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Abstract
Introduction. Sepsis is characterized by an infection-caused acute inflammatory response, which is usually ac-
companied by multiple organ failure, especially lung injury. During sepsis, a large number of endotoxins such 
as lipopolysaccharides (LPSs) are secreted from Gram-negative bacteria. However, the mechanisms underlying 
acute lung dysfunction caused by sepsis have not yet been well defined.
Material and methods. To identify the mechanism of insulin-like growth factor binding protein 7 (IGFBP7) in 
acute lung injury during sepsis, the effects of IGFBP7 shRNA were evaluated in a model of cecal ligation puncture 
(CLP)-induced sepsis in mice. Histologic evaluation of the effects of IGFBP7 on CLP-induced acute lung injury 
was performed by H&E staining. Murine pulmonary microvascular endothelial cells (MPVECs) were transfected 
with shIGFBP7 or shNC before treatment with LPS to mimic the sepsis-induced lung dysfunction. The effects 
of CLP or LPS on IGFBP7 expression and the activation of ERK1/2 pathway were analyzed by western blot. 
MTT and LDH assays were used to measure the viability of MPVECs under different treatment regimes. The 
apoptosis rate of MPVECs in different groups was detected by flow-cytometry analysis.
Results. IGFBP7 was strongly up-regulated in sepsis-induced acute lung injury in mice. IGFBP7 silencing attenu-
ated sepsis-induced apoptosis and cytotoxicity in MPVECs. Furthermore, the activation of ERK1/2 pathway was 
regulated by IGFBP7 during sepsis-induced inflammation. IGFBP7 inhibition by RNA interference in MPVECs 
attenuated CLP-induced morphological features of lung dysfunction. The knockdown of IGFBP7 attenuated 
LPS-induced MPVECs’ apoptosis by the suppression of the ERK1/2 pathway. 
Conclusions. We demonstrated for the first time that IGFBP7 is involved in the pathogenesis of sepsis-induced 
acute lung injury and may serve as a therapeutic target in sepsis-induced acute lung injury. (Folia Histochemica 
et Cytobiologica 2020, Vol. 58, No. 4, 247–254)
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Introduction

Sepsis is characterized by an infection-caused acute 
inflammatory response to tissue injury and is often 
caused by bacterial, fungal, and viral infections [1–3]. 
Sepsis is a clinical disorder with a high mortality rate 

and is companied with numerous health problems 
worldwide [4, 5]. If the inflammatory response is 
particularly severe, the homeostasis of multiple 
organ system would be disrupted [6]. Severe sepsis 
is usually accompanied by multiple organ failure, 
and in the process of organ dysfunction, the lung is 
frequently the first to fail [7, 8]. The pathogenesis of 
sepsis-induced acute lung injury was related to the 
overexpression of cytokine-mediated inflammation 
[9]. Within sepsis, a large number of endotoxins such 
as lipopolysaccharides (LPSs) are commonly secret-
ed from Gram-negative bacteria [10]. LPS activates 
Toll-like-receptor-4 and co-receptor CD14, thereby 
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triggering the mitogen-activated protein kinase 
signaling pathways, including the p38, extracellular 
signal-related kinase pathway (ERK), and c-Jun 
N-terminal kinase pathways [11, 12]. However, the 
mechanisms underlying acute lung dysfunction caused 
by sepsis have not yet been well defined. 

