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Abstract
Introduction. In osteoporosis field, it had been clinically well established a given relationship between bone formation 
and lipid accumulation. Although numerous molecules had been well documented for adipogenesis and osteoblastogen-
esis (adipo-osteoblastogenesis), the reciprocal transcriptional regulation still remains to be explored. 
Material and methods. Here, we tried to identify the common candidate genes of adipocyte/osteoblastocyte differ-
entiation at 3, 5, and 7 days using human mesenchymal stem cells (hMSCs) via RNA-Seq technique. By using RNA 
interference (RNAi), we further confirmed the function of candidate genes during adipo-osteoblastogenesis through 
Oil Red/Alizarin Red/alkaline phosphatase (ALPL) staining and qRT-PCR (quantitative real-time PCR).
Results. The identified 275 significantly differentially expressed genes (DEGs), especially with the down-regulated genes 
most prevalent and PI3K-AKT signaling pathway mostly enriched, were simultaneously shared by both differentiation 
events. Using lentiviral system, we further confirmed that ANKRD1 (ankyrin repeat domain 1) promoted adipogenesis 
and inhibited osteoblastogenesis via RNA interference (RNAi), and IGF1 (insulin like growth factor 1) simultaneously 
facilitated adipo-osteoblastogenesis on the base of gene expression of biomarkers and cellular phenotype property. 
Conclusion. This study would provide the potential molecular switches to control the adipocyte/osteoblastocyte balance 
or hMSCs fate choices and clues to screen the study and therapy targets of metabolic bone disease osteoporosis. (Folia 
Histochemica et Cytobiologica 2022, Vol. 60, No. 2, 179–190)
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bone metabolic diseases involving with an imbalance 
of the two cell lineages [2]. Affirmatively, it had been 
clinically well established that a decrease of bone 
volume was involved with osteoporosis accompanied 
by an increase of marrow adipose tissue [3].

In recent years, the study of hMSCs differentiation 
had received robust attention due to bone metabolic 
diseases. The balance of adipo-osteoblastogenesis 
from hMSCs was controlled by key genes [4–8], reg-
ulators [9–12], signaling pathways [13–15], circulating 
cytokines [16], and stimuli [17–19]. Of course, the 
quest for adipo-osteoblastogenic differentiation was 
also constantly elucidated in multipotent stem cells 
via transcriptomic technique [20–22]. However, the 
co-regulation of adipo-osteoblastogenesis from hM-
SCs still remained controversial evidence. 

In this study, we carried out RNA deep sequencing 
to identify candidate genes simultaneously shared 

Introduction

Adipogenesis and osteoblastogenesis (adipo-osteo-
blastogenesis) from the multipotent human mesen-
chymal stem cells (hMSCs) were closely correlated 
with the events facilitating cell fate to one of adipocyte 
or osteoblastocyte while repressing the other [1]. 
Plasticity between adipocytes and osteoblastocytes 
sharing a common ancestor in adult bone marrow was 
important for the etiology of osteoporosis and other 
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by adipo-osteoblastogenesis at 3, 5, and 7 days from 
hMSCs. Interestingly, 275 significant DEGs, espe-
cially with the down-regulated genes most prevalent, 
were identified as candidate genes for the two differ-
entiation lineages. We further investigated the gene 
function of two candidate genes, ANKRD1 and IGF1, 
during two differentiation events using a lentiviral 
system. This remarkable advance in the identification 
of candidate genes co-regulating adipo-osteoblas-
togenesis would provide the potential molecular 
switches to control the adipocyte/osteoblastocyte 
balance or hMSCs fate choices and clues to screen 
the key study and therapy factors of metabolic bone 
disease osteoporosis.

