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Abstract
Introduction. Uveal melanoma (UM) is the most common primary eye tumour in adults. Distant metastases 
are seen in 50% of cases regardless of treatment, which contributes to high mortality rates. Polo-like kinase-1 
(PLK-1) is a protein regulator of mitotic entry and cytokinesis. Increased PLK-1 expression has been shown in 
different tumours, which makes its inhibition a potential treatment target. To date, no study has been published 
to discuss the prognostic role of PLK-1 expression in patients with uveal melanoma.
Material and methods. We assessed by immunohistochemistry PLK-1 expression in uveal melanoma cells 
collected in 158 patients treated by primary enucleation. We determined the correlation between PLK-1 levels 
evaluated by the immunoreactivity scale (IRS) method and detailed clinical as well as histological parameters. 
Additionally, we determined the association between PLK-1 expression levels and long-term prognosis.
Results. Elevated PLK-1 expression in tumour cells, defined as IRS >2, was observed in 70% (111/158) of cases, 
whereas low expression or no expression was seen in the remaining 30% (47/158) of patients. There was a sig-
nificant correlation between low PLK-1 expression and a higher clinical tumour stage (pT, p = 0.04) as well as  
a higher AJCC prognostic stage group (p = 0.037). We observed an inverse correlation between PLK-1 expression 
and tumour cell pigment content (p = 0.0019). There was no correlation between PLK-1 expression and other 
histological parameters such as mitotic rate or histological subtype. The Kaplan-Meier’s analysis demonstrated 
that low PLK-1 expression was associated with significantly reduced overall survival (p = 0.0058). A similar 
trend, albeit not significant, was observed for disease-free survival (p = 0.088).
Conclusions. Downregulated PLK-1 expression is a negative prognostic factor in uveal melanoma. It warrants 
further, multicentre research on prognostic role of PLK-1 expression and possibility of PLK-1 inhibition in uveal 
melanoma. (Folia Histochemica et Cytobiologica 2020, Vol. 58, No. 2, 108–116)
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Introduction

Uveal melanoma (UM) is the most common primary 
eye tumour in adults. The incidence in the general 
population is below 10 cases per million population 
per year [1]. We have previously discussed epidemi-
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ology and prognostic factors in uveal melanoma in  
a comprehensive review [2]. Depending on the clini-
cal course of disease, chances for vision preservation 
and patient expectations, primary tumours can be 
effectively treated with brachytherapy, proton beam 
irradiation, transpupillary thermotherapy, local resec-
tion, endoresection, or enucleation. Regardless of the 
selected treatment modality, almost 50% of affected 
patients develop distant metastases, which contributes 
to very high mortality rates [2]. Conventional chemo-
therapy, isolated hepatic perfusion, immunoemboli-
sation, surgery and checkpoint inhibitors have very 
limited efficacy in metastatic UM with the median 
overall survival (OS) of 1.07 years (range: 0.59–2.50 
years) across all treatment modalities [3].

Polo-like kinase-1 (PLK-1) is a serine/threo-
nine-protein kinase consisting of a highly conservative 
N-terminal kinase domain (KD) of 252 amino-acids 
and a C-terminal Polo-box domain (PBD), that is, 
two conserved polo-box regions of 30 amino-acids 
connected via a short linker. An interaction with 
peptides phosphorylated by other kinases involved in 
the cell cycle changes the PBD conformation. Acting 
like a clip, it docks PLK-1 at its accurately selected 
target site during the appropriate stage of cell division 

[4, 5], whereby PLK-1 becomes a master regulator of 
mitosis and cytokinesis [6].

PLK-1 has been implicated in Cdk1-cyclin B activa-
tion at mitotic entry, centrosome maturation, bipolar 
spindle formation, activation of anaphase promoting 
complex/cyclosome (APC/C), accumulation of spindle 
assembly checkpoint (SAC) proteins at kinetochores, 
sister chromatid separation, as well as cytokinesis [7–9]. 
Furthermore, PLK-1 has recently been shown to play 
a role in microtubule dynamics, DNA replication, 
chromosome dynamics, p53 regulation, and recovery 
from the G2 DNA-damage checkpoint [10].

