RhTSG-6 inhibits IL-1β-induced extracellular matrix degradation and apoptosis by suppressing the p38, and JNK pathways in nucleus pulposus cells

Shishen Pei¹, ², ³, Jinwei Ying², Yan Zhang², Linhao Su², Shi Cheng², Dike Ruan¹, ²

¹The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
²Department of Orthopedic, Navy General Hospital, Beijing, People’s Republic of China
³Department of Orthopedic Surgery, The 4th People’s Hospital of Hengshui City, Hebei, People’s Republic of China

Abstract

Introduction. Intervertebral disc degeneration (IDD) is one of the major causes of low back pain (LBP) which seriously affects health and normal physical activity. Recombinant human tumor necrosis factor-α (TNF-α) induced protein 6 (rhTSG-6) has been reported to have therapeutic effects on a variety of inflammatory diseases, but the effect and mechanism of rhTSG-6 action in IDD are not fully understood. The present study was aimed to explore the functional role of rhTSG-6 in interleukin (IL)-1β-induced nucleus pulposus (NP) cell model.

Materials and methods. Experimental human NP cells were isolated from the patients with idiopathic scoliosis and treated with culture medium containing IL-1β (10 ng/mL) for 24 hours to induce extracellular matrix degradation and apoptosis, simulating an IDD model in vitro. The viability of NP cells was analyzed by the CCK-8 assay. The relevant mRNA and protein levels were measured by RT-qPCR and western blot. The apoptosis of NP cells was determined by flow cytometry analysis and western blot.

Results. Compared with the NP cells without IL-1β treatment, IL-1β caused approximately 70% reduction in the viability of NP cells, while RhTSG-6 partly increased the decrease of IL-1β on cell viabilities. Moreover, treatment with RhTSG-6 considerably attenuated the upregulation of extracellular matrix (ECM)-catabolic factors (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5), and increased the downregulation of ECM-anabolic factor (collagen II) in NP cells induced by IL-1β, indicating that ECM degradation was suppressed. Furthermore, rhTSG-6 also protected NP cells from IL-1β-induced apoptosis. Mechanically, rhTSG-6 inhibited the activation of members of mitogen-activated protein kinase (MAPK) pathway by blocking the phosphorylation of p38, c-Jun N-terminal kinase (JNK) and ERK in IL-1β-induced NP cells.

Conclusions. RhTSG-6 can attenuate ECM degradation and apoptosis in IL-1β-induced NP cells by inhibiting the p38, JNK and ERK pathways, which may contribute to its potential application in the therapy of IDD. (Folia Histochemica et Cytobiologica 2020, Vol. 58, No. 3, 227–234)

Key words: intervertebral disc degeneration; rhTSG-6; extracellular matrix degradation; apoptosis; IL-1β; nucleus pulposus cells

Introduction

Low back pain (LBP) is a common and multifactorial debilitating disease worldwide, leading to severe dis-ability and a significant socio-economic burden [1]. Intervertebral disk degeneration (IDD) is believed to be one of the leading causes of LBP, which confuses 80% of the world’s population [2]. Intervertebral disks (IVDs) are very important components of the human spine structure, maintaining the stability of the spine. IVDs are composed of the inner glycosaminoglycans (GAGs)-rich nucleus pulposus (NP) surrounded by the outer collagen-rich annulus fibrous (AF) and cartilaginous endplate (CEPs) [3]. As
the IDD progressed, the levels of pro-inflammatory cytokines (including TNF-α, IL-1β, IL-6 and etc.) and cell apoptosis increased. Moreover, during IDD the production of extracellular matrix (ECM)-catabolic proteinases [including disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS, which is a superfamily of 26 secreted molecules composed of ADAMTS proteases and ADAMTS-like proteins, and has the function of degrading ECM [4] and matrix metalloproteinases (MMPs)] were elevated, while the synthesis of type II collagen and aggrecan was decreased in NP tissue [5, 6]. Admittedly, up-regulated ADAMTS (including ADAMTS-4 and ADAMTS-5) and matrix MMPs (including MMP-1, MMP-3, MMP-7, MMP-9, and MMP-13) are responsible for the degradation of ECM components [4, 7, 8]. Therefore, inhibiting NP cell apoptosis and ECM degradation by NP cells may be therapeutic targets for delaying IDD.

IL-1β and other pro-inflammatory cytokines are expressed at high levels in degenerative IDD tissues and cells and have been demonstrated to play essential roles in development of IDD [9–11]. IL-1β has also been reported to regulate pathological processes of NP cells in the disk, including inflammatory response, cell apoptosis, and MMP production and ECM homeostasis, further leading to destruction of the physiological structure and function of IVD and the instability of the spine, which ultimately causing LBP [12, 13]. Induction of NP cells with IL-1β has been widely reported as an in vitro model for simulating the process of IVD [14–16]. Mechanically, reversing the effect of IL-1β on the cell apoptosis and ECM degradation of NP cells may delay the progression of IDD.