Material and methods

hMSCs isolation, culture, and differentiation. Identified 
in our previous study [23], the hMSCs were isolated from 
a 21-year-old non-osteoporotic healthy male volunteer 
recruited by Affiliated Hospital of Jiujiang University, Jiu-
jiang, China, following the protocols with slight modification 
[24–25]. Adipogenic differentiation assays were performed 
according to the documented method with slight modifica-
tions [26]. In a Model 3100 series Forma Series II Water 
Jacket CO2 incubator (Thermo Fisher Scientific, Ohio, 
United States), the hMSCs were cultured in 5.0 mL hMSCs 
Basal Medium (Cyagen bioscience, Inc., Santa Clara, CA, 
USA) containing FBS (fetal bovine serum), L-glutamine, 
and penicillin-streptomycin in 25 cm2 flasks (Corning In-
corporated, Corning, New York, NY, USA) at 37°C with 
5% CO2 and 95% humidity. Adipogenic differentiation 
process was inspired using adipogenic cocktails with 1.0 μM 
dexamethasone, 0.5 mM 3-isobutyl-1-methyl-xanthine, and 
0.01 mg/mL insulin (Sigma, St. Louis, Mo, USA) in Gibco 
MEMα (Minimum Essential Medium Alpha) every three 
days after hMSCs were expanded to passage 6 with 80–90% 
of the final confluence (approximately at a density of  
5.0 × 104 cells/cm2). The adipogenic potential was de-
termined through staining assays of Oil Red O (Cyagen 
bioscience, Inc.) [27, 28].
For osteoblastogenic differentiations, passage 6 of the hM-
SCs were seeded at 108 cells/cm2 and cultured to 70% conflu-
ence in hMSCs Basal Medium (Cyagen bioscience, Inc.), and 
then induced with osteoblastogenic differentiation medium 
supplemented with FBS, β-glycerophosphate, L-glutamine, 
ascorbic acid, dexamethasone, penicillin and streptomycin 
purchased from Sigma (St. Louis, MO, USA) every three 
days. Here, osteoblastogenic potential was determined via 
Alizarin Red staining and alkaline phosphatase (ALPL) 
staining and enzyme activity determination. Calcium-bound 
Alizarin Red for osteoblastocytes was eluted after incubated 
with 100 mM cetylpyridinium chloride for 1 h to quantify 
the matrix mineralization and measured at a wavelength of 

570 nm [29]. For ALPL staining, osteoblastocytes in 6-well 
plate at 0, 3, 5, and 7 days were stained using the ALPL 
staining kit (Beijing ComWin Biotech Co., Ltd., Beijing, 
China) at room temperature for 10 min after fixed in cold 
ethanol for 10 min [30]. And then we captured the images 
under a microscope (IX73, Olympus, Tokyo, Japan). ALPL 
enzyme activity was determined using the ALPL assay kit 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, Chi-
na) after lysing osteoblastocytes using 1.0% Triton-X100 for 
40 min on ice. The optical density value was measured at 
a wavelength of 520 nm.

RNA sequencing and data analysis. The freshly harvested 
cells of adipo-osteoblastogenesis were immediately used 
to isolate the total RNA using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) following the manufacturer’s instruc-
tions. The obtained RNA purified with the NucleoSpin 
RNA clean-up kit (Macherey-Nagel, Düren, Germany) was 
qualified using Bioanalyzer 2200 (Aligent Technologies, 
Santa Clara, CA, USA). Except for the centrifugation steps 
at 4°C, the other whole isolation procedure was carried out 
on ice under a vent. The total RNA was kept snap-frozen 
at –80°C for the downstream applications. 
RNA-Seq assays were performed by Shanghai NovelBio 
Co., Ltd., China. The rRNA depletion library of RIN (RNA 
integrity number) > 6.0 was constructed using NEBNext® 
UltraTM Directional RNA Library Prep kit according to 
the manufacturer’s instructions. The whole transcriptome 
sequencing was performed on HiseqTM Sequencer after 
filtering the adaptor sequences (reads with > 5% ambiguous 
bases) and low-quality reads (more than 20 percent of bases 
with qualities of < 20). HTSeq was used to calculate the gene 
count of mRNA [31]. DAVID (Database for Annotation, 
Visualization, and Integrated Discovery) and IPA (Ingenu-
ity pathway analysis) were separately used to analyze gene 
ontology (GO) and KEGG pathway with p-value < 0.05.
Here, differentially expressed genes (DEGs) were defined 
as the threshold of an absolute value of the log2 ratio ≥ 2.0, 
and the significance threshold for the DEGs was set with 
log2 ratio ≥ 2.0 and a false discovery rate (FDR) < 0.001.

