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Abstract
Introduction. In endochondral ossification septoclasts and osteoclasts (also called chondroclasts) release growth 
factors deposited in non-calcified and calcified zones of the growth plate. They stimulate, within the metaphysis, initial 
stages of the bone formation. We have recently reported quantitation of several growth factors in calcified cartilage 
from calf costochondral junction. Data from the analogous human cartilage could possibly help to choose efficient 
combinations of growth factors for clinical applications, but the amount of the calcified cartilage needed for analysis 
of numerous growth factors would be difficult to collect. The estimation of growth factors expression in endochondral 
chondrocytes may, indirectly, indicate which of them play a leading role in the stimulation of osteoprogenitor cells 
in metaphysis. To test this hypothesis, we used rat chondrocytes to evaluate mRNA levels of several growth factors.
Materials and methods. Chondrocytes were isolated from proliferative and hypertrophic zones of the epiphyseal 
cartilage forming costochondral junctions of inbred Lewis rats. The total RNA was isolated from chondrocytes 
and the level of mRNA for bone morphogenetic proteins 1-7 (BMP-1-7), vascular endothelial growth factor A 
(VEGF-A), basic fibroblast growth factor (bFGF), growth/differentiation factor 5 (GDF-5), NEL-like protein 1  
(NELL-1), transforming growth factor beta 1 (TGF-b1), mesencephalic astrocyte-derived neurotrophic factor 
(MANF), connective tissue growth factor (CTGF), osteoclast-stimulating factor 1 (OSTF-1) and insulin-like 
growth factor 1 (IGF-1) was evaluated using real-time PCR method.
Results. All studied factors were expressed. The highest level of mRNA was detected for CTGF, MANF, VEGF-A 
and TGF-b1. Expression was also quite high for BMP-1, BMP-2, BMP-5, BMP-6, BMP-7, IGF-1, GDF-5 and 
OSTF-1. Very low level of mRNA was detected for BMP-3, BMP-4 and NELL-1.
Conclusions. Chondrocytes from the proliferative and hypertrophic zones of the growth plate produce factors 
involved in the cartilage metabolism and bone formation. The determination of these growth factors in humans 
could help to choose their optimal composition necessary for stimulation of bone formation in clinical practice. 
In rat the best stimulation of bone formation would presumably be achieved with a mixture of BMP-2, BMP-5, 
BMP-6 and BMP-7. (Folia Histochemica et Cytobiologica 2021, Vol. 59, No. 3, 178–186)
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Introduction

Epiphyseal growth plate composed of hyaline carti-
lage constitutes the dynamic structure with stem cells 

present in the reserve zone which differentiate and 
rapidly divide in the proliferative zone, enlarge in the 
hypertrophic zone, and finally undergo apoptosis in 
the provisional calcification zone close to the metaph-
ysis [1-8]. Calcification of the growth cartilage begins 
in the extracellular matrix (ECM) forming longitu-
dinal septa and separating rows of chondrocytes. In 
the hypertrophic zone septa, roundish bodies appear 
that are produced by chondrocytes and called matrix 
vesicles. They serve as initiation sites of mineral dep-
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osition in the cartilage [9-11]. Calcified matrix vesicles 
join into larger structures, called globular units and 
finally into massive calcium phosphate deposits oc-
cupying most of the calcification zone territory [12].

The proliferation and differentiation of chondro-
cytes in the epiphyseal cartilage are regulated by nu-
merous factors belonging to the TGF-b superfamily. In 
the immunocytochemical studies bone morphogenetic 
proteins 1-7 (BMPs 1-7) were demonstrated in prolif-
erative, maturing and late hypertrophic chondrocytes 
of rat tibial growth plate [13]. BMPs 1-7 and vascular 
endothelial growth factor (VEGF) were also found in 
matrix vesicles isolated from rat growth plate, which 
could carry them from chondrocytes into the matrix 
[14]. BMP signalling is required for maintenance of the 
differentiated phenotype, control of cell proliferation, 
expression of hypertrophic phenotype of chondrocytes 
[15, 16] and skeletal development [17]. BMP-2 and 
BMP-6 are upregulated in hypertrophic zone com-
pared with resting zone and proliferative zone from 
rat growth plate while signalling inhibitor BMP-3 is 
highly expressed in resting zone [18]. In turn, BMP-5 
upregulated expression of hypertrophic zone markers 
- parathyroid receptor 1 and collagen type X alpha 1 in 
cell line ATDC5 serving as the growth plate model [19].

Vascular invasion into growth plate depends on the 
production of VEGF by hypertrophic chondrocytes 
[20] with invading endothelial cells as a target [21]. 
Moreover, VEGF acts also as a survival factor for 
growth plate chondrocytes [21], is instrumental for 
invasion of osteoclasts into the hypertrophic cartilage 
[22, 23], and serves as the mediator connecting angi-
ogenesis with osteogenesis [24].

Gradients of BMPs across the growth plate form 
many local signaling pathways and may be a key 
mechanism responsible for spatial regulation of 
chondrocyte proliferation and differentiation. Due to 
cross-talks and feedback mechanisms, these interwo-
ven pathways display a network-like structure. This 
network is able to capture the different states (resting, 
proliferating and hypertrophic) that chondrocytes go 
through as they progress within the growth plate and 
finally support vascular invasion [1, 8, 25, 26].

Both in our previous work [27] and in the present 
contribution, an advantage was taken of the sim-
ilarity in the structure and function of epiphyseal 
growth plate and costochondral junctions [28-30]. It 
was possible to obtain sufficient amount of calcified 
cartilage from the zone of provisional calcification in 
costochondral junctions of calf ribs for quantitative 
determination by ELISA of deposited growth factors. 
It had high content of growth/differentiation factor 5  
(GDF-5), BMP-7, and NEL-like protein 1 (NELL-1) [27]  
suggesting that these factors play a leading role in 

the stimulation of bone formation within calf ep-
iphyseal cartilage. Other factors, such as BMP-2,  
BMP-3. BMP-4; basic fibroblast growth factor 
(bFGF), VEGF and transforming growth factor beta 1  
(TGF-b1) occurred in lower quantities. Still others, 
BMP-1, BMP-5, BMP-6, insulin-like growth factor 1 
(IGF-1), osteoclast-stimulating factor 1 (OSTF-1), 
mesencephalic astrocyte-derived neurotrophic factor 
(MANF) and connective tissue growth factor (CTGF) 
were not detected. Thus, it appears that epiphyseal 
chondrocytes not only produce growth factors as the 
regulators of their own growth and differentiation but 
also prepare considerable store of chosen factors for 
the initial period of bone deposition.

The initial enthusiasm for the use of bone morpho-
genetic factors in the clinical practice [31, 32] subsided 
due to the observations of unfavourable side effects 
such as postoperative inflammation, ectopic bone for-
mation, osteoclast-mediated severe bone resorption 
and life-threatening cervical spine swelling [33, 34] as 
well as by apprehension of neoplastic growth stimu-
lation [35]. There are also problems with the choice 
of proper carrier vehicle for BMPs. Sodium acetate 
buffer, bovine type I collagen matrix in combination 
with carboxymethyl-cellulose, absorbable collagen 
sponge, polymers or ceramic composites were tested. 

Alternative BMP delivery systems include also viral 
vectors or genetically altered cells [36]. An absorbable 
collagen sponge as a carrier for BMP-2 has been ap-
proved by U.S. Food and Drug Administration (FDA) 
for the use in humans, but the optimal carrier vehicle 
for BMP-2 or other growth factors delivery has yet not 
been established [33]. Recently, gene delivery is a new 
option for achieving the sustained release of BMP-2 
and stimulation of bone defects healing. It involves 
transferring a target gene encoding BMP-2 into the 
defect site using vectors carrying the gene. Then, the 
cells transfected by vectors carrying the gene produce 
the target molecules in vivo and secrete the target mol-
ecules into the defect site. The drug release period can 
be controlled by the vector carrying the gene [37, 38].

Another approach for the improvement of BMPs 
administration results involved construction of inject-
able bmp-2 delivery system based on collagen derived 
microspheres and alginate. This system, when tested 
in rats, considerably reduced BMP-2 dose needed for 
successful induction of ectopic bone formation in rats 
[39]. As a delivery system for BMP-2 a non-polymer 
hydrogel, based on the self-assembly of small amphi-
philic glycosyl-nucleolipids into micellar structures 
was also tried. When tested in mice it stimulated 
ectopic bone formation at low doses of BMP-2 [40].

The formation of bone within growth plate is de-
pendent on several growth factors which presumably 
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act synergistically and thus may be effective at low 
concentrations to allow harmonious osteogenesis. 
We have recently shown that in the bovine epiphyseal 
cartilage BMP-7, NELL-1 and GDF-5 may play a key 
role in early mineralization [27]. The question arises 
which other growth factors and at what concentra-
tion are deposited in calcified cartilage from human 
growth plate. In view of the similarity between the 
mechanisms of endochondral bone formation during 
development and healing of mature bone fractures 
[41] it is plausible that recognition of growth factors 
deposited in human calcified cartilage could help to 
choose optimal composition of growth factors for the 
stimulation of bone formation in clinical practice. Un-
fortunately, the amount of calcified human cartilage 
from growth plates needed for analysis of numerous 
growth factors would be difficult to collect. Analysis of 
growth factors expression at the mRNA level requires, 
however, a much lower number of chondrocytes than 
analysis of their presence as proteins in calcified car-
tilage. Human chondrocytes, for example, from the 
costochondral junctions of young transplant donors, 
could be accessible with maintaining ethical standards 
according to the Academy of Medical Royal Colleges, 
2015; Recommendation 9: “When parents would like 
to donate their child’s organs for transplantation, but 
this is not clinically possible, clinicians should attempt 
wherever possible to accept such organs for research, 
if this is an acceptable alternative to the parents” [42].

The aim of our study was to check whether the 
expression of genes encoding growth factors by growth 
plate chondrocytes may be related to the amount 
of the respective proteins in calcified cartilage. For 
the verification of this supposition, we evaluated the 
expression of growth factors at the mRNA level in 
growth plate chondrocytes in an animal model and 
tried to deduce which of them are essential for the 
stimulation of osteoprogenitor cells and, presumably, 
are deposited in calcified cartilage. Because in the pre-
vious work [27] we used calf cartilage, the best way to 
test this hypothesis would be to use calf chondrocytes, 
unfortunately they could be collected at the earliest 
24 h after death of the animal. Therefore, we used 
rat chondrocytes from the proliferative and hyper-
trophic zone of epiphyseal cartilage of costochondral 
junction, to evaluate mRNA level of selected growth 
factors: BMPs 1-7, VEGF-A, bFGF, GDF-5, NELL-1, 
TGF-b1, MANF, CTGF, OSTF-1 and IGF-1.

Materials and methods

Animals. Donors of chondrocytes were 6-week-old inbred 
Lewis male rats. Cartilages were taken from two rats for 
one experiment (number of experiments was 5, n = 5). The 

study was approved by the Animal Ethics Committee of the 
Medical University of Warsaw, Poland (no 049/2016).

Preparation of cartilage. Ribs were dissected from costo-
chondral junctions and cleared from the adhering tissues. The 
metaphysis was identified under dissecting microscope, sep-
arated from cartilage and about 1 mm in length of cartilage 
containing hypertrophic and proliferative zones was taken 
either for chondrocyte isolation or histological observations. 

Isolation of chondrocytes. Cartilages taken from two rats 
for one experiment were left in 0.125% collagenase and 
0.025% DNase solution dissolved in RPMI 1640 medium 
(Merck KGaA, Darmstadt, Germany) at 37°C for 18 hours. 
During the last hour of exposition, the suspension of partially 
digested cartilage fragments was stirred on the magnetic 
stirrer to facilitate dispersion into single cells. Non-digested 
(calcified) fragments were separated with 20 µm mesh filter 
(Merck). Isolated chondrocytes were counted in the Bȕrger’s 
chamber. About 2 × 106 chondrocytes was obtained from 
two rats. Chondrocytes were used for isolation of total RNA.

Total RNA isolation. RNA was isolated with NucleoSpin®R-
NA II kit (Macherey-Nagel, Duren, Germany), according 
to manufacturer’s protocol. The quantity and quality of the 
isolated total RNA was evaluated spectrophotometrically 
using ND-2000-Spectrophotometer NanoDrop 2000 with 
software for analysis of nucleic acids (Thermo Fisher Sci-
entific, Wilmington, DE, USA).

Reverse transcription. Reverse transcription was performed 
using the High Capacity cDNA Reverse Transcription kit 
(Applied Biosystems, Warrington, UK), according to the 
manufacturer’s protocol in Eppendorf Mastercycler gradient 
(10 min at 25°C, 120 min at 37°C and 5 sec. at 85°C). Briefly, 
2 μl of 10× RT buffer, 0.8 μl of 25x dNTP Mix, 2 μl of 10× 
Random Primers, 1 μl of Multiscribe Reverse Transcriptase, 
4.2 μl of nuclease-free water and 10 μl of mRNA (0.5 μg) per 
one reaction. cDNA samples were stored at –20°C.

Real-time PCR. Real-time PCR was performed in the AB-
IPRISM 7500 (Applied Biosystems) using 96-well optical 
plates. Each sample was run in triplicate and was supplied 
with an endogenous control (Rat GAPDH endogenous 
control Rn01775763_g1). For gene expression analysis, 
proper TaqMan expression assays was used: Rn00686607_
m1 for OSTF-1, Rn00563954_m1 for type II collagen, 
Rn01466014_m1 for BMP-1, Rn00567818_ m1 for BMP-2, 
Rn00567346_m1 for BMP-3, Rn00432087_m1 for BMP-4, 
Rn01447676_m1 for BMP-5, Rn00432095_m1 for BMP-6, 
Rn01528889_m1 for BMP-7, Rn01511602_m1 for VEGF A, 
Rn00572010_m1 for TGF-b1, Rn01445633_m1 for MANF, 
Rn00710306_m1 for IGF1, Rn00433564_m1 for GDF-5, 
Rn01537279_g1 for CTGF, Rn00570809_m1 for bFGF, and 
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Rn00675924_m1 for NELL-1. All probes were stained with 
FAM (Applied Biosystems). Reactions were run in 25 μl  
with TaqMan Universal Master Mix, appropriate primer set, 
MGB probe and 50 ng of cDNA template. Universal thermal 
conditions, 10 min at 95°C, 40 cycles of 15 sec at 95°C and 
1 min at 60°C, were used. Data analysis was done with se-
quence detection software version 1.2 (Applied Biosystems). 
Relative expression was calculated against the reference 
gene, GAPDH. This reference gene is acceptable in studies 
on gene expression in normal chondrocytes and bone cells 
[43–45]. Analysis was conducted as a DCT values using 
sequence detection software ver. 1.2 (Applied Biosystems).

Histology. Ribs were fixed in 10% buffered formalin, dehy-
drated, embedded in paraffin, sectioned at 6 µm thick slices 
and stained with haematoxylin and eosin. 

Results

Morphology of the epiphyseal cartilage sections
Fragment of rat rib costochondral junction is shown 
at Figure 1. It is a tissue section from the fragment 
of cartilage used for enzymatic digestion and fur-
ther isolation of cells. Section demonstrates zone of 
proliferative chondrocytes (P), zone of hypertrophic 
chondrocytes (H), zone of provisional calcification 
(C), metaphysis (M) and perichondrium (PC). Pre-
dominate chondrocytes are present in the proliferative 
zone, hypertrophic chondrocytes are considerably 
shrunken due to fixation and embedding. Fragments 
of cartilage dissected for chondrocyte isolation con-

tained mainly cells from the proliferative zone since 
the zone of hypertrophic chondrocytes was narrow 
and cells from provisional calcification were not 
isolated because calcium deposits prevented access 
of collagenase.

The expression of the studied growth factors  
at the mRNA level
The relative expression of the genes encoding the 
studied growth factors in chondrocytes from the di-
gested epiphyseal cartilage was calculated against the 
reference gene, GAPDH, and presented as the DCT 
values at Figure 2. The obtained results indicate that 
mRNA for all studied factors were expressed but the 
level of the expression considerably differed. The high-
est levels of mRNA were detected for CTGF, MANF, 
VEGF-A and TGF-b1. The expression was also quite 
high for BMP-1, BMP-2, BMP-5, BMP-6, BMP-7, 
IGF-1, GDF-5, and OSTF-1. Very low level of mRNA 
was detected for BMP-3, BMP-4, and NELL-1 (Fig. 2).

Discussion

As we have reported previously [27], growth factors 
present in calcified and small amount of adhering 
non-calcified matrix of calf rib costochondral junc-
tion could form a depot released by septoclasts and 
osteoclasts and are involved in early stages of bone 
formation. From the 16 growth factors studied in 
calf epiphyseal cartilage only nine (BMP-2, BMP-3, 
BMP-4, BMP-7, GDF-5, NELL-1, TGF-b1, bFGF 
and VEGF) were identified by ELISA [27], however, 
all of them were expressed at the mRNA level by 
rat epiphyseal chondrocytes. The highest expression 
showed CTGF, cytokine which participates in the 
matrix turnover by binding to ECM proteins [46, 47] 
and MANF. The role of MANF in skeletal tissue 
homeostasis is currently unknown but in transgenic 
Manf null mice the growth of long bones was reduced 
[48]. Both factors do not appear to have prominent 
function in the stimulation of bone growth, thus their 
absence in calf calcified matrix is not surprising [27]. 
OSTF1 was identified as a factor involved in the 
indirect activation of osteoclasts [49] but its role, if 
any, in early stages of osteogenesis remains unknown.

BMP-1, BMP-5, BMP-6 and IGF-1, also not de-
tected by ELISA in bovine calcified cartilage [27], 
are known to take part in various stages of bone 
formation. BMP-1 participates in the formation of 
mammalian extracellular matrix (ECM), and in the 
formation of bone through activation of TGF-b [50, 
51]. BMP-5 is expressed in chondrocytes of prolifer-
ating zone and its expression increased sharply with 
hypertrophic differentiation in tibial growth plates 

Figure 1. Fragment of rat rib costochondral junction.  
P — zone of proliferative chondrocytes; H — zone of hyper-
trophic chondrocytes; C — zone of provisional calcification; 
M — metaphysis; PC — perichondrium. In the section, chon-
drocytes from the proliferative zone are predominant; hyper-
trophic chondrocytes are considerably shrunken due to fixation 
and embedding. H&E staining. Total magnification 100×.



182 Anna Hyc et al.

www.journals.viamedica.pl/folia_histochemica_cytobiologica

©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2021
10.5603/FHC.a2021.0017
ISSN 0239-8508, e-ISSN 1897-5631

Figure 2. Average DCT values (± SE) as determined by real-time PCR by subtracting the average GAPDH CT value from 
the average growth CT values (n = 5) calculated using sequence detection software ver. 1.2 (Applied Biosystems).
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from normal rats [52]. BMP-6 is highly expressed dur-
ing proliferation and differentiation of chondrocytes 
from shanks of 15-day-old chicken embryos. When its 
expression decreases, the proliferation and differen-
tiation of chondrocytes are blocked [53]. BMP-5 and 
BMP-6 induce the formation of cartilage and bone in 
the rat subcutaneous transplant model, but the former 
requires higher doses for similar osteoinduction [31]. 
IGF-1 regulates bone length of the skeleton acting on 
chondrocytes of the proliferative and hypertrophic 
zones of the growth plate [8, 54, 55].

From growth factors found in bovine epiphyseal 
calcified cartilage [27] and expressed, as shown in this 
study at the mRNA level in rat chondrocytes, BMP-2 
not only stimulates bone formation [56] but signifi-
cantly enhances osteoclastogenesis [57]. Moreover, 
BMP-2 also regulates chondrogenic and osteogenic 
differentiation of mesenchymal stem cells in vitro and 
in vivo [58]. BMP-3 is an inhibitor of osteogenesis in 
vitro and of bone formation in vivo and may antagonize 
BMP-2 signalling [59, 60]. BMP-4 acts synergistically 
with VEGF to increase recruitment of mesenchymal 
stem cells and to augment cartilage formation in the 
early stages of endochondral bone formation [61]. 
BMP-4 promotes cartilage growth, matrix deposition 
and chondrocyte proliferation as well as alkaline phos-
phatase and collagen type X expression in hypertrophic 
chondrocytes [62] but was less efficient than BMP-2 in 
promoting bone formation in a calvarial defect model 
[63]. Both BMP-2 and BMP-7 (also known as osteo-
genic protein-1) seem to induce bone formation at the 
same level in rat subcutaneous transplant model [56].

GDF-5 (BMP 14) is predominantly found at the 
stage of precartilaginous mesenchymal condensation 
and throughout the cartilaginous cores of the devel-
oping calf long bones [64]. In transgenic mice model 
it is responsible for mesenchymal cell recruitment 
and chondrocyte differentiation [65] as well as for 
proper skeletal patterning and joint development in 
the vertebrate limb [66, 67].

NELL-1 is not a member of TGF-b superfamily, 
but it is highly specific to the osteochondral lineage and 
can promote orthotopic bone regeneration [68–70].  
The chondrocyte-specific NELL-1 inactivation in 
knockout mice significantly impedes appendicular 
skeletogenesis [71]. The low level of NELL-1 gene 
expression in rat epiphyseal chondrocytes contrasts 
with data from bovine calcified cartilage [27] in which 
considerable amount of NELL-1 protein is deposited. 
TGF-b1, highly expressed in rat chondrocytes, is in-
volved in formation, maturation, and mineralization 
of cartilage as well as skeletal development [72, 73].

FGF-2 was detected immunohistochemically in the 
cytoplasm of proliferating chondrocytes and upper 
hypertrophic chondrocytes in human vertebrae [7] and 
mouse tibial growth plate [74]. It stimulated endosteal 
and endochondral bone formation and depressed 
periosteal bone formation in growing rats [75].

VEGF is expressed by hypertrophic chondro-
cytes [21, 76, 77]. Members of the VEGF family are 
essential coordinators of chondrocyte death, chon-
droclast function, extracellular matrix remodelling, 
angiogenesis and endochondral ossification coop-
erating with other growth factors in differentiation 
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of osteoblasts and osteoclasts [3, 78, 79]. The high 
expression of VEGF by rat epiphyseal chondrocytes 
well corresponds with the data presented by above 
quoted authors.

It is evident from the data presented above that 
formation, maturation and differentiation of en-
dochondral cartilage is under control of numerous 
growth factors. Moreover, some growth factors 
necessary for stimulation of endochondral ossifica-
tion are stored in calcified and also in attached to it 
non-calcified cartilage. They are transported in matrix 
vesicles together with alkaline phosphatase and sub-
strates for calcium phosphate deposition into cartilage 
matrix [11, 14]. Thus, the assumption that the amount 
of growth factors deposited in calcified cartilage is 
related to their expression in chondrocytes from 
proliferative and hypertrophic zones seems justified.

Comparison of growth factors expression by rat and 
human growth plate chondrocytes is difficult due to 
the scarcity of data of the latter. Anderson et al. [13] in 
the histochemical study found that proliferating chon-
drocytes from human growth plate express BMP-1,  
BMP-2, BMP-5, BMP-6 at moderate (marked ++) 
and BMP-3, BMP-7 at the minimal level (marked + 
or ±). In hypertrophic chondrocytes all studied BMPs 
were expressed at the moderate or maximal (+++) 
level. Thus, evaluation of the histochemical data from 
growth plate cartilage does not allow predicting which 
of the BMPs dominate in the initial stages of bone 
formation in metaphysis. Expression of GDF-5 and 
NELL-1 in human growth plate, as far as we could 
establish, was never studied.

Comparison of the results of Iwan et al. [27] and 
those in this work indicates a distinct species differ-
ence between calf and rat. In calf epiphyseal cartilage 
depot of bone growth factors consisted mainly of 
NELL-1, BMP-7 and GDF-5. Taking into consid-
eration osteogenic activity of some growth factors 
and based on rat growth factors mRNA level, we can 
suppose that in the rat depot of these growth factors, 
presumably predominate BMP-2 with participation 
of BMP-6, BMP-7 and possible TGF-b1. 

We have also compared results of our Real-time 
PCR study with results of immunochemical obser-
vations of other authors. Nillson et al. [18] microdis-
sected chondrocytes from resting zone, proliferative 
zone, proliferative-hypertrophic transition zone, and 
hypertrophic zone of proximal tibial epiphyses of 
7-day-old rats and used them to isolate RNA. Expres-
sion of BMP-2, BMP-3, BMP-4, BMP-6 and BMP-7 
was studied; mRNAs of BMP-2; BMP-6 and BMP-7 
predominated in all zones. The high level of BMP-2; 
BMP-6 and BMP-7 mRNAs was also evident in our 
work [27], in which chondrocytes from 6-week-old rats 

were used. Thus, the sophisticated microdissection 
study and our tissue culture experiments gave similar 
results suggesting that the expression of BMPs in 
chondrocytes is not age-dependent, at least within 
7-day – 6-week period. Mailhot et al. [52] studied ex-
pression of BMP-5 in tibial growth plates from 2- and 
4-week-old rats by immunohistochemistry and found 
that its expression is upregulated in hypertrophic 
zone chondrocytes when compared with those in the 
proliferating zone. The expression of BMP -5 was also 
observed in our study at the mRNA level.

Horner et al. [20] immunolocalised VEGF in hu-
man neonatal growth plates. Immunoreactivity was 
absent in chondrocytes from the resting zone and 
only weakly expressed by occasional chondrocytes 
in the proliferating region. In the hypertrophic zone 
the number of chondrocytes stained and the intensity 
of staining for VEGF increased with chondrocytes’ 
hypertrophy, maximum expression of VEGF being 
observed in chondrocytes in the lower hypertrophic 
and mineralised regions of the cartilage. The authors 
concluded that VEGF produced by hypertrophic 
chondrocytes may play a key role in the regulation 
of vascular invasion of the growth plate. Marked ex-
pression of VEGF was also observed in the rat growth 
plate chondrocytes in our study.

In another paper Horner et al. [80] detected by 
immunolocalisation TGF-b1 in human epiphyseal car-
tilage. Its expression was restricted to the proliferative 
and upper hypertrophic zones, i.e., approximately in 
the same areas in which we detected TGF-b1 in rat 
cartilage. Wezeman and Bollnow [74] in mouse tibial 
growth plate detected by immunostaining bFGF in 
the extracellular matrix immediately adjacent to the 
chondrocytes of the proliferating and upper hyper-
trophic zones. We have detected expression of bFGF 
in chondrocytes from the same zones of rat growth 
plates. Evidently, mouse chondrocytes secreted most 
of the product and the amount left in cells was too 
low for immunodetection.

Our study describes expression of growth factors 
in chondrocytes from rat growth plate at the mRNA 
level. The number of chondrocytes used in the present 
study is insufficient for determination of the quantity 
of growth factors produced by the expressed genes. 
The results of the study encourage, however, their 
continuation with  mass isolation of chondrocytes 
from large number of rats followed by ELISA tests.

We hope that the similar studies with human ma-
terial (for example using costochondral junctions of 
young organ donors) will allow to determine which 
growth factors predominate in endochondral ossifica-
tion in humans so that the composition of these factors 
will be useful in the treatment of bone disorders. 
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