Tumor necrosis factor-α (TNF-α)-induced protein 6 (TSG-6) is a 35 kDa protective inflammatory response protein that mediates inflammatory cell migration, adhesion, involvement in immune regulation and extracellular matrix remodeling by binding to hyaluronic acid, chondroitin sulfate or proteoglycans, and thus plays an inflammatory regulatory role [17–21]. Numerous evidences have demonstrated that administration of recombinant human TSG-6 (rhTSG-6) has been used in a variety of disease models and has demonstrated a broad and strong anti-inflammatory effect. Tuo et al. demonstrated that rhTSG-6 could stabilize retinopathy in Ccl2−/−/Cx3cr1−/− mice [22]. Li et al. found that rhTSG-6 could regulate microglia polarization in rats with subarachnoid hemorrhage and reduce inflammatory brain injury [23]. The protective effects of rhTSG-6 have also been well studied in osteoarthritis. TSG-6 is reported to be up-regulated in rheumatoid arthritis and osteoarthritis and as a biomarker for the progression of knee osteoarthritis [24, 25]. Mindrescu et al. indicated that rhTSG-6 improved collagen-induced arthritis in DBA/1J mice [26]. Tellier et al. suggested that TSG-6 could attenuate cartilage damage in a rat model of osteoarthritis [27]. A recent study showed that TSG-6 secreted by bone marrow mesenchymal stem cells (BMSCs) attenuated IL-1β-induced NP cell degeneration by inhibiting the activation of the TLR2/ /NF-κB signaling pathway [28]. However, the effects of rhTSG-6 on apoptosis and ECM degradation in IL-1β-induced NP cells still remain unclear.

In this study, we aimed to investigate the influence of rhTSG-6 on ECM degradation and apoptosis in IL-1β-induced NP cells and to explore its potential molecular mechanism.

Materials and methods

Isolation and culture of NP cells. NP cells were isolated from 10 patients with idiopathic scoliosis (average age 22.8 years, range 18–45) as described in previous studies [15, 28]. Thereafter, NP cells were cultured in DMEM/F12 (Gibco, Rockville, MD, USA) containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin mix at 37°C in a humidified atmosphere with 5% CO₂.

Cell viability analysis. Cell viability was evaluated by Cell Counting Kit-8 (CCK-8; Dojindo Co, Kumamoto, Japan). The NP cells were seeded in a 96-well plate at a density of 5 × 10⁵ cells/well until reaching 80–90% confluence. The cells were treated with different concentrations of rhTSG-6 (0, 0.5, 1, 1.5, 2 μg/mL) to determine its effects on viability of NP cells. The cells were pre-treated with different concentrations of rhTSG-6 (0, 0.5, 1, 1.5, 2 μg/mL) for 2 h in NP cells then treated with or without 10 ng/mL IL-1β for 24 h at 37°C. Subsequently, 10 μL of CCK-8 solution was added into each well and the cells were incubated at 37°C for 2 h. The optical density at 450 nm was measured using a microplate reader (BioTek Instruments, Inc., Winooski, VT, USA).

RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNAs were extracted from cells and using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. First-strand cDNA was reverse transcribed from RNAs using reverse transcriptase kit (Takara, Dalian, China). qRT-PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, CA, USA). Relative expression levels were calculated with the 2−ΔΔCt method and normalized to GAPDH. The sequence of primers used for RT-qPCR analysis were as follows: MMP-3, forward: 5’-AAAAATCAAGCGCAGCCGAGAG-3’, and reverse: 5’-CTTGCCTATAAACAGCGTGCTG-3’; MMP-13, forward: 5’-GATGCCCTACTGGGT
RhTSG-6 inhibits ECM degradation and apoptosis in IL-1β-induced NP cells

©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2020
10.5603/FHC.a2020.0019
www.journals.viamedica.pl/folia_histochemica_cytobiologica

GGAG-3' and reverse: 5'-AAAGACGGAAATGGGAGA-3';
ADAMTS-4, forward: 5'-ACCCAAGCATCCGCAATC-3' and reverse: 5'-TTTCCCTTGTCGAGATG-3';
Collagen II, forward: 5'-CTCCATGTTGCAGAAGACTTTCA-3' and reverse: 5'-TTCATGCATCCGCTAGTCCCTTCT-3';
GAPDH, forward: 5′-CGAGATCCCTCCAAAATCAA-3′ and reverse: 5′-TTCACACCCATGACGACACAT-3′.