Insulin-like growth factor (IGF) signaling contrib-
utes to cell growth and differentiation and continues 
its role throughout life by triggering cell proliferation 
and inhibiting cell apoptosis [13]. Some studies have 
indicated that IGF-binding proteins (IGFBPs) acts 
as a part of transporters of IGFs, extending their 
half-life, and regulating their access to their receptors 
[14, 15]. IGFBP7 is a secreted protein with IGF-1, 
insulin and activin A binding properties that possess 
IGF-independent activity [16, 17]. IGFBP7 is a po-
tential tumor endothelial cell marker that is expressed  
at higher levels in tumor-associated endothelium than 
in normal endothelial cells. Tumorigenesis [18], the 
cellular senescence and apoptosis are also regulated 
by IGFBP7 through the ERK signaling pathway 
[19–21]. Recently, multiple studies have revealed 
that the ERK pathway plays an important role in the 
pathogenesis of LPS-induced lung injury [22, 23]. 
However, the effect of IGFBP7 in sepsis-induced 
acute lung injury remains unclear. In the present 
study, we designed and performed experiments to 
demonstrate the potential mechanism of IGFBP7 and 
ERK signaling pathway in sepsis-induced acute lung 
injury in MPVECs and mice. In this study we provide 
evidence that knockdown of IGFBP7 suppressed 
sepsis-induced acute lung injury through ERK1/2 
signaling inhibition. 

Methods

Animal model. Wild type C57BL/6J male mice (8–10 weeks 
of age, weight 18 ± 2 g) were obtained from Weitong Lihua 
Biology Company (Beijing, China). All animal experiments 
were approved by the Experimental Animal Welfare Ethics 
Committee of Zhejiang Academy of Traditional Chinese 
Medicine and conducted in accordance with the guidelines of 
the Animal Care. Twenty-four mice were randomly divided 
into four experimental groups: (1) sham group, (2) cecal 
ligation puncture (CLP) group, (3) CLP + Ad-shNC group, 
and (4) CLP + Ad-shIGFBP7 group. Before the surgery, 
all animals were anesthetized by intraperitoneal administra-
tion of pentobarbital (50 mg/kg). The sham group without 
ligating or puncturing the cecum served as sham-operated. 
The CLP group was subjected to cecal ligation and punc-
ture (CLP) surgery [24]. The animals received injection of 
negative control (NC) Ad-shNC or Ad-shIGFBP7 (5’‐GGA-
CAUCUGGAACGUCACUTT‐3’) before the CLP surgery. 
To arise the knockdown efficiency, a second administration 

of the adenovirus was performed 72 hours later. Two weeks 
after the first injection, the mice were ready for use in the 
experiments. One week later, mice were anesthetized with 
pentobarbital sodium and both lungs were harvested and 
kept frozen at −80°C until analysis.

Hematoxylin and eosin (H&E) staining. The lung tissues 
from the mice were fixed with 10% buffered paraformalde-
hyde for 24 hours, then embedded in paraffin and sectioned 
at a thickness of 5 μm. After hematoxylin and eosin (H&E) 
staining, the pathological changes of lung tissues were grad-
ed using the double-blind method. 

Cell culture. The MPVECs were isolated from C57BL/6 
mice. Shortly, mice were anesthetized with pentobarbital 
sodium and lungs were isolated from the thoracic cavity and 
perfused with phosphate-buffered saline (PBS) containing 
heparin. The lateral lobe was cut into small pieces under 
sterile conditions, placed in a dish which coated with 0.1% 
gelatin and cultured in DMEM (Gibco, Invitrogen, USA) 
with 20% FBS. The expression of cluster of differentiation 
31 (CD31) was used for the identification of the charac-
terization of primary cultured MPVECs [25]. Cells were 
transfected with shIGFBP7 or shNC lentiviral particles with 
10 μg/ml Polybrene (Santa Cruz Biotechnology Inc., Santa 
Cruz, CA, USA) before co-treatment with LPS for 48 hours. 
After incubation with lentiviral particles for 24 h, trans-
duced cells were selected with puromycin (Sigma-Aldrich, 
Milwaukee, WI, USA). 

Western blot analysis. The total protein was extracted 
from the lung tissue of C57BL/6 mice and MPVECs. The 
protein concentrations in the lung tissue homogenate or 
lysate of MPVECs were detected by BCA Protein Assay Kit 
(23227, Thermo Fisher Scientific, San Jose, CA, USA). The 
protein samples were separated on 10% SDS-Polyacryla-
mide gel and transferred onto nitrocellulose membrane. 
After blocking with 5% nonfat milk, the membrane was 
incubated with specific primary antibodies purchased from 
Abcam (Abcam, Cambridge, MA, USA), including IGFBP7 
(ab74169), ERK1/2 (ab17942), p-ERK1/2 (ab214362) and 
actin (ab179467), Abcam) at 4° C overnight, followed with 
incubation with secondary antibodies (ab131368, Abcam) 
at room temperature. The signals were measured by Image 
J software (US National Institutes of Health, Bethesda, 
MD, USA).

Cell viability assay. The viability of MPVECs was assessed 
by the MTT assay kit (ab211091, Abcam) according to the 
manufacturer’s instructions. Cells were seeded into 96-well 
plates at a density of 5 × 104/well. After experiment, MTT 
solution was added into each well and incubated at 37‐ for 
5 hours. Then, the medium was removed and DMSO was 
added into each well. The absorbance of the developed color 
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(590 nm) was detected by a microplate reader (Bio-Rad, 
Hercules, CA, USA).

Lactate Dehydrogenase (LDH) release assay. To determine 
the activity of cytoplasmic enzyme released by damaged 
MPVECs, LDH release was measured by LDH kit (ab65393, 
Abcam) according to the manufacturer’s instructions. The 
intensity of released LDH in the culture was measured at 
490 nm in a microplate reader. The cell viability was reflected 
by the rate of LDH activity released into the medium to total 
cellular LDH activity.

Cell apoptosis analysis. After being transfected with or 
without shIGFBP7 and treated with LPS, MPVECs were 
harvested and the apoptosis rate was analyzed by Annexin 
V-fluorescein isothiocyanate (FITC) apoptosis detection 
kit (ab14085, Abcam) according to the manufacturer’s in-
struction. Cells were resuspended to 0.5 × 106 cells/mL in 
Annexin V binding buffer containing propidium iodide (PI) 
and Annexin V-FITC, and incubated for 15 min at room 
temperature in the dark. Cell apoptosis in MPVECs was 
measured with flow cytometry (BD Biosciences, San Diego, 
CA, USA) using the 488 nm detector for Annexin V-PI.

Statistical analysis. Biochemical values are expressed as 
mean ± standard deviation (SD). Statistical differences 
for multiple groups and the significance were evaluated 
using one-way analysis of variance followed by Student 
Newman-Keuls test. P values less than 0.05 were considered 
significant.

Results

Knockdown of IGFBP7 attenuated cecal ligation 
and puncture-induced acute lung injury in mice
To identify the mechanism of IGFBP7 action in 
acute lung injury during sepsis, the protective effect 
of IGFBP7 shRNA was evaluated in CLP-induced 
sepsis in mice. Male C57BL/6 mice were randomly 
divided into four groups: sham, CLP model, CLP + 
shNC, and CLP + shIGFBP7. Two weeks after the 
first shIGFBP7 or shNC injection, the mice were used 
for the experiments. 

The effects of IGFBP7 on CLP-induced acute 
lung injury were histologically evaluated. Compared 
with the sham group, the lung tissues isolated from 
the CLP and CLP + shNC groups showed abnormal 
histological features, including acute alveolar damage, 
congestion, and thickened alveolar walls (Fig. 1A). 
However, injected with IGFBP7 shRNA after CLP 
modeling significantly prevented CLP-induced acute 
lung-tissue damage. 

The effect of CLP on IGFBP7 expression was ana-
lyzed after CLP modeling by western blot. Compared 
with the sham group, the expression levels of IGF-
BP7 in lung tissue were significantly increased after 
CLP modeling. IGFBP7 shRNA treatment reduced 
IGFBP7 expression compared with that of the CLP 
group (Fig. 1B). The lung wet-to-dry (W/D) weight 
ratio also significantly increased after CLP-induced 
sepsis while significantly decreased in the CLP + 
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Figure 1. Effects of IGFBP7 in cecal ligation and puncture-induced acute lung injury. A. The lung tissue sections were staining 
by hematoxylin and eosin. Representative morphological changes of the lung tissues obtained from mice of different groups. 
B. The expression levels of IGFBP7 were assessed by western blot. C. The lung W/D (wet-to-dry) ratio from different groups. 
**p < 0.001 compared with Sham; ##p < 0.001 compared with CLP.
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shIGFBP7 group (Fig. 1C). These results suggested 
that inhibition of IGFBP7 attenuated CLP-induced 
lung changes and thus may be critical in regulating 
lung function during sepsis.