PLK-1 overexpression has been demonstrated in 
a number of human tumours, where it often corre-
lates with increased cellular proliferation and poor 
prognosis [11–18], e.g. in skin melanoma [19, 20]. 
Therefore, it is currently considered a prooncogenic 
factor, which exerts its effect by affecting cell cycle 
checkpoints and causing genetic instability. As such, 
it is the target of cancer therapies [21], which seems 
potentially plausible also in UM [22].

The aim of this study was to assess the PLK-1 expres-
sion in UM as well as its correlation with detailed clinical 
and pathological parameters, and long-term survival.

Material and methods

Patients. The study group consisted of 158 patients with 
uveal melanoma treated by primary enucleation at the De-

partment of Ophthalmology and Ocular Oncology, Medical 
College, Jagiellonian University in Krakow, Poland, diag-
nosed in 2002–2011. Patients were enrolled in the study based 
on the availability of their medical records and tissue speci-
mens, which included paraffin blocks and histological slides. 
Comprehensive clinical data was retrieved from the archived 
medical records, and details of diagnostic and therapeutic 
procedures performed were sourced out from the Ocular 
Oncology Outpatient Clinic, University Hospital, Krakow, 
Poland. The study was reviewed and approved by the ethical 
committees of the Jagiellonian University, Krakow, Poland 
(decision no. 122.6120.58.216), and the Wroclaw Medical 
University, Wroclaw, Poland (decision no. KB-500/2017). 

Records were reviewed for clinical and pathological data 
including age, sex, affected eye, largest basal diameter and 
thickness of the tumour, tumour staging (pT and AJCC prog-
nostic stage group), tumour location relative to the equator, 
ciliary body involvement, clinical tumour pigmentation and 
shape, concomitant glaucoma and/or retinal detachment, 
histological subtype, scleral and/or optic nerve infiltration, 
as well as tumour necrosis. Additionally, detailed histological 
parameters, such as mitotic rate, presence of tumour-in-
filtrating lymphocytes (TILs), nuclear pseudoinclusions 
(NPIs), intranuclear grooves, multinucleated giant cells 
and haemorrhage, as well as tumour cell pigmentation level 
were considered. The largest basal diameter and thickness 
of the tumour were described in line with the guidelines of 
the American Joint Committee on Cancer (AJCC) [23].

Immunohistochemistry. Paraffin blocks with tissues of 158 
primary uveal melanomas were cut with a microtome to pre-
pare 4 μm-thick sections which were subsequently mounted 
on sialinized slides (Agilent DAKO, Santa Clara, CA, USA). 
The slides then underwent automated dewaxing, rehydration 
and heat-induced epitope retrieval with EnVision Target 
Retrieval Solution (Agilent DAKO) for 30 min at 97°C 
in PT Link Pre-Treatment Module for Tissue Specimens 
(DAKO). Automated immunohistochemical staining with 
anti-PLK-1 (rabbit monoclonal antibody, 208G4; #4513; 
dilution 1:100; Cell Signalling Technology, Danvers, MA, 
USA) was performed in Autostainer Link 48 (DAKO) and 
Liquid Permanent Red (Agilent DAKO) was utilized as  
a detection system. Human colorectal adenocarcinoma was 
stained as positive control. Negative controls were processed 
using FLEX Rabbit Negative Control, Ready-to-Use (Agi-
lent DAKO) in place of the primary antibody.