Western blot. Total proteins were extracted by using RIPA lysis buffer (Beyotime Biotechnology Co., Ltd., Shanghai, China) and separated with 10% SDS-PAGE and transferred onto a PVDF membrane. After blocking with 5% non-fat milk in TBST for 30 minutes at room temperature. Then the stained cells were analyzed using a FACS flow cytometer (BD Biosciences, San Jose, CA, USA).

Flow cytometry analysis. Cell apoptosis was determined using the Annexin V-FITC Apoptosis Detection kit (Beyotime Biotechnology Co., Ltd., Shanghai, China) according to the manufacturer’s instructions. Briefly, cells were collected, washed, and stained with 10 μL of Annexin V-FITC buffer and 10 μL of propidium iodide (PI) in dark for 30 minutes at room temperature. Then the stained cells were analyzed using a FACScan flow cytometer (BD Biosciences, San Jose, CA, USA).

Statistical analysis. All data were expressed as mean ± SD of three independent experiments. Statistical analysis was performed by using SPSS20.0 (SPSS, Inc., Chicago, IL, USA). Significant differences were evaluated using student’s t test or one-way ANOVA. P < 0.05 was considered as statistically significant.

Results

Cell viability of human NP cells following treatment with rhTSG-6

Firstly, NP cells were treated with different concentrations (0, 0.5, 1, 1.5, 2 μg/mL) of rhTSG-6, and cell viabilities were determined by using CCK-8 assay. As revealed in Figure 1B, rhTSG-6 did not show any cytotoxic effect on NP cells, but it could alleviate the cytotoxic effects of IL-1β on NP cells. Our findings showed that IL-1β caused approximately 70% reduction in the viability of NP cells, while rhTSG-6 co-treatment could grad-
usually reverse the inhibitory effect of IL-1β on cellular viability in a dose-dependent manner, especially at the concentration of 2 μg/mL (Fig. 1B). Therefore, the concentration of rhTSG-6 used in our subsequent experiments was 2 μg/mL.

Inhibitory effects of rhTSG-6 on IL-1β-induced ECM degradation in human NP cells

To investigate whether rhTSG-6 affects IL-1β-induced ECM degradation in human NP cells, the expression levels of the mRNA and protein associated with ECM progression of NP cells were detected by western blot and RT-qPCR (Fig. 2A and B). The results showed that IL-1β significantly increased the mRNA and protein expression levels of MMP3, MMP13, ADAMTS-4, ADAMTS-5 and collagen II, whereas the effects induced by IL-1β stimulation were alleviated by rhTSG-6 treatment (Fig. 2C).

RhTSG-6 protects NP cells against IL-1β-induced apoptosis

Since cell apoptosis is closely related to the development of IDD, our study further explored the effect of rhTSG-6 on apoptosis of IL-1β-induced NP cells. Flow cytometry analysis demonstrated that IL-1β increased the apoptosis rate of NP cells, whereas rhTSG-6 prevented the apoptosis of NP cells induced by IL-1β. Consistently, the protein level of Bcl-2 (anti-apoptotic protein) was decreased, and the expression level of cleaved caspase-3 (pro-apoptotic protein) was increased in the IL-1β-stimulated NP cells, whereas the effects induced by IL-1β stimulation were alleviated by rhTSG-6 treatment (Fig. 3C).

Effects of rhTSG-6 on the IL-1β-induced activation of p38, JNK and ERK signaling pathways in NP cells

To elucidate the potential mechanisms responsible for rhTGF-6 protective effect on IL-1β-induced NP cells, we evaluated the role of rhTFG-6 in regulating p38 and JNK pathways. As displayed in Figure 4A, the levels of phosphorylated p38, phosphorylated JNK and phosphorylated ERK were significantly increased by IL-1β treatment, indicating activation of the p38, JNK and ERK pathways in the IL-1β-treated human NP cells. However, co-treatment with rhTFG-6 markedly inhibited IL-1β-induced activation of the p38, JNK and ERK pathways.

Discussion

IDD is a major cause of LBP which seriously endangers public health and has become a serious public health problem with high disease rate, disability rate and high medical costs [29, 30]. IDD is characterized by...
RhTSG-6 inhibits ECM degradation and apoptosis in IL-1β-induced NP cells

Figure 3. RhTSG-6 protects NP cells against IL-1β-induced apoptosis. A. Flow cytometry was used to detect the cell apoptosis of NP cells by the Annexin V-FITC Apoptosis Detection kit. B. Western blot analysis was used to determine the protein expression of Bcl-2 and cleaved caspase-3. GAPDH served as an internal control. Data are expressed as mean ± SD, *P < 0.05, **P < 0.01.

Figure 4. Effects of rhTSG-6 on the IL-1β-induced activation of p38, JNK and ERK in NP cells. A. The effects of rhTSG-6 on p38, p-P38, JNK, p-JNK, ERK and p-ERK were determined by western blot analysis. GAPDH served as an internal control. Data are expressed as mean ± SD, *P < 0.05, **P < 0.01.

Increased apoptosis of NP cells and hyperactive ECM degradation [11]. Current evidence suggests that decreasing NP cell apoptosis and increasing expression of some important ECM components may provide a therapeutic strategy for IDD [31–33]. In this study, in vitro model of IDD degeneration was successfully constructed by IL-1β-induced NP cells. We provided the first evidence that in human IL-1β-treated NP cells rhTSG-6 has inhibitory effects on cell apoptosis and expression of ECM-degrading molecules, and that potential regulatory mechanism is mediated by the activation of p38, JNK and ERK pathways.

TSG-6 is a pleiotropic regulatory protein secreted by pro-inflammatory mediator-induced (including TNF-α and IL-1β) immune cells (such as neutrophils, monocytes, macrophages, medullary dendritic cells), and stromal cells (such as fibroblasts and smooth muscle cells) [34–36]. TSG-6 is quickly activated early in the inflammatory process and plays an anti-inflammatory role. The protective effects of TSG-6 secreted by bone marrow mesenchymal stem cells in IDD has been proved by a recent study, which focused on the mechanism of reducing inflammation, especially its role in inhibiting the expression of inflammatory cytokines via TLR2/NF-κB signaling [28]. Since the mechanism of inhibiting IDD may involve many aspects, the present study explored the effects of exogenous addition of rhTSG-6 on the changes of some important ECM components' expression and cell apoptosis in IL-1β-induced NP cells. Consistent with the results of the previous study [28], rhTSG-6 decreased the expression of MMP3 and MMP13, and increased the expression of collagen II in IL-1β-induced NP cells. Furthermore, the inhibitory effect of rhTSG-6 on IL-1β-induced NP cell apoptosis was demonstrated by flow cytometry and western blot analysis. These results reveal that rhTSG-6 has the potential to regulate the progression of IDD by inhibiting ECM degradation and cell apoptosis of NP cells.
IDD-associated inflammation is capable of activating various intracellular signaling pathways that mediate the production of downstream effectors that are closely related to the progression of IDD [37]. P38, JNK and ERK, as important members of mitogen-activated protein kinase (MAPK) pathway, have been reported as key signaling pathways regulating IDD [38–42]. Hua et al. demonstrated that icariin, an anti-inflammatory drug isolated from Epimedium brevicornum, inhibits IL-1β-induced inflammatory response and ECM reduction through suppressing the p38/MAPK pathway in human NP cells [43]. Lin et al. suggested that Propionibacterium acnes induces IDD by promoting NP cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway [44]. Besides, a recent study proved that simvastatin suppresses IL-1β-induced IL-1β-induced inflammatory response and ECM degradation by inhibiting the p38, JNK and ERK phosphorylation [16]. Therefore, the activation of p38, JNK and ERK signaling pathway may exacerbate IDD. RhTSG-6 has been reported to inhibit p38, JNK and ERK pathways in various disease models [28, 45–47]. Hence, we supposed that p38, JNK and ERK pathways might be involved in the regulatory effects of rhTSG-6 on ECM degradation and cell apoptosis in the in vitro IDD model. To confirm our hypothesis, western blot was performed to detect the expression changes of p-p38, p-JNK, and p-ERK. The results revealed that rhTSG-6 could inhibit the P38, JNK and ERK pathway, thus explaining the effects of rhTSG-6 on NP cell apoptosis and possible ECM degradation described above.

In conclusion, this study suggested that rhTSG-6 could inhibit the IL-1β-induced ECM degradation and cell apoptosis through inhibiting the P38, JNK and ERK pathways and should be further investigated as a possible novel therapeutic approach treatment for IDD.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

RDK and PSS conceived and designed the experiments, YJW and ZY analyzed and interpreted the results of the experiments, SLH and CS performed the experiments.

References

© Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2020
10.5603/FHC.a2020.0019

www.journals.viamedica.pl/folia_histochemica_cytobiologica
RhTSG-6 inhibits ECM degradation and apoptosis in IL-1β-induced NP cells

Folia Histochem Cytobiol. 2020; 10.5603/FHC.a2020.0019

www.journals.viamedica.pl/folia_histochemica_cytobiologica

Submitted: 3 June, 2020
Accepted after reviews: 1 September, 2020
Available as AoP: 16 September, 2020