Knockdown of IGFBP7 attenuated LPS-induced 
acute damage of MPVECs
To investigate the role of IGFBP7 in sepsis-induced 
acute lung injury, LPS induction of MPVECs was 
used to mimic the sepsis-induced lung dysfunction. 
MPVECs were transfected with shIGFBP7 or shNC 
before treatment with LPS (5 μg/mL) for 48 h (the 
dose of LPS and duration of treatment were based 
on previous study [26]). LPS treatment was found to 
significantly up-regulate the levels of IGFBP7 com-
pared with the control group (Fig. 2A). Conversely, 
shIGFBP7 transfection significantly decreased the 
LPS-induced IGFBP7 expression compared with 
MPVECs without transfection.

MTT assay showed that the viability of MPVECs in 
the LPS treatment group was significantly lower than 
in the control group, but not in the group transfected 
with shIGFBP7 (Fig. 2B). To explore the protective 
mechanism of IGFBP7 inhibition on LPS-induced 
cellular injury, cytotoxicity was measured by LDH 
assay. As expected, LPS treatment significantly in-
duced MPVECs’ damage by increasing LDH release, 
whereas the shGFBP7 transfection significantly atten-
uated the LPS-induced LDH release from MPVECs 
(Fig. 2C). These results indicated that knockdown of 
IGFBP7 attenuated LPS-induced negative changes 
in MPVECs.

Knockdown of IGFBP7 suppressed LPS-induced 
apoptosis of MPVECs
To investigate the involvement of IGFBP7 in the reg-
ulation of LPS-induced apoptosis, the apoptosis rate 
in different groups was determined by flow-cytometry 
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Figure 2. IGFBP7 knockdown attenuates LPS-induced acute injury in MPVECs. MPVECs were transfected with shIGF- 
-BP7 or shNC and treated with or without LPS (2 μg/mL) for 48 h. A. IGFBP7 expression was measured by western blot.  
B. MPVECs were treated with LPS and cell viability was measured by MTT assay. C. The cytotoxicity level in different groups 
was measured by the LDH assay. **p < 0.001 compared with the control group; ##p < 0.001 compared with LPS group.
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analysis. As shown in Figure 3, the apoptosis rate of 
MPVECs was significantly higher in the LPS-treated 
cells than in the control group. Furthermore, when 
shIGFBP7 treatment was conducted in the LPS-in-
duced MPVECs the cellular apoptosis rate was sig-
nificantly suppressed. These results indicated that the 
knockdown of IGFBP7, contributed to the reduction 
of LPS-induced apoptosis of MPVECs.

Knockdown of IGFBP7 inhibited the LPS-induced 
activation of the ERK1/2 pathway in MPVECs 
To clarify the potential mechanism by which IGFBP7 
regulated LPS-induced MPVECs’ damage, activation 
of ERK1/2 pathway was measured by western blot. 
LPS induction significantly enhanced the expression 
of p-ERK1/2 but not that of total ERK1/2. By contrast, 
treatment of LPS-treated cells with shIGFBP7 signif-
icantly decreased the expression levels of p-ERK1/2 
in MPVECs (Fig. 4). Therefore, knockdown of IGF-
BP7 may alleviate the LPS-induced activation of the 
ERK1/2 pathway in MPVECs.