Evaluation of PLK-1 expression. The expression of PLK-1 in 
UM cells (Fig. 1) was determined using the semi-quantitative 
method. The two IHC reaction parameters used were the 
percentage of cells with a positive cytoplasmic reaction (the 
percentage of reactive tissue) and the intensity of cytoplas-
mic PLK-1 reaction. The Remmele and Stegner semiquan-
titative immunoreactive score (IRS) was used to compute 
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the above parameters [24]. In the IRS, the percentage of 
reactive cells scores 0–4 points and staining intensity scores 
0–3 points. The ultimate IRS is a product of multiplication 
of the above parameters, ranging between 0 and 12 points.

Tumoural pigmentation was assessed using a three-step 
scale: 0 – lack of melanin or melanin was present in < 10% 
of melanoma cells; 1 (low): melanin was present in 11–50% 
of melanoma cells; 2 (high): melanin was present in 51–100% 
melanoma cells.

Statistical analysis. Statistical analysis was performed 
using the R language [25] and the survminer tool [26]. 
For the purposes of correlation analysis, we assumed 
a dichotomous division of PLK-1 expression into low 
and high corresponding to semiquantitative IRS of ≤ 2  
and > 2, respectively. In order to determine the overall 
survival (OS) and disease-free survival (DFS), Kaplan-Meier 
curves and the log-rank test were used; all analyses were 

carried out using the survival package for R [25, 26]. In order 
to determine the correlations between the PLK-1 expression 
and continuous variables, the Wilcoxon two-sample test 
was used. The correlations between PLK-1 expression and 
binary variables were determined using the Fisher’s exact 
test while the correlations with other categorical variables 
were determined using the chi-square test. The p value 
below 0.05 was considered significant for all comparisons.

Results

PLK-1 immunoreactivity in uveal melanoma cells
High PLK-1 expression, defined as IRS > 2, was observed 
in 70% (111/158) of specimens, whereas low expression or 
no expression was seen in the remaining 30% (47/158) of 
specimens, including undetectable PLK-1 expression in 
3.8% (6/158) of specimens (Fig. 1A–B). The mean IRS 
for PLK-1 expression in tumour cells was 4 (median: 4).

Figure 1. PLK-1 expression in uveal melanoma. A. Lack of PLK-1 immunoreactivity in neoplastic cells (400×). B. Enhanced 
expression of PLK-1 in uveal melanoma cells (200×). C. Kaplan-Meier analysis of the prognostic impact of PLK-1 expression 
in uveal melanoma patients. Downregulation of PLK-1 expression was significantly correlated with reduced overall survival 
(p = 0.0058). D. A similar trend as in (C), albeit not significant, was observed for disease-free survival (p = 0.088) (D).

C D
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Correlations of PLK-1 expression  
with clinical parameters
There was a significant inverse correlation between 
PLK-1 expression and the basal tumour diameter  
(p = 0.044). Similarly, there was a significant cor-
relation between low PLK-1 expression and higher 
clinical tumour stage (pT, p = 0.040) as well as AJCC 
prognostic stage group (p = 0.037). Interestingly, high 
PLK-1 expression was associated with more advanced 
age of patients (p = 0.0019), whereas low PLK-1 
expression was associated with a higher incidence of 
retinal detachment secondary to UM (p = 0.0076) 
(Table 1).

Correlations of PLK-1 expression  
with histological parameters
There was an inverse correlation between PLK-1 ex-
pression and tumour cell pigment content (p = 0.0019)  
and a positive correlation between PLK-1 expression 
and the presence of nuclear grooves (p = 0.017). On 
the other hand, low PLK-1 expression significantly 
correlated with the presence of nuclear pseudoinclu-
sions (NPIs) (p = 0.0071). There was no significant 
correlation between PLK-1 expression and other 
histological parameters such as mitotic rate or histo-
logical subtype (Table 2). 

The effect of PLK-1 expression on long-term survival 
The Kaplan-Meier’s analysis demonstrated that low 
PLK-1 expression was associated with significantly 
reduced overall survival (p = 0.0058). A similar trend, 
albeit not significant, was observed for disease-free 
survival (p = 0.088) (Fig. 1C–D).

