimentin in sh-NC- or sh-HIF-1α-transfected glioma cells under hypoxic or normoxic conditions. 
All bars were normalized to normoxia control (= 1). **P < 0.01, ***P < 0.001.
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Figure 4. Silenced GLI1 suppresses hypoxia-induced glioma cell migration and invasion. Glioma cells were transfected with sh-NC 
or sh-GLI1 for 48 h; A. RT-qPCR analysis of GLI1 mRNA expression in glioma cells with the transfection of sh-NC or sh-GLI1;  
B. Western blot analysis of GLI1 protein expression in glioma cells transfected with sh-NC or sh-GLI1; C. Effects of silenced GLI1 
on the migration of glioma cells cultured under hypoxic or normoxic conditions measured by wound healing assay; D. Effects of GLI1 
depletion on glioma cell invasion under hypoxic or normoxic conditions measured by Transwell assays.**P < 0.01, ***P < 0.001.
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improving the stability of HIF-1α. As demonstrated 
by a previous study showing that HIF-1α is a pivotal 
modulator of the EMT process [40], which suggests 
that hypoxia induces HIF-1α expression, which in turn 
induces SNAIL expression, leading to downregulated 
E-cadherin expression and upregulated vimentin ex-
pression in glioma cells. Our results manifested that 
hypoxia contributed to the migration, invasion, and 
EMT of glioma cells. Thus, HIF-1α may be a target 
for designing therapies to prevent and intervene in 
the metastasis of glioma.

It has been shown by previous studies that HIF-
1α crosstalks with the NF-κB and Notch pathways to 
promote the EMT process of cancer cells [41, 42]. 
The classical Hedgehog (Hh) signaling is stimulated 
by hypoxia via upregulation of HIF-1α expression 
both in vivo and in vitro [43, 44]. Previous studies have 
revealed that HIF-1α crosstalks with the Hh signaling 
to enhance hypoxia-promoted cell invasion and EMT 
in breast cancer and pancreatic cancer [26, 30]. Our in-
vestigation shows that hypoxia blocked the breakdown 
of the HIF-1α protein and increased the expression 

of GLI1 to facilitate the migration, invasion, and the 
EMT of glioma cells. GLI1 plays an effector role of 
the Hh pathway, induction of which can occur inde-
pendently of Smoothened modulation in multiple 
tumors such as glioma, basal cell carcinoma, prostate 
cancer, and medulloblastoma [45, 46]. Previous studies 
have illuminated that GLI1 displays a high expression 
level in breast cancer and it correlates with the adverse 
prognosis of breast cancer patients [47]. Knockdown 
of GLI1 eliminated hypoxia-facilitated invasion and 
EMT process of breast cancer cells [30]. Moreover, 
GANT61, a GLI inhibitor, potentiates the cytotoxic 
effect of temozolomide, which is a first-line chemo-
therapy treatment for glioma, thus becoming a prom-
ising in vitro strategy for glioma treatment [48, 49].  
The inhibitor of the Hh pathway, cyclopamine, could 
potentiate the temozolomide effect in cancer stem-
like cells and glioma cell lines in vitro [50]. Studies 
showed that arsenic trioxide (ATO)-mediated Hh/
Notch inhibition could be used in the clinic as it 
represents a promising targeted therapy approach 
for the elimination of glioma stem-like cells [51]. 

Figure 5. Silenced GLI1 reverses hypoxia-promoted EMT. (A-B). LN229 and LN18 cells transfected with sh-NC or sh-GLI1 were 
cultured under hypoxic or normoxic conditions. Protein levels of HIF-1α, E-cadherin, and vimentin were examined by Western blot 
analysis. All bars were normalized to normoxia control (= 1). **P < 0.01, ***P < 0.001.
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These studies suggest that inhibition of GLI1 or the 
Hh pathway may be a possible approach for treating 
glioma. Consistently, our present investigation man-
ifested that inhibition of GLI1 significantly abolished 
hypoxia-enhanced migration, invasion, and EMT of 
glioma cells in vitro. Given that the expression of vi- 
mentin and E-cadherin can be modulated by many 
chemokines and transcription factors, it is possible 
that GLI1 may indirectly modulate their expression 
to contribute to the migration, invasion, and EMT 
of glioma cells. Further explorations regarding how 
GLI1 modulates the migration, invasion, and EMT 
of glioma cells and how HIF-1α signaling crosstalks 
with the Hh pathway to upregulate the expression of 
GLI1 are required in the future.

In conclusion, we found that hypoxia blocks 
the degradation of the HIF-1α protein and GLI1 
expression in glioma cells. Silencing of HIF-1α or 
GLI1 eliminated hypoxia-enhanced GLI1 expression, 
migration, invasion and EMT of glioma cells. Knock-
down of GLI1 has no effect on HIF-1α expression but 
significantly mitigates the hypoxia-enhanced EMT 
and invasion of glioma cells. These findings might 
offer a beneficial revelation for probing into other 
potential targets or biomarkers for the treatment of 
glioma patients.
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