Discussion

Sepsis is a common and serious condition in surgical 
patients. It can be caused by a serious bacterial infection 

in the abdominal cavity and is accompanied by fever with 
or without hypotension [27]. A critical characteristics of 
abdominal sepsis is the release of endotoxins inducing 
the overexpression of the innate immune system and 
inflammatory responses that lead to tissue injury in the 
lungs and other organs [28, 29]. Acute lung injury is the 
primary complication in sepsis during the continuous 
development of multiple organ dysfunction [30, 31]. 
Lung edema, inflammatory cell infiltration, and intrapul-
monary hemorrhage have been identified as the typical 
pathological manifestations of sepsis-induced acute 
lung injury [32]. The change of the alveolar capillary 
membrane permeability, inflammatory cell aggregation 
by production of inflammatory chemokines and release 
of other inflammatory mediators have been identified 
as characteristics of acute lung injury.

In the present study, we examined the essential 
mechanisms of IGFBP7 influence on CLP-induced 
acute lung injury in mice. Our findings showed that the 
expression level of IGFBP7 in lung tissue was signifi-
cantly increased after CLP modeling, and knockdown 
of IGFBP7 suppressed pro-inflammatory response 
in lung tissue, such as alveolar-wall thickening, and 
acute alveolar damage. In addition, IGFBP7 silencing 
in MPVECs markedly suppressed cell apoptosis and 
ERK1/2 activation in LPS-stimulated cells. These 
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Figure 3. IGFBP7 knockdown suppresses LPS-induced cellular apoptosis in MPVECs. MPVECs were transfected with 
shIGFBP7 or shNC and treated with or without LPS (2 μg/mL) for 48 h. The apoptosis rate in different groups was measured 
by flow cytometry. **p < 0.001 compared with the control group; ##p < 0.001 compared with LPS group.
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changes in lung-tissue pathophysiology were related 
to the altered viability of MPVECs. 

Several molecules are involved in the pathogenesis 
of sepsis-induced injury, which is usually accompanied 
by the robust activation of complement system. The 
pathogen is removed; however, inflammation and 
organ damage still ensue. Extensive evidence sug-
gests that IGFBP7 could regulate cell proliferation, 
adhesion, senescence, migration, apoptosis, and an-
giogenesis in breast, lung, and colorectal cancers [16]. 
Previous studies have reported that IGFBP7 induces 
cell-cycle arrest at G1 phase by directly enhancing the 
expression of p21 and p53, which could function as  
a biomarker of sepsis-induced acute kidney injury [26, 
33]. In the present study, the expression levels of IG-
FBP7 in lung tissue were significantly increased after 
sepsis-induced acute lung injury, and the inhibition of 
IGFBP7 attenuated sepsis-induced lung dysfunction. 
These results indicated that IGFBP7 was involved in 
sepsis-induced lung tissue dysfunction. Vizioli et al. 
reported that IGFBP7 expression markedly enhances 
the activation of the mitogen-activated protein ki-
nase ERK1/2, and ultimately results in the secretion 
of pro-inflammatory cytokines [34]. The ERK1/2 
pathway also plays a critical role in IL-13-induced 
lung inflammatory response and LPS-induced acute 
lung injury [35]. Similar results were obtained in the 
present study, i.e., knockdown of IGFBP7 alleviated 
the LPS-induced activation of the ERK1/2 pathway in 
MPVECs. Other investigators received similar results 
regarding IGFBP7-dependent ERK1/2 activation in 
sepsis-induced acute kidney injury [26]. This finding 
corroborated our results regarding sepsis-induced 
acute lung injury and indicated that the IGFBP7 reg-
ulation of lung-tissue damage was ERK dependent. 

In conclusion, this research demonstrated for the 
first time that IGFBP7 was strongly up-regulated 
in sepsis-induced acute lung injury, thereby aggra-
vating the lung inflammatory response and organ 
dysfunction. IGFBP7 silencing attenuated sepsis-in-
duced apoptosis and cytotoxicity in MPVECs. Fur-
thermore, the activation of ERK1/2 was regulated 
by IGFBP7 through sepsis-induced inflammation. 
Overall, IGFBP7 may serve as a diagnostic marker 
and therapeutic target in sepsis-induced acute lung 
injury; however, further molecular and clinical stud-
ies are still needed.
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