Discussion

PLK-1 is a protein with important roles in the regu-
lation of the cell cycle. It is physiologically strongly 
expressed in tissues undergoing intensive prolifer-
ation, such as testes, thymus, and spleen, or during 
proliferative events such as in developing embryos 
etc. [27]. Hence, the question follows whether high 
PLK-1 expression in tumour cells is associated with 
oncogenesis or intense cell proliferation. Over 25 
years of PLK-1-related research, a number of papers 
have been published to characterise its mechanism of 
action, both in the cell cycle and in cellular response 
to DNA damage [28–30].

PLK-1 and the p53 tumour suppressor protein are 
closely related in an inhibitory feedback loop, which 
is the fundamental mechanism whereby PLK-1 par-
ticipates in oncogenesis [28]. High PLK-1 expression 
leading to cell cycle acceleration was demonstrated 
in tumour cells lacking functional p53. However, 

overexpression of PLK-1 inhibits the effect of p53. 
As a result, the cell is incapable of apoptosis in re-
sponse to DNA damage and continues to function 
with increasing genomic instability and aneuploidy 
[29, 31–36]. PLK-1 depletion breaks the vicious circle 
restoring the p53 function. Importantly, it also triggers 
tumour cell apoptosis whilst preserving normal cells 
[37–39]. Apart from interaction with p53, PLK-1 may 
regulate tumorigenesis by modulating Myc stability 
[40, 41] and affecting PTEN [42] as well as other 
tumour suppressors [43].

This provides the theoretical basis for the research 
of PLK-1 inhibitors, which block kinase domain 
or PBD [4]. One of them, volasertib, was granted  
a Breakthrough Therapy designation by the FDA [44] 
and reached Phase III of clinical trials in patients aged 
65 years and above with previously untreated acute 
myeloid leukaemia [45, 46]. Nevertheless, despite 
expectations based on preclinical study findings, no 
significant clinical success of PLK-1 inhibitors has 
been reported to date [47]. The search for more 
selective inhibitors is ongoing, as kinases, including 
those of the PLK family, can often exert opposing 
effects on tumour development [27, 47]. Using PLK-1 
inhibitors in combination therapy as agents reducing 
cancer resistance to other therapies, seems promising 
at the moment [46, 47].

As pharmaceutical companies and researchers 
have been trying to find a therapeutic use of PLK-1 
inhibitors, the kinase has also sparked significant 
controversies [48]. While PLK-1 overexpression is 
linked to uncontrolled cell proliferation and impaired 
response to DNA damage, its low expression impairs 
cell cycle processes, such as spindle assembly or cen-
trosome maturation, leading to tumour progression 
[30]. Recent studies in mice not only confirmed these 
findings, but also demonstrated the potential of PLK-1 
as a tumour suppressor [49–52]. This inhibition effect 
is possible in interaction with specific oncogenes (such 
as K-Ras, Her2 or APCmin) and may be caused by up- 
or down-regulation of PLK-1 expression [43], both of 
which can induce genetic instability and aneuploidy. 
Hence, the outcomes are likely determined by other 
factors rather than a stand-alone PLK-1 expression 
level, such as oncogenesis, tumour progression or 
potential protective/repair mechanisms.

De Cárcer [43] analysed data from the Cancer 
Genome Atlas (TGCA) [53] and the Kaplan Meier 
Plotter database [54, 55], demonstrating that PLK-1 
overexpression may lead to different outcomes de-
pending on tumour type. For example, it was linked 
to shorter overall survival (OS) in patients with lung, 
bladder, and kidney clear cell carcinoma, whereas in 
patients with thymoma, lung squamous cell carcino-
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Table 1. Summary statistics for relation between expression of PLK-1 in uveal melanoma cells and clinical parameters

Clinical parameters PLK-1 IRS

Low ≤ 2 (No. 47) High > 2 (No. 111) p value

Age in years (18–86)a 63 (58–72) 59 (51–64) 0.0019

Genderc 1.0

Female 24 (51%) 58 (52%)