qRT-PCR. Quantitative real-time PCR (qRT-PCR) on 
a 7500 Real Time PCR System (ABI, Foster City, CA, USA) 
was employed to determine the relative gene expression 
level. The oligonucleotide primers synthesized by Gener-
ay Biotech Co., Ltd (Shanghai, China) in this study were 
listed in Table 1. Approximately 2.0 μg of total RNA was 
converted to cDNA using the ReverTra Ace qPCR RT kit 
(Torobo, Osaka, Japan). With the SYBR Green Realtime 
PCR Master Mix (Torobo, Osaka, Japan), qRT-PCR was 
carried out at 94°C for 5 min, and 52°C for 34 sec, and final 
extension at 72°C with 30 cycles. The gene ACTB (actin 
beta) was used as the internal control [32]. All the assays 
were performed in triplicate. 
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Cell transfection. ANKRD1 and IGF1 were inversely and 
differentially expressed during adipo-osteoblastogenesis, 
so we tentatively selected ANKRD1 and IGF1 to inves-
tigate gene function during adipo-osteoblastogenesis 
through RNA interference (RNAi) assays. The sequenc-
es, 5’ — caGAATGGAACCAAAGCAATA — 3’ for 
ANKRD1 (NM_014391), 5’ — GTCCTCCTCGCATCTCT-
TCTA — 3’ for IGF1 (NM_001111283), and 5’ — TTCTC-
CGAACGTGTCACGT — 3’ for the negative control, were 
synthesized commercially by Genechem Co., Ltd (Shanghai, 
China) separately to knock down ANKDRD and IGF1 and 
constructed in pGV493-GFP vector with to establish 
the expressing plasmid for RNAi following the standard 
subcloning procedures. Primers for the overexpression 
of ANKRD1 (NM_014391) and IGF1 (NM_001111283) 
could be obtained from our corresponding authors upon 
the reasonable request. 
The experiments of cell transfection for ANKRD1-siRNA 
and IGF1-siRNA were performed at 20% confluence of 
hMSCs using HitransG Transfection Reagent P (Genechem 
Inc., Shanghai, China) according to the manufacturer’s 
instruction. 
With 20% confluence of the hMSCs passage 6, we performed 
cell transfection of ANKRD1-siRNA and IGF1-siRNA using 
HitransG Transfection Reagent P (Genechem Inc., Shang-
hai, China) according to the manufacturer’s instruction. 

Statistical analysis. Results express mean ± SD. Depending 
on normality test data were analyzed by Student’s t-test or 
the Mann-Whitney Rank Sum Test wherever appropriate 
(SigmaPlot software, version 14, SPSS, USA). P < 0.05 was 
set as significance level. 

Results 

Adipo-osteoblastogenic differentiation 
The expanded hMSCs were separately induced to-
wards adipo-osteoblastogenic differentiation. Adipo-
genic potential was measured via Oil Red O staining 
assays (Fig. 1). No lipid droplet was accumulated 
at 0 day (Fig. 1a). Few lipid droplets were visible at 
3 days after adding adipogenic cocktails (Fig. 1b). 
The number and size of the lipid droplets continu-
ously increased from 5 to 7 days during adipogenesis  
(Fig. 1c, d). Osteoblastogenic differentiation 
was demonstrated via Alizarin Red staining of 
calcified bone matrix (Fig. 1e–h). Besides the 
abnormal osteoblastocytes with a more rounded 
and cobblestone-like shape and less staining for 
increased secretion of mineralized bone matrix, 
we also obtained some clear signs of the increased 
ALPL activity via the quantification of the red 
derivative quinones (Fig. 1i–l) with cell cultivation 
time prolonged. It indicated that our hMSCs sepa- 
rately differentiated along adipo-osteoblastogenesis.

