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Abstract 
Introduction. The cytokine interleukin (IL)-39 is a novel member of the IL-12 family. Our previous study found that 
the serum level of IL-39 significantly increased in patients with acute myocardial infarction. However, the role of IL-39  
in cardiomyocyte apoptosis remains unclear. 
Material and methods. In this study, the cultured mouse HL-1 cardiomyocytes were incubated with PBS, 0-100 ng/mL  
IL-39, 200 μM H2O2 or 20 μM Trolox. 
Results. IL-39 promoted the production of intracellular reactive oxygen species (ROS) in a concentration-dependent 
manner in HL-1 cardiomyocytes. IL-39 and H2O2 both significantly promoted the production of intracellular ROS, 
increased the level of intracellular CCL2, stimulated the apoptotic progress of cardiomyocytes, increased the mRNA 
and protein expression levels of Bax, caspase-3, and p-p38 MAPK, and decreased the mRNA and protein expression 
levels of Bcl-2. ROS production, CCL2 level, cardiomyocyte apoptosis, and expression of Bax, caspase-3, and p-p38 
MAPK were significantly amplified by the administration of IL-39 combined with H2O2, and these processes were 
significantly alleviated by an antioxidant Trolox. 
Conclusion. This study was novel in revealing that IL-39 promoted apoptosis by stimulating the phosphorylation 
of p38 MAPK in mouse HL-1 cardiomyocytes. (Folia Histochemica et Cytobiologica 2021, Vol. 59, No. 3, 195–202)
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Introduction

Acute myocardial infarction is the most common 
cause of mortality and morbidity worldwide [1]. Rep-

erfusion therapy is the most effective procedure to 
save ischemic cardiomyocytes and limit infarct size [2]. 
However, the restoration of blood flow may aggravate 
the injury to the original ischemic myocardium, which 
is defined as myocardial ischemia–reperfusion injury 
(MIRI) and lead to myocardial stunning, hemod-
ynamic abnormalities, ventricular arrhythmia, and 
development of heart failure [3]. The sophisticated 
pathophysiological process of MIRI needs to be clar-
ified and methods need to be developed to improve 
the prognosis of these patients [4].
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The MIRI process involves excess reactive oxygen 
species (ROS) production, neutrophil aggregation, 
intracellular calcium overload, and mitochondrial 
dysfunction [5, 6]. The activation of immune system, 
including innate immunity and adaptive immunity, 
was found to be closely associated with MIRI [7, 8]. 
The members of the interleukin-12 (IL-12) family are 
critical cytokines mediating the inflammatory process 
and playing a critical role in immune responses [9]. As 
a novel member of the IL-12 family, IL-39 was recently 
reported to enhance inflammatory response through 
activating signal transducer and activator of transcrip-
tion in lupus-like mice [10]. However, the relationship 
between IL-39 and MIRI has not been investigated yet.

The fate of cardiomyocytes in infarcted myocardium 
is either cellular necrosis or apoptosis. Cardiomyocyte 
apoptosis is the most common in ischemic regions 
close to the infarcted myocardium [11]. Our previous 
study found that the serum level of IL-39 significantly 
increased in patients with acute ST-segment elevation 
myocardial infarction (STEMI) and was related to left 
ventricular systolic dysfunction [12]. IL-17 and IL-23 
contribute to cardiomyocyte apoptosis and MIRI [13, 
14]; however, the role of IL-39 is worth investigating. 
This study examined the relationship between IL-39 and 
cardiomyocyte apoptosis in an in vitro model to better 
understand the role of IL-39 in cardiovascular diseases.

Materials and methods

Cell culture. The mouse HL-1 cardiomyocyte line obtained 
from Enzyme Research Biotech INC (China) was cultured 
in DMEM (Gibco, USA) with 10% FBS (Gibco), penicillin 
(100 unit/mL), and streptomycin (100 μg/mL) in the hu-
midified incubator in the atmosphere of 5% CO2 at 37°C. 
The cells between passages 3 and 5 were employed for 
experiments. The cells seeded at a density of 5 × 104 cells/
well were cultured for 24 h and subsequently treated with 
phosphate-buffered saline (PBS, vehicle), 0-100 ng/mL IL-
39 (R&D, USA), 200 μM H2O2 (Sigma–Aldrich, Germany), 
60 ng/mL IL-39 combined with 200 μM H2O2, and 20 μM 
Trolox (Solarbio, China) for 24 h.

Intracellular ROS detection. A dichlorodihydrofluorescein 
diacetate (DCFH-DA) ROS assay kit (Beyotime Biotech-
nology, China) was employed to investigate intracellular 
ROS production in HL-1 cardiomyocytes following the 
manufacturer’s protocol. In brief, the medium was discard-
ed 24 h after the cells were cultured and treated using the 
method described previously. Then, 1.5 mL of DCFH-DA 
(10 μM) solution was added, and the cells were subsequently 
incubated for 30 min at 37°C in the presence of 5% CO2. 
The intracellular fluorescence intensities were detected at 
488 and 525 nm under a fluorescence microscope (Olympus, 
Japan).

Enzyme-linked immunosorbent assay. HL-1 cardiomyocytes 
were cultured and treated with PBS, IL-39, H2O2, and/or 
Trolox. The supernatants of cultured cells were harvested 
and centrifuged at 2000 rpm for 20 min at 4°C 24 h after 
the treatment. The level of chemokine C-C motif ligand 2 
(CCL2) was measured using an enzyme-linked immuno-
sorbent assay (ELISA) kit (J&L Biotech, China) following 
the manufacturer’s protocol. 

Apoptosis assay. The apoptosis of HL-1 cardiomyocytes was 
analyzed by flow cytometry using a Dead Cell Apoptosis Kit 
with Annexin V Alexa Fluor 488 and PI (Thermo Fisher, 
USA). Briefly, the cells were collected and resuspended 
in 500 μL of binding buffer, and 1 μL of Annexin V and 
5 μL of PI were successively added to stain the cells 24 h 
after the treatment. The samples were determined using 
flow cytometry (BD Biosciences, USA). The percentage of 
apoptotic cells were calculated which represented Annexin 
V positive/ PI positive cells.

Quantitative real-time PCR. Total RNAs were isolated 
after the cells were treated for 24 h using an RNeasy Mini 
Kit (Qiagen, Germany) and reversed to cDNA using a One-
Step PrimeScript miRNA cDNA Synthesis Kit (TaKaRa, 
Japan) to quantify target genes in HL-1 cardiomyocytes. 
Quantitative PCR of Bcl-2, Bax, caspase-3, and phosphoryl-
ated-p38 mitogen-activated protein kinase (p-p38 MAPK) 
were performed using an ABI 7500 Fast Real-Time PCR 
System (Applied Biosystems, USA) with an SYBR Premix 
Ex Taq kit (TaKaRa). U6 was used as an internal control. All 
primers were synthesized by Sangon (China). The relative 
expression of target genes was calculated using the following 
equation: Relative expression level = 2–(DCt sample – DCt control).

Western blot analysis. For Western blot analysis, 20 μg of 
total protein extracted from the HL-1 cardiomyocytes after 
the cells were treated for 24 h was resolved on 10% SDS-po-
lyacrylamide gels and electrotransferred onto nitrocellulose 
membranes. The membranes were blocked with 5% nonfat 
milk in TBS containing 0.3% Tween-20 and then incubated 
overnight with polyclonal rabbit anti-mouse antibodies 
against Bcl-2 (1:1000 dilution, Abcam, USA), Bax (1:500 
dilution, Abcam), caspase-3 (1:1000 dilution, Cell Signaling, 
USA), and p-p38 MAPK (1:1000 dilution, Cell Signaling). 
The polyclonal rabbit anti-mouse GAPDH antibody (1:1000 
dilution, Abcam) served as control. The goat anti-rabbit 
horseradish peroxidase–conjugated secondary antibody 
was subsequently added. ECL was administered to detect 
protein signals using Quant RT ECL cold CCD imaging 
system (General Electric, USA).

Statistical analysis. The statistical analyses were carried out 
using SPSS 16.0 (SPSS Inc, USA). Data were presented as 
mean ± standard deviation. The mean value in the vehicle 
group was defined as 100% for relative gene expression. 

https://www.ncbi.nlm.nih.gov/pubmed/22261166
https://www.sigmaaldrich.com/
http://www.solarbio.com/
https://www.olympus-lifescience.com.cn/zh/
https://www.olympus-lifescience.com.cn/zh/
https://cn.bing.com/images/search?q=chemokine+c-c+motif+ligand+2+ccl2&qpvt=Chemokine+(C-C+Motif)+Ligand+2+(CCL2)&FORM=IGRE
https://cn.bing.com/images/search?q=chemokine+c-c+motif+ligand+2+ccl2&qpvt=Chemokine+(C-C+Motif)+Ligand+2+(CCL2)&FORM=IGRE
https://www.cellsignal.com/
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Overall data were compared using analysis of variance and 
post-hoc least significant difference statistics. A P value of 
less than 0.05 indicated a statistically significant difference.

Results

IL-39 promoted ROS production  
in HL-1 cardiomyocytes
Different concentrations of IL-39 were added to 
cultures of HL-1 cardiomyocytes to identify the 
relationship between ROS production and IL-39 
levels. As shown in Figure 1A, IL-39 promoted ROS 
production in a concentration-dependent manner; the 
highest level of ROS production was induced by IL-39 
at a concentration of 60 ng/mL (vs. 0 ng/mL IL-39,  
P < 0.05). Both 60 ng/mL IL-39 and 200 μM H2O2 
promoted ROS production in HL-1 cardiomyocytes 
(vs. vehicle, P < 0.05). The elevation of ROS produc-
tion induced by 60 ng/mL IL-39 alone was amplified 
by the stimulation of IL-39 60 ng/mL combined with 
200 μM H2O2 (IL-39 + H2O2 vs. IL-39, P < 0.05), but 
was decreased by the antioxidant 20 μM Trolox (IL-39 
+ TRO vs. IL-39, P < 0.05) (Fig. 1B).

IL-39 increased the level of CCL2  
in HL-1 cardiomyocytes
The chemokine CCL2 levels in HL-1 cardiomyocytes 
were investigated using ELISA. Both IL-39 and oxi-
dative stress significantly increased the level of CCL2 
(vs. vehicle, P < 0.05). The elevation of CCL2 level 
in HL-1 cardiomyocytes induced by 60 ng/mL  IL-39 
alone was amplified by the addition of 200 μM H2O2 
(IL-39 + H2O2 vs. IL-39, P < 0.05), however, it was 
significantly decreased by 20 μM Trolox (IL-39 + 
TRO vs. IL-39, P < 0.05) (Fig. 2).

IL-39 stimulates the apoptosis  
of HL-1 cardiomyocytes 
Flow cytometry was used to evaluate the apoptosis of 
HL-1 cardiomyocytes, the real-time PCR and Western 
blot analysises were used to examine the mRNA and 
protein levels of Bcl-2, Bax and caspase-3. Both 60 
ng/mL IL-39 and 200 μM H2O2 induced significant 
apoptosis in HL-1 cells (vs. vehicle, P < 0.05). IL-39 
demonstrated a more potent ability to promote HL-1 
cardiomyocyte apoptosis (IL-39 vs. vehicle, P < 0.01). 
The apoptosis of HL-1 cardiomyocytes induced by  
60 ng/mL IL-39 alone was amplified by 200 μM 
H2O2 (IL-39 + H2O2 vs. IL-39, P < 0.05), and was 

Figure 1. IL-39 promoted ROS production in HL-1 cardiomyocytes. A. IL-39 promoted ROS production in a concentration-de-
pendent manner (n = 6); P < 0.05 vs. 0 ng/mL IL-39. B. IL-39 and H2O2 increased the ROS level in HL-1 cardiomyocytes 
(n = 6). ROS levels were determined as described in Methods section.
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Figure 2. IL-39 increased the level of CCL2 chemokine in 
HL-1 cardiomyocytes incubated with IL-39 (60 ng/mL), 200 
μM H2O2 or IL-39 at 60 ng/mL and 20 μM Trolox (n = 6). 
CCL2 concentration was determined by ELISA as described 
in Methods section.



198 Wei Xiong et al.

©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2021
10.5603/FHC.a2021.0019
ISSN 0239-8508, e-ISSN 1897-5631

www.journals.viamedica.pl/folia_histochemica_cytobiologica

significantly alleviated by 20 μM Trolox (IL-39 + 
TRO vs. IL-39, P < 0.05) (Fig. 3). The transcription 
level of Bcl-2 was significantly decreased by 60 ng/mL  
IL-39 and 200 μM H2O2 (vs. vehicle, P < 0.05).  
The decreased transcription level of Bcl-2 in HL-1 
cardiomyocytes induced by 60 ng/mL IL-39 alone 
was amplified by 200 μM H2O2 (IL-39 + H2O2 vs. 
IL-39, P < 0.01), and was significantly alleviated by 
20 μM Trolox (IL-39 + TRO vs. IL-39, P < 0.05) 
(Fig. 4A and 4B). The transcription levels of Bax and 
caspase-3 were significantly elevated by 60 ng/mL 
IL-39 and 200 μM H2O2 (vs. vehicle, P < 0.05). The 
increased transcription levels of Bax and caspase-3 

in HL-1 cardiomyocytes induced by 60 ng/mL IL-39 
alone were amplified by 200 μM H2O2 (IL-39 + H2O2 
vs. IL-39, P < 0.05), and were significantly alleviated 
by 20 μM Trolox (IL-39 + TRO vs. IL-39, P < 0.05) 
(Fig. 4A, 4C, 4D). 

IL-39 stimulates the phosphorylation of p38 MAPK 
in the apoptotic cardiomyocytes
To identify the potential molecular mechanism of IL-39  
regulating the apoptosis of HL-1 cardiomyocytes, 
the mRNA and protein levels of phosphorylated 
p38 MAPK were examined using real-time PCR 
and Western blot analysis, respectively. As shown in 

Figure 3. IL-39 promoted the apoptosis of HL-1 cardiomyocytes (n = 6). The concentrations of IL-30, H2O2, and Trolox 
were as in the description of Figure 2. Apoptosis was determined by flow cytometry as described in Methods section.
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Figure 4. IL-39 promoted the expression of p-p38 MAPK in HL-1 cardiomyocytes. A. Protein levels in HL-1 cardiomyocytes 
were identified using Western blot analysis (n = 3). B. IL-39 significantly decreased the transcription level of Bcl-2 in HL-1 
cardiomyocytes (n = 6). C. IL-39 significantly increased the transcription level of Bax in HL-1 cardiomyocytes (n = 6).  
D. IL-39 significantly increased the transcription level of caspase-3 in HL-1 cardiomyocytes (n = 6). E. IL-39 significantly 
increased the phosphorylation level of p38 MAPK in HL-1 cardiomyocytes (n = 6). The concentrations of IL-30, H2O2, and 
Trolox were as in the description of Figure 2. 
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Figure 4A and 4E, the transcription level of p-p38 
MAPK was significantly elevated by 60 ng/mL IL-39 
and 200 μM H2O2 (vs. vehicle, P < 0.05). The in-
creased transcription level of p-p38 MAPK in HL-1 
cardiomyocytes induced by 60 ng/mL IL-39 alone was 
amplified by 200 μM H2O2 (IL-39 + H2O2 vs. IL-39, 
P < 0.05), and was significantly alleviated by 20 μM 
Trolox (IL-39 + TRO vs. IL-39, P < 0.05).

Discussion

In the previous study [12], we found that the serum 
level of IL-39 in patients with STEMI significantly 
increased, indicating that IL-39 might be involved 
in the process of myocardial injury and remodeling. 
The present study showed that IL-39 promoted ROS 
production, CCL2 secretion, and cardiomyocyte ap-
optosis; the underlying mechanism was related to the 
increased expression of p-p38 MAPK. 

The MIRI is mediated by several factors including 
excessive ROS production. The increased accumula-
tion of ROS in cardiomyocytes results in oxidative 
stress, mitochondrial dysfunction, and subsequent cell 
death [5]. Antioxidant therapies hold great potential 
in attenuating cardiac injury induced by ischemia–rep-
erfusion [15]. The data revealed that IL-39 promoted 
ROS production in a concentration-dependent man-
ner, highlighting its association with MIRI. 

Inflammation response is the major pathological 
feature in cardiac repair after acute myocardial in-
farction [16]. Chemokines play a critical role in the 
acute phase of myocardial infarction. CCL2 plays 
crucial roles in recruiting inflammatory cells and 
contributes to cardiac remodeling after myocardial 
infarction [17–19]. The level of CCL2 was also el-
evated in cardiomyocytes incubated with IL-37 and 
patients with acute coronary syndrome; hence, CCL2 
can be treated as a biomarker and a potential target 
for therapy [20–22]. The results showed that IL-39 
significantly increased the CCL2 level in HL-1 car-
diomyocytes. Interestingly, CCL2 protected mouse 
neonatal cardiac myocytes from hypoxia-induced 
apoptosis [23]. However, the role of CCL2 in cardio-
myocyte apoptosis was not investigated in the present 
study. Hence, how IL-39 increased the CCL2 level and 
their association in cardiomyocyte apoptosis deserve 
further investigation.

Cellular apoptosis is initiated by the activation 
of cell-surface receptors (the extrinsic pathway) or 
by the alteration of mitochondria permeability (the 
intrinsic pathway) [24]. Accumulating evidence in-
dicated the critical role of the Bcl-2 family in deter-
mining the cell death process through the extrinsic 
pathway. The Bcl-2 family comprises two classes of 

regulatory proteins: pro-apoptotic members (Bak 
and Bax) and anti-apoptotic members (Bcl-2 and 
Bcl-xL) [25, 26]. At the intersection of the intrinsic 
pathway and the extrinsic pathway, caspase-3 is 
ultimately stimulated by pro-apoptotic signals and 
the apoptosis process is completed in the nucleus 
[27]. IL-39 significantly stimulated the apoptosis 
of HL-1 cardiomyocytes in vitro in this study; the 
ability to induce apoptosis was more potent than 
that of H2O2. The evidence that decreased the 
expression of Bcl-2 and increased the expression 
of Bax and caspase-3 supported the opinion that 
IL-39 promoted cardiomyocyte apoptosis through 
the extrinsic pathway.

MAPK families play important roles in a wide 
variety of cellular programs, including cell growth, 
proliferation, differentiation, and apoptosis [28, 29]. 
Characterized as a member of MAPK families, p38 
MAPK is activated to balance cell survival and death 
in response to both extracellular and intracellular 
stresses [30]. Also, p38 MAPK regulated the phospho-
rylation of Bcl-2 in the early induction of apoptosis 
under cellular stress [31]. The cardiomyocyte apopto-
sis induced by hypoxia/reoxygenation was mediated by 
the ROS-activated MAPK pathway and inhibited by 
the p38 MAPK inhibitor [32]. The inhibition of p38 
MAPK reduced cardiac injury and improved cardiac 
function after acute myocardial infarction, indicat-
ing its critical role in cardiac remodeling [33-35]. 
In mice with lupus-like phenotype, IL-39 promoted 
inflammatory response through the STAT1/STAT3 
signaling pathway (10). The present study found that 
IL-39-induced cardiomyocyte apoptosis involved the 
elevated expression of p-p38 MAPK. However, the 
upstream and downstream proteins of p38 MAPK 
were not explored in the present study. Whether p38 
MAPK signaling plays a crucial role in IL-39-induced 
cardiomyocyte apoptosis is unclear. The role and 
function of IL-39 in physiological and pathological 
statuses still remain controversial [36] and require 
further investigation.

In conclusion, this study was novel in demonstrat-
ing that IL-39 promoted ROS production and stim-
ulated the phosphorylation of p38 MAPK. Further 
studies should be accomplished to better understand 
the role of IL-39 and the molecular mechanism in the 
pathophysiologic process of cardiovascular diseases 
and its prospects as a therapeutic target.
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