Male 23 (49%) 53 (48%)

Sidec 0.86

Right 22 (47%) 54 (49%)

Left 25 (53%) 57 (51%)

Largest basal tumour diameter (by AJCC)b 0.044

> 9–12 mm 2 (4%) 11 (10%)

> 12–15 mm 3 (6%) 24 (22%)

> 15–18 mm 13 (28%) 26 (23%)

> 18 mm 29 (62%) 50 (45%)

Greatest tumour height (by AJCC)b 0.75

≤ 3 mm 0 (0%) 1 (1%)

> 3–6 mm 2 (4%) 12 (11%)

> 6–9 mm 13 (28%) 28 (25%)

> 9–12 mm 16 (34%) 40 (36%)

> 12–15 mm 12 (26%) 24 (22%)

> 15 mm 4 (9%) 6 (5%)

Primary tumour (pT)b 0.040

2 1 (2%) 12 (11%)

3 11 (23%) 39 (35%)

4 35 (74%) 60 (54%)

Stageb 0.037

IIA 0 (0%) 10 (9%)

IIB 10 (21%) 33 (30%)

IIIA 15 (32%) 37 (33%)

IIIB 16 (34%) 26 (23%)

IIIC 6 (13%) 5 (5%)

Localizationb 0.53

In front of the equator 39 (55%) 32 (49%)

Equator 11 (15%) 8 (12%)

Behind the equator 21 (30%) 25 (38%)

Ciliary body involvementc 0.41

Ciliary body not involved 53 (63%) 56 (70%)

Ciliary body involved 31 (37%) 24 (30%)

Degree of pigmentationb 0.21

Amelanotic 4 (10%) 22 (21%)

Mild pigmentation 16 (38%) 42 (39%)

Intense pigmentation 22 (52%) 43 (40%)

Shapec 0.73

Dome shape 23 (50%) 60 (55%)

Mushroom shape 23 (50%) 50 (45%)

Retinal detachmentc 0.0076

No RD 3 (6%) 28 (25%)

Coexistence of RD 44 (94%) 83 (75%)

Glaucomac 0.46

No glaucoma 39 (83%) 96 (87%)

Coexistence of glaucoma 8 (17%) 14 (13%)

ap value of Wilcoxon two sample test; bp value of chi2 test; cp value of Fisher’s exact test. Statistically significant results (P < 0.05) are shown in bold text. 
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Table 2. Summary statistics for relation between expression of PLK-1 in uveal melanoma cells and histopathological parameters

Histopathological parameters PLK-1 IRS

Low ≤ 2 (No. 47) High > 2 (No. 111) p value

Histologic subtypea 0.46

Spindle cell melanoma 6 (13%) 23 (21%)

Mixed cell melanoma 34 (72%) 75 (68%)

Epithelioid cell melanoma 7 (15%) 13 (12%)

Mitotic rateb 0.47

0–4 32 (70%) 70 (63%)

5–31 14 (30%) 41 (37%)

Scleral infiltrationb 0.16

None or intrascleral infiltration 44 (94%) 109 (98%)

Full-thickness infiltration 3 (6%) 2 (2%)

Invasion of the optic nervea 0.59

No invasion 38 (81%) 91 (82%)

Optic nerve head invasion 9 (19%) 17 (15%)

Optic nerve invasion 0 (0%) 3 (3%)

Necrosisb 0.60

No necrosis 39 (85%) 92 (88%)

Necrosis present 7 (15%) 12 (12%)

Marked pleomorphismb 0.57

No marked pleomorphism 41 (87%) 101 (91%)

Marked pleomorphism present 6 (13%) 10 (9%)

TILsb 0.44

No TILs 43 (91%) 96 (86%)

TILs present 4 (9%) 15 (14%)

Multinucleated giant cellsb 0.54

No multinucleated giant cells 34 (72%) 86 (77%)

Multinucleated giant cells present 13 (28%) 25 (23%)

NPIsb 0.0071

No NPIs 21 (45%) 76 (68%)

NPIs present 26 (55%) 35 (32%)

Intranuclear groovesb 0.017

No intranuclear grooves 43 (91%) 82 (74%)

Intranuclear grooves present 4 (9%) 29 (26%)

Haemorrhageb 0.082

No haemorrhage 33 (70%) 93 (84%)

Haemorrhage present 14 (30%) 18 (16%)

Pigmentationa 0.0019

Lack of melanin 2 (4%) 12 (11%)

Low pigmentation 18 (38%) 68 (61%)

High pigmentation 27 (57%) 31 (28%)

ap value of chi2 test; bp value of Fisher’s exact test. Statistically significant results (P < 0.05) are shown in bold font.
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ma or rectal adenocarcinoma, higher PLK-1 levels 
seemed to be associated with significantly longer OS 
[43]. Interestingly, PLK-1 overexpression did not af-
fect survival prognosis in patients with ovarian cancer, 
stomach adenocarcinoma and cervical squamous cell 
carcinoma [43]. Nevertheless, the effect of PLK-1 
expression on long-term follow-up in patients with 
uveal melanoma was not assessed in that study.

In our research, contrary to most mentioned above 
reports, indicating PLK-1 as a prognostic factor for 
poor prognosis, we observed high PLK-1 expression 
in smaller UM tumours and in patients with lower 
clinical tumour stage (pT and AJCC). Furthermore, 
the Kaplan-Meier survival analysis demonstrated that 
high PLK-1 expression was associated with signifi-
cantly shorter overall survival, with a similar trend in 
disease-free survival.

PLK-1 is one of the 50 most overexpressed genes of 
primary cutaneous melanoma (CM) and its metastases 
as compared with melanocytic nevi [56]. The expression 
of PLK-1 is dynamically regulated during CM cell cycle 
and is vital for cell survival. The level of PLK-1 varies 
with tumour thickness and has prognostic value for CM. 
High PLK-1 expression was significantly correlated 
with unfavourable clinical outcome [20]. Also for thin 
melanomas (< 0.75 mm), which should have an excel-
lent prognosis, high expression of PLK-1 is a reliable 
marker for identifying patients at high risk of metas-
tasis [19]. Kinetochore complex component (NDC80),  
a downstream effector in the PLK-1 signalling path-
ways, involved in the occurrence of many tumours and 
highly expressed in a variety of cancer types, is also 
associated with poor overall survival in metastatic CM 
[57, 58]. Therefore, determining PLK-1 expression, in 
addition to the Breslow thickness, can help identify 
patients with aggressive tumours. 

Specific inhibition of PLK-1 using the commer-
cially available inhibitor BI 2536 leads to a dose- and 
time-dependent decrease in CM cell viability and 
induction of apoptosis [56]. Moreover it shows an 
additive effect with simultaneous inhibition of the 
mitogen-activated protein kinase (MAPK) signalling 
pathway or inhibition of mitogen-activated protein 
kinase/extracellular signal-regulated kinase (MEK). 
Therefore, combination of MAPK/MEK and PLK-1 
inhibition could be a potentially attractive therapeutic 
strategy in CM [56, 59–61].

Unfortunately, many differences between CM 
and UM mean that other therapeutic strategies need 
to be sought in uveal melanoma. One of proposed 
explanations is ocular immune privilege, which may 
likely alter signalling pathways in UM compared to 
skin melanoma [62]. The studies assessing biological 
drugs in UM have not shown good results to date 

[62]. Although PLK-1 inhibitors appear promising 
in oncology, and PLK-1 has been identified as one 
of UM-specific therapeutic targets [22], our results 
support the need for multicentre studies on prognostic 
significance of PLK-1 expression in uveal melanoma 
and in vitro studies to determine the effect of inducing 
or inhibiting PLK-1 expression in UM cells.
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