Table 1. Oligonucleotide primers in this study 

Gene Product Primer

ACTB Actin beta CGAGGACTTTGATTGCACATTG

AGAGAAGTGGGGTGGCTTTTAG

ALPL Alkaline phosphatase, biomineralization associated TTTCTCTTGGGCAGGCAG 

GTTCCACGGAGGCTTCAG

ANKRD1 Ankyrin repeat domain 1 GCAAGGGAAGGCATGTAGGGAC

CTGGGGGTAAAATAGCTGGCTT 

FABP4 Fatty acid binding protein 4 GAGAGGATGATAAACTGGTGGT

GAATGTTGTAGAGTTCAATGCG

IGF1 Insulin like growth factor 1 CCTCAGACAGGCATCGTG

TGACTTGGCAGGCTTGAG

LPL Lipoprotein lipase GGAAAACAGTCGATCAAGGG

GGCACGATCATCTCTCTCAG

PPARG Peroxisome proliferator activated receptor gamma TGCAAGGGTTTCTTCCGG

ATCCCCACTGCAAGGCAT

RUNX2 RUNX family transcription factor 2 GGACCTGTGCTTCCTGCC

TACTTGGTATACGGCCTTTAGA

SP7 Sp7 transcription factor TAGATGTGCTCTTTGGGG 

TAGAGAAAGCCTTCCCCA
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Transcriptional response during adipo-osteoblasto-
genesis
Here, RNA-Seq technique was carried out to investi-
gate the gene transcription of adipo-osteoblastogen-
esis from hMSCs. We identified 275 DEGs from an 
intersection calculation of three time points as candi-
date genes simultaneously shared by adipo-osteoblas-
togenesis (Fig. 2). There’re 101 DEGs was separately 
up-regulated at 3, 5, and 7 days during adipogenesis, 
and 174 DEGs were down-regulated. 99, 101, and 
99 DEGs were up-regulated at 3, 5, and 7 days during 
osteoblastogenesis, and 176, 174, and 176 DEGs were 
down-regulated. All in all, the down-regulated genes 
were most prevalent in both differentiation events. 
Interestingly, six DEGs, including ANKRD1 (ankyrin 
repeat domain 1), BPIFB4 (BPI fold containing family 
B member 4), DIRC3 (disrupted in renal carcinoma 3),  
IGF1 (insulin-like growth factor 1), PRR15 (pro-
line-rich 15), and SCARA5 (scavenger receptor class 
A member 5), were of the entirely opposite expression 
profiling separately in response to two differentiation 
events, of which ANKRD1 and IGF1 were significantly 
differentially expressed, and thus suggested that the 
above six genes might participate in the two events in 
different regulation forms. GO analysis showed that 
275 DEGs were mostly concerned with signal trans-
duction, multicellular organismal development, and 
positive regulation of cell proliferation (Fig. 3). KEGG 
pathway analysis uncovered that PI3K-AKT signaling 
pathway was the most enriched pathway (Fig. 4).

Validation studies of the selected candidate genes

The two selected candidate genes, ANKRD1 and 
IGF1, were subjected to additional validation experi- 
ments. With the reporter gene GFP expressing, we 
confirmed that the hMSCs were successfully transfect-
ed separately with ANKRD1 and IGF1 overexpressed 
or knocked down using a lentiviral system (Fig. 5a, b). 

ANKRD1 was significantly differentially down- 
-regulated by 13.55, 4.32, and 5.01 folds during adipoge- 
nesis and up-regulated by 4.96, 5.05, and 4.83 folds 
during osteoblastogenesis (Fig. 2). For adipogenesis, 
with ANKRD1 overexpressed via RNAi, the expres-
sion level of the adipogenic biomarkers was increased 
at the transcriptional and the translational levels at 3, 
5, and 7 days (Fig. 5a–c). Compared with the negative 
control, lipid droplet accumulation was also increased 
(Fig. 5d). For osteoblastogenesis, ANKRD1 knock-
down led to an enhancement of the relative expression 
level of biomarkers RUNX2, SP7 (Sp7 transcription 
factor), also known as osterix, and ALPL (Fig. 5c) at 
the transcriptional level. We further found that the 
enhanced accumulation of the matrix mineralization 
and the promoted ALPL enzyme activity supported 
the above-enhanced gene and protein expression  
(Fig. 5e, f). In all, our results indicated that ANK-
RD1 promoted adipogenesis and inhibited osteo-
blastogenesis. 

IGF1 was significantly differentially up-regulated 
by 5.79, 4.73, and 4.92 folds during adipogenesis 
and down-regulated by 4.66, 5.41, and 13.75 folds 
during osteoblastogenesis (Fig. 2). For adipogenesis, 
IGF1 knockdown weakened the gene expression level 
of adipogenic and lipid droplet formation (Fig. 5c, d). 
Interestingly, IGF1 overexpression enforced gene 

Figure 1. Adipo-osteoblastogenic potenial of human mesenchymal stem cells (hMSCs) at 0 day, 3 days, 5 days, and 7 days. 
a-d, e-h, and i-l separately indicated Oil Red O staining, Alizarin Red staining, and ALPL (alkaline phosphatase, biominera- 
lization associated) staining. Space bar: 20 μm.

 

Figure 1. Adipo-osteoblastogenic potenial of human mesenchymal stem cells (hMSCs) at 0 day, 3 days, 5 days, and 7 days. a-d, e-h, and i-l 

separately indicated Oil Red O staining, Alizarin Red staining, and ALPL (alkaline phosphatase, biomineralization associated) staining. Space bar: 

20 µm 

 



www.journals.viamedica.pl/folia_histochemica_cytobiologica
©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2022
10.5603/FHC.a2022.0012
ISSN 0239-8508, e-ISSN 1897-5631

183Balance regulation of human mesenchymal stem cells differentiation

 
Figure 2. The transcriptional landscapes of 275 DEGs shared by adipo-osteoblastogenesis from hMSCs. Colored red and 
green indicated up- and down-regulated genes, respectively. Bar indicated gene expression level.
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Figure 3. Gene ontogenesis (GO) analysis of the 275 DEGs shared by early adipo-

osteoblastogenesis from hMSCs 
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Figure 3. Gene ontogenesis (GO) analysis of the 275 DEGs shared by early adipo-osteoblastogenesis from hMSCs.

 

Figure 4. KEGG pathway analysis of the 275 DEGs shared by early adipo-osteoblastogenesis 

from hMSCs 

  

Figure 4. KEGG pathway analysis of the 275 DEGs shared by early adipo-osteoblastogenesis from hMSCs.
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expression of biomarkers, the accumulation of the ma-
trix mineralization, and ALPL enzyme activity during 
osteoblastogenesis (Fig. 5c, 5d, 5f). In conclusion, 
IGF1 was of anxo-action for adipo-osteoblastogenesis. 

Discussion

Upon receiving the proper signals, hMSCs, one 
multipotent progenitor, matured into adipo- 
-osteogenic lineages, including adipocytes and os-
teoblastocytes [9, 33]. Here, our adipogenesis was 
markedly characterized by the gradually increasing 
lipid droplets from 3 to 7 days. Although the depo-
sition of calcium in the extracellular matrix was less 
during osteoblastogenesis, it was also confirmed that 
the hMSCs differentiated along osteoblastogenesis for 
the rounded and cobblestone-like cell shape property 
and ALPL secretion.

In our study, the predominant gene repression 
was one of the molecular mechanisms for the com-

mitted pre-adipocyte and osteo-progenitor during 
early adipo-osteoblastogenesis, and thus agreed with 
the documented study [20]. However, gene expres-
sion was generally up-regulated in both mature cell  
lineages during late adipo-osteoblastogenesis [20, 34]. 
Our previous study supported PI3K-Akt signaling 
pathway closely correlated with adipogenesis at 7, 
14, 21, and 28 days [35]. And the growing evidence 
also agreed with osteoblastogenesis largely depend-
ing on PI3K-Akt signaling pathway [36, 37]. In brief, 
although adipo-osteoblastogenesis were two different 
differentiation events, they also simultaneously shared 
the candidate genes.

ANKRD1 encoding ankyrin repeat domin 1 also 
known as CARP (cardiac ankyrin repeat protein), 
a transcriptional factor, was highly expressed in the 
heart and muscle tissue and mediates TGF-β sig-
naling in response to injury and stress [38–40]. For 
ANKRD1, the participation in adipogenesis [41] and 
the regulation by YAP/TAZ (Yes-associated protein/ 
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/transcriptional coactivator with PDZ-binding motif) 
in osteoblastogenesis from dental pulp stem cells (DP-
SCs) [42, 43] agreed with our gene function validation.

Similar to insulin in function and structure, 
IGF1 encoding insulin-like growth factor 1 was in-
volved in mediating growth and development. Our 
results were supported by the documented gene 
function of IGF1 stimulating adipogenesis [44, 45] 
and promoting osteoblastogenesis [46, 47].

In summary, in this study, we elaborated a com-
plete gene transcriptional picture of adipo-osteoblas-
togenesis from hMSCs using RNA-Seq technique. 
275 DEGs were identified as candidate genes simulta-

neously shared by adipo-osteoblastogenesis, especially 
with the down-regulated gene most prevalent and the 
mostly enriched PI3K-AKT signaling pathway. Fur-
thermore, via RNAi method, we further confirmed 
that ANKRD1 (ankyrin repeat domain 1) promoted 
adipogenesis and inhibited osteoblastogenesis, and 
IGF1 (insulin-like growth factor 1) simultaneously 
facilitated two differentiation events. Our understand-
ing of adipo-osteoblastogenic process would provide 
candidate genes as molecular switches to control the 
adipocyte/osteoblastocyte balance or hMSCs fate 
choices and clues to screen the factors for the study 
and therapy of metabolic bone disease osteoporosis.
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Figure 5. ANKRD1 and IGF1 regulate adipo-osteoblastogenesis from hMSCs; (a) Fluorescence 
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of the candidate genes ANKRD1 and IGF1 after RNAi; (c) The relative expression level of the 

biomarkers, such as FABP4, PPARG, and LPL for adipogenesis and RUNX2, SP7, and ALPL 

for osteoblastogenesis; (d) Evaluation of adipogenic potential of hMSCs demonstrated by Oil 

Red O staining. Scale bar: 20 µm; (e) Evaluation of osteoblastogenic potential by Alizarin Red 

staining. Scale bar: 20 µm; (f) ALPL staining and enzyme activity. Scale bar: 20 µm. Derived 

from Student’s t-test (or the Mann-Whitney Rank Sum Test) wherever appropriate depending 

normality test, * and ** separately indicate significant differences at P < 0.05 and P < 0.001), 

respectively (SigmaPlot software, version 14, SPSS, USA) 

Figure 5. ANKRD1 and IGF1 regulate adipo-osteoblastogenesis from hMSCs; (a) Fluorescence intensity of GFP reporter 
gene after RNAi. Scale bar: 50 μm; (b) The relative expression level of the candidate genes ANKRD1 and IGF1 after RNAi; 
(c) The relative expression level of the biomarkers, such as FABP4, PPARG, and LPL for adipogenesis and RUNX2, SP7, and 
ALPL for osteoblastogenesis; (d) Evaluation of adipogenic potential of hMSCs demonstrated by Oil Red O staining. Scale 
bar: 20 μm; (e) Evaluation of osteoblastogenic potential by Alizarin Red staining. Scale bar: 20 μm; (f) ALPL staining and 
enzyme activity. Scale bar: 20 μm. Derived from Student’s t-test (or the Mann-Whitney Rank Sum Test) wherever appro-
priate depending normality test, * and ** separately indicate significant differences at p < 0.05 and p < 0.001), respectively 
(SigmaPlot software, version 14, SPSS, USA).
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