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Abstract
Introduction. CD44H is a transmembrane molecule important for cell-cell and cell-extracellular matrix interac-
tions. In monocytes, CD44H is implicated in phagocytosis of particles coated by hyaluronan (HA). HA fragments 
were shown to induce chemokine secretion by monocytes. Tumour derived microvesicles (TMVs), which are 
small membrane fragments derived from tumour cells can carry fragments of HA. The aim of the study was 
to examine whether monocyte’s CD44H is involved in the engulfment of pancreatic adenocarcinoma-derived 
microvesicles and in the production of chemokines induced by TMVs. 
Materials and methods. TMVs engulfment and chemokines’ secretion stimulated with TMVs were determined in 
control human monocytes and cells incubated with anti-CD44H monoclonal antibody (mAb) by flow cytometry 
and ELISA, respectively. Phosphorylation of STAT3, transcription factor essential for chemokines’ production 
and CD44 signal transduction, was determined by Western blotting. 
Results. Blocking of CD44H by anti-CD44H mAb on monocytes decreased the engulfment of TMVs and the 
secretion of CCL4 and CCL5, but had no effect on CCL2, CCL3 and CXCL8. STAT-3 phosphorylation in 
monocytes incubated with TMVs after CD44 blocking was also reduced.
Conclusion. The results suggest that tumour-derived microvesicles (TMVs) may carry bioactive cargo(s) which 
induces STAT3 dependent signalling pathway in human monocytes via CD44 molecules. (Folia Histochemica et 
Cytobiologica 2019, Vol. 57, No. 1, 28–34)
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Introduction

CD44 is a transmembrane glycoprotein expressed 
on different cell types, including epithelial [1, 2], he-
matopoietic and cancer cells [3–6]. CD44 is expressed 
mainly in a short, standard form (CD44s or CD44H) 

or in alternatively spliced variant forms (CD44v) [7, 
8]. Expression of CD44H on monocytes is very high 
(above 90%) [9]. CD44v is almost absent on mono-
cytes of healthy humans; however, its expression 
(CD44v3, -v6, -v7) is upregulated in inflammatory dis-
eases (e.g. systemic lupus erythematosus, inflammatory 
bowel disease) [10, 11], malignancies (e.g. CD44v3, v6, 
v7, v10) [9, 12–14] or co-cultures of monocytes with 
tumour cells (e.g. pancreatic adenocarcinoma cell line, 
CD44v6, v7/8) [15].

The increased expression of CD44v molecules on 
cancer cells is usually associated with upregulation 
of tumour growth, metastasis formation and poor 
prognosis in cancer patients [14]. CD44 molecule is 
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important in cell-cell and cell-extracellular matrix 
interactions, as CD44 is a receptor for hyaluronan 
(hyaluronic acid, HA), collagens, osteopontin, ser-
glycin, fibronectin and laminin [16]. HA carried by 
tumour cells seems to be, at least in part, responsible 
for the stimulation of cytokines and chemokines 
production by monocytes [17, 18]. Apart from direct 
stimulation by tumour cells (e.g. via HA and other 
ligands), monocytes may be stimulated by tumour-de-
rived microvesicles (TMVs) [19]. TMVs are small 
membrane fragments released by tumour cells during 
cell proliferation, migration, activation and apoptosis 
[20]. TMVs express CD44s and CD44v and carry 
HA [19, 21]. TMVs may mimic activity of tumour 
cells, as they have been shown to induce cytokines’ 
(TNF, IL-10, IL-12), chemokines’ (CXCL8, CCL2, 
CCL3, CCL4 and CCL5) and reactive oxygen inter-
mediates (ROI) production by monocytes [19, 22]. It 
was reported that TNF production in monocytes was 
CD44-dependent [19] and that IL-10 production by 
classical monocytes was induced by low molecular 
weight hyaluronan carried by TMVs [21]. HA-CD44 
interaction promotes phosphorylation of STAT3 [23]. 
CD44 is also described as fully competent phagocytic 
receