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Abstract
Introduction. Alzheimer’s disease (AD), a very common neurodegenerative disorder, is mainly characterized by the 
deposition of b-amyloid protein (Ab) and extensive neuronal cell death. Currently, there are no satisfactory therapeutic 
approaches for AD. Although neuroprotective effects of genistein against Ab-induced toxicity have been reported, the 
underlying molecular mechanisms remain unclear. Furthermore, the PI3K/Akt/Nrf2 signaling pathway is associated with 
AD. The aim of the study was to investigate whether genistein can modulate Nrf2/HO-1/PI3K signaling to treat AD.
Materials and methods. Cell viability assay, the measurement of heme oxygenase-1 (HO-1) expression by reverse 
transcription-polymerase chain reaction (RT-qPCR), and western blot were performed on the SH-SY5Y cells 
induced by Ab25–35 in response to the treatment with genistein. Moreover, PI3K p85 phosphorylation was measured.
Results. Genistein enhanced the HO-1expression at both the mRNA and protein levels, as well as the PI3K 
p85 phosphorylation level. In addition, genistein increased the survival of SH-SY5Y cells treated with Ab25–35via 
HO-1 signaling. However, following transfection with Nrf2 small interfering RNA (siRNA) and treatment with 
LY294002, an inhibitor of PI3K p85, genistein could not upregulate HO-1 to exert neuroprotective effects on 
SH-SY5Y cells treated with Ab25–35. 
Conclusions. These results suggest that genistein exerts a neuroprotective effect on SH-SY5Y cells in vitro via Nrf2/ 
/HO-1/PI3K signaling, providing a foundation for the application of genistein in the treatment of neurodegenerative 
diseases related to Nrf2/HO-1/PI3K signaling. (Folia Histochemica et Cytobiologica 2021, Vol. 59, No. 1, 49–56)
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Introduction

Alzheimer’s disease (AD), a progressive neurodegen-
erative disease, affects the aging population around 
the world [1] and accounts for approximately 60–80% 

of dementia cases [2]. AD is characterized by the ac-
cumulation of b-amyloid peptide (Ab), neurofibrillary 
tangles (NFTs) and neuronal loss [3, 4]. The deposi-
tion of Ab may serve as the key step in the initiation of 
the AD pathological process, and other downstream 
events, including neuroinflammation, oxidative stress 
and tau protein accumulation, may be the main causes 
of neurodegeneration [5]. Currently, despite large 
improvements in understanding the pathogenesis of 
AD, existing drugs can only alleviate the symptoms 
and slow the progression of cognitive declines; there 
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are no effective strategies for the treatment of AD 
[6–8]. As a consequence, identifying the pathological 
molecular mechanisms is a very important research 
target related to the treatment of AD.
The present study aimed to focus on the natural prod-
ucts with cost-effective and fewer toxic properties. It 
has been widely acknowledged that phytochemicals, 
including genistein, curcumin, resveratrol, quercetin 
and catechins, are promising therapeutics for the 
treatment of AD due to their functions in inhibiting 
oxidative stress, neuroinflammation and mitochon-
drial dysfunction [9]. Genistein, a natural isoflavone 
constituent found in soybean extract, can cross the 
blood-brain barrier in mice [10] and it possesses a vari-
ety of pharmacological activities, including anticancer, 
anti-fibrotic, anti-inflammatory and anti-oxidative 
activities [11, 12]. Additionally, genistein is a cell-per-
meable, reversible, substrate competitive inhibitor of 
protein tyrosine kinases, including autophosphoryla-
tion of epidermal growth factor receptor kinase, and 
regulates diverse intracellular signal transductions 
[13]. Genistein downregulates the production of 
TNF-a and the activation of NF-kB in endothelial 
cells [14, 15], and reduces the production of TLR4 in 
lipopolysaccharide (LPS)-induced BV2 microglia cell 
line [16]. Genistein has also been reported to improve 
learning and memory in numerous diseases [17–19], 
as well as ameliorate astrogliosis in AD [20, 21].
Since multiple and interdependent mechanisms 
are involved in the pathological process of AD, the 
present study searched for other targets relating 
to genistein that could ameliorate AD. Therefore, 
nuclear factor erythroid 2-related factor 2(Nrf2)/ 
/heme oxygenase-1 (HO-1) signaling was selected 
as a target of the present study. In the physiological 
state, induction of HO-1 may serve as a beneficial or 
adaptive response to a number of stimuli, indicating  
a protective role in numerous disorders [22]. It has 
been reported that the agents can exert essential pro-
tective roles against oxidative stress and inflammation 
via modulating Nrf2/HO-1 [23]. HO-1 has been found 
to exhibit anti-inflammatory, immunomodulatory and 
cytoprotective properties, the therapeutic potential of 
HO-1 can be harnessed by the use of phytochemicals 
and novel HO-1 inducers [24]. In addition, genis-
tein can upregulate HO-1 expression in mice with 
doxorubicin-induced cardiotoxicity [25] and in PC12 
neuronal cells incubated with amyloid b25–35 [26].
Taken together, the aim of the present study was 
to evaluate the effects and underlying mechanisms 
of genistein in SH-SY5Y cells treated with Ab25–35, 
a peptide applied to mimic the neuropathological 
conditions of AD. It was revealed that genistein may 
exert a cell-protective effect against Ab25–35-induced 

neurotoxicity in SH-SY5Y cells via Nrf2/HO-1/phos-
phatidylinositol-3 kinase (PI3K) signaling.

Materials and methods

Genistein. Genistein (cat.345834, SigmaAldrich, St. Louis, 
MO, USA), dissolved in 0.1% DMSO as a stock solution of 
3 mM, was further diluted in culture medium and added to 
SH-SY5Ycells at the indicated final concentration.

Preparation of Ab peptide. Ab25–35was purchased from Shang-
hai Strong Biotechnology Co., Ltd. (Shanghai, China) and 
prepared as described by Kreutz et al. [27]. Before the treat-
ment of SH-SY5Y cells, aliquots dissolved in sterilized ddH2O 
(1 mg/ml) and stored at −20°C. Then aliquots of Ab25–35 were 
incubated for 96 h at 37°C to obtain the aggregated Ab.

Nrf2 small interfering RNA (siRNA). The Nrf2 siRNA was 
purchased from Shanghai Sangon Co., Ltd. (Shanghai, Chi-
na). The Nrf2 siRNA sequences were sense, 5'-GGUUGA 
GAC UAC CAU GGU UTT-3' and anti-sense, 5'-AAC CAU 
GGU AGU CUC AAC CTT-3'. The control siRNA sequenc-
es were sense 5’-UUC UCC GAA CGU GUC ACG UTT-3’ 
and anti-sense, 5’-ACG UGA CAC GUU CGG AGA ATT-
3’. After cells were washed in PBS, Lipofectamine®2000 
reagent (Solarbio Science & Technology Co.) was used for 
siRNA transfection. The transfection was performed for 4 h.

Cell culture and treatments. SH-SY5Y cells were cultured 
as described by He et al. [28]. A total of 1 × 104 SH-SY5Y 
cells were seeded into 96-well cell culture plates (for the 
cell viability assay) or 24-well cell culture plates (for reverse 
transcription-quantitative PCR (RT-qPCR), and western 
blot analysis) and treated as follows: (i) Cells were pretreated 
with genistein (10, 30 or 50 μM) for 90 min prior to co-cul-
ture with Ab25–35 at 20 mM for 24 h; (ii) cells were pretreated 
with ZnPP (Zinc Protoporphyrin, an inhibitor of the HO-1, 
10 μM) and genistein (10, 30 or 50 μM) for 90 min prior to 
a 24-h co-culture with Ab25–35 at 20 μM; (iii) cells were pre-
treated with Nrf2 siRNA (100 nM) and genistein (10, 30 or 
50 μM) for 90 min prior to a 24-h co-culture with Ab25–35 at 
20 μM; and (iv) cells were pretreated with LY294002 (10 or 
20 μM) and genistein (10, 30 or 50 μM) for 90 min prior to 
a 24-h co-culture with Ab25–35 at 20 μM. Subsequently, a cell 
viability assay, RT-qPCR and western blot were performed.

Cell viability assay. The cell viability assay was performed 
as described previously [29]. At the indicated time-points, 
SH-SY5Y cells were incubated with the culture medium 
supplemented with 10 μL of 3-(4,5-dimethyl-2-thiazolyl)-2, 
5-diphenyl-2-H-tetrazolium bromide (MTT, at a concen-
tration of 500 μg/ml) (M1020, Solarbio, Beijing, China) for 
4 h. After aspirating the culture medium, 100 μL DMSO 
was then added. Following incubation at 37°C for 30 min, 
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the optical density was measured spectrophotometrically 
at 410 nm.

Reverse transcription-polymerase chain reaction (RT-qPCR).  
RT-qPCR was performed according to the standard proto-
cols and as described previously [30]. Quantitative real-time 
PCR was performed using SYBR Green Kit (Takara) in an 
iCycler iQTM (Bio-Rad, Hercules, CA, USA).The primer 
sequences used for qPCR were as follows: HO-1, 5’-CAT 
CCT GCG TCT GGA CCT GG’ (sense) and 5’-TAA TGT 
CAC GCA GAT TTC C-3’ (antisense); and GAPDH, 
5’-ATG GCC TCC CTG TAC CAC ATC-3’ (sense) and 
5’-TGT TGC GCT CAA TCT CCT CCT-3’ (antisense).

Western blot. Western blot was performed as described 
previously [31]. Protein samples heated at 95°C were 
separated via 10% sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and electroblotted onto 
polyvinylidene difluoride (PVDF) membranes (EMD Mil-
lipore) at 300 mA for 3 h. The membranes were blocked 
with 5% non-fat dry milk or BSA dissolved in Tris-HCl 
saline buffer containing 0.1% Tween-20 (TBST, PH 7.4). 
Subsequently, the blots were incubated overnight at 4°C 
with one of the following antibodies: Rabbit anti-HO-1 
(1:1000; ab13248, Abcam, Cambridge, UK), rabbit an-
ti-Nrf2 (1:1000; ab137550, Abcam), rabbit anti-PI3K p85 
(1:1000; ab191606, Abcam) and rabbit anti-b-actin (1:500; 
ab8227, Abcam). After washing three times for 5 min each 
in TBST, the membranes were incubated with HRP-cou-
pled goat anti-rabbit secondary antibodies (1:1000; Boster, 

Wuhan, China) diluted in TBST for 1 h. Membranes were 
washed three times in TBST for 5 min each at room tem-
perature. The immunoreactive signals were then visualized 
with enhanced chemiluminescence solution (Bio-Rad). 
The signal intensity was quantified by densitometry using 
ImageJ 5.0 software (Dental Diagnosis Science, San An-
tonio, TX, USA).

Statistical analysis. Data are presented as the mean ± SD. 
Comparisons between groups were performed using ANOVA 
followed by Bonferroni’s post hoc test using GraphPad Prism 
6 software. Statistical significance was considered at P < 0.05.

Results

Genistein increased the HO-1 expression  
in SH-SY5Y cells treated with Ab25–35
To investigate the effects of genistein on the SH-
SY5Y cells induced by Ab25–35, RT-qPCR and western 
blot analyses were performed after the cells were 
pretreated with genistein and co-cultured with Ab25–35.
It was observed that, in comparison with the vehicle 
control, the HO-1 mRNA level was increased in 
response to Ab25–35 treatment. Compared with the 
Ab25–35-treated group, genistein (10, 30 and 50 μM) 
significantly increased the HO-1 mRNA level of 
Ab25–35-treated SH-SY5Y cells (Fig. 1A).
Similar pattern of HO-1 response to Ab25–35 and ge-
nistein treatment was observed at the protein levels 
(Fig. 1B–C).
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Figure 1. Determination of the effects of genistein on HO-1 level in SH-SY5Y cells induced by Ab25-35. A total of 1 × 104SH-
-SY5Y cells were pretreated with genistein at the concentrations of 10, 30 and 50 μM for 90 min prior to a 24-h co-culture 
with Ab25-35 (20 mM). Subsequently, RT-qPCR and western blot were performed as described in methods. A. HO-1 mRNA 
level. B and C. RelativeHO-1 protein content was assessed with western blot in cells treated with Ab25-35 and without or with 
various concentrations of genistein (Gen). *p < 0.05, ***p < 0.001 from five independent experiments.
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Figure 2. Determination of the effects of genistein on the sur-
vival of SH-SY5Y cells induced by Ab25-35 after inhibiting the 
HO-1. A total of 1 × 104 SH-SY5Y cells were co-pretreated 
with ZnPP (Zinc Protoporphyrin, an inhibitor of the HO-1) 
and genistein at the concentrations of 10, 30 and 50 μM for 
90 min prior to a 24-h co-culture with Ab25–35 (20 mM). A cell 
viability assay was then performed. ***p < 0.01 from five 
independent experiments.
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Figure 3. Determination of the effects of genistein on the HO-1 in SH-SY5Y cells induced by Ab25-35 after inhibiting Nrf2. 
1 × 104 SH-SY5Y cells were co-pretreated with Nrf2 siRNA and 50 μM genistein for 90 min prior to a 24-h co-culture with 
Ab25–35, followed by western blot. A–B. HO-1 protein level was upregulated after the treatment with genistein. Abbreviations: 
con siRNA — control siRNA; ***p < 0.001 from five independent experiments.

Genistein reduced the death of SH-SY5Y cells 
treated with Ab25–35 via upregulating HO-1

To investigate the effect of genistein on Ab25–35-in-
ducedapoptosis of SH-SY5Y cells, a MTT assay was 
performed.
A cell viability assay revealed that, in comparison 
with the vehicle control, the cell survival rate was 
decreased in response to Ab25–35 treatment. Genistein 
(10, 30 and 50 μM) significantly increased the survival 
rate of Ab25–35-treated SH-SY5Y cells. Additionally, 

inhibition of HO-1 by ZnPP (Zinc Protoporphyrin, an 
inhibitor of the HO-1) reduced the effects of genistein 
on the cell survival rate of SH-SY5Y cells treated with 
Ab25–35 (Fig. 2).

Inhibiting Nrf2 signaling reverses  
the neuroprotective effect of genistein on upregulating  
HO-1 in Ab25–35-treated SH-SY5Y cells 

To investigate the effects of the Nrf2 signaling 
pathway on the neuroprotective role of genistein 
on upregulating HO-1 in SH-SY5Y cells induced by 
Ab25–35, HO-1 protein level was evaluated by western 
blot after the cells were pretreated with Nrf2 siRNA 
and genistein.
It was observed that, following inhibition of Nrf2 sig-
naling by Nrf2 siRNA, the effect of genistein on the 
upregulation of HO-1 protein level in Ab25–35-treated 
SH-SY5Y cells was partially abolished (Fig. 3A, B).

Inhibiting PI3K signaling reverses the effect  
of genistein on upregulating HO-1  
in Ab25–35-treated SH-SY5Y cells 

To investigate the effects of the PI3K signaling 
pathway on the neuroprotective role of genistein 
on upregulating HO-1 in SH-SY5Y cells induced by 
Ab25–35, PI3K p85 phosphorylation level and HO-1 
protein level were evaluated by western blot after the 
cells were pretreated with LY294002 (an inhibitor of 
PI3K p85) and genistein, and co-cultured with Ab25–35.
It was observed that in comparison with the vehicle 
control, the P85 phosphorylation level was decreased 
in response to Ab25–35 treatment. Compared with the 
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Figure 4. Determination of the effects of genistein on the HO-1 levels in SH-SY5Y cells induced by Ab25-35 after inhibiting 
the PI3K. A total of 1 × 104 SH-SY5Y cells were co-pretreated with LY294002 and genistein at a concentration of 10, 30 or 
50 μM for 90 min prior to a 24-h co-culture with Ab25–35, followed by western blot. A–B. The PI3K p85 phosphorylation level 
in the nucleus was upregulated in SH-SY5Y cells in a dose-dependent manner. C–D. The HO-1 protein level in the nucleus 
was downregulated. ***p < 0.001 from five independent experiments.

Ab25–35-treated group, genistein (10, 30 and 50 μM) 
significantly increased the PI3K p85 phosphorylation 
level of Ab25–35-treated SH-SY5Y cells (Fig. 4A, B).
It was also observed that, after inhibiting PI3K signa-
ling, genistein did not upregulate HO-1 protein level 
in Ab25–35-treated SH-SY5Y cells (Fig. 4C, D).

Discussion

Previous studies have examined the potential use of 
genistein as a treatment for AD [32]; genistein has 
been shown to exert a protective effect in AD in vitro 
via the Nrf2 signaling pathway [33–35]. In the present 
study, genistein treatment increased cell survival in 
SH-SY5Y cells treated with Ab25–35. Furthermore, 
following inhibition of the Nrf2 and PI3K p85 sign-
aling pathways, genistein was unable to exert these 
cell-protective roles. These findings suggested that 
genistein treatment may protect SH-SY5Y cells from 
the neurotoxicity induced by Ab25–35 treatment via the 
Nrf2/HO-1/PI3K signaling pathway.
Ab peptide fragments can induce neuronal cell death 
directly or indirectly [36], and oligomeric Ab peptides 
have been identified as a key factor in the multiple 

pathogenic changes in AD and, more generally, in de-
mentia [37]. Deposition of Ab25–35 in the brain triggers 
tau protein phosphorylation and formation of intra-
cellular NFTs, subsequently leading to mitochondrial 
dysfunction and membrane rupture, which then pro-
ceeds to necrosis or apoptosis [38]. It has been report-
ed in previous in vitro studies that genistein protects 
against cell death [39, 40]. Genistein protects against 
Ab-induced toxicity in SH-SY5Y cells by regulation 
of Akt and Tau phosphorylation [41]. Genistein and 
galantamine combinations decrease Ab(1-42)-induced 
genotoxicity and cell death in SH-SY5Y Cell Line [42]. 
The present study used SH-SY5Y cells to generate an 
in vitro model to investigate the effect of genistein on 
the neurotoxicity induced by Ab25–35.
Increased oxidative stress occurs in response to in-
creased Ab levels [43]. Oxidative stress has generally 
been implicated in neurodegenerative disorders and, 
more specifically, in the onset and development of 
AD [44]. HO-1 induction may indicate a pro-oxidative 
status since HO-1 is activated under oxidative stress. 
Zhai et al. demonstrated that genistein upregulated 
HO-1 and GCLC expression via the EKR1/2 and 
PKC/Nrf2 pathways during oxidative stress using  
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a H2O2-induced cell model [45]. Genistein can exert 
neuroprotective effects against Ab-induced oxidative 
stress via activating a7nAChR and its downstream 
phosphatidylinositol 3-kinase (PI3K)/Akt/Nrf2 sign-
aling cascades [46]. The present study observed that 
genistein could promote the survival of SH-SY5Y cells 
treated with Ab25–35 via HO-1 signaling.
Nrf2 is considered a “master regulator” of the antioxi-
dant response, and it is also a regulator of maintaining 
the body’s redox homeostasis [47]. Under an oxidative 
stimulus, Nrf2 is translocated to the nucleus where 
it interacts with small proteins and binds to ARE to 
activate the transcription of antioxidant genes, such as 
the nicotinamide adenine dinucleotide phosphate ox-
idase complex: quinone oxidoreductase 1, glutathione 
S-transferases, g-glutamylcysteine ligase and heme 
oxygenase 1 [48]. It has been reported that genistein 
treatment can activate the Nrf2 pathway to augment 
the antioxidative system in vitro and in vivo [49].  
The present study revealed that genistein could 
upregulate Nrf2 to increase HO-1 in SH-SY5Y cells 
treated with Ab25–35.
Akt is a serine/threonine kinase that regulates a wide 
range of processes, including cell survival, cell growth 
and apoptosis [50]. Previous studies have reported 
that Ab peptide may decrease Akt phosphorylation, 
thus inhibiting its activation [51]. Reduced activation 
of Akt is known to induce tau protein hyperphospho-
rylation and cell death [50]. Genistein can stimulate 
the PI3K/Akt pathway and thereby the release of NO 
[52]. The present study revealed that genistein could 
upregulate PI3K phosphorylation to increase HO-1 
in SH-SY5Y cells treated with Ab25–35.
In conclusion, the present study demonstrated that 
genistein could alleviate the neurotoxicity of Ab25–35 
in SH-SY5Y cells by improving the cell survival and 
anti-oxidative response. These effects may be reversed 
by inhibiting the Nrf2 and PI3K signaling pathways. 
These findings suggest that a novel strategy for the 
treatment of AD may involve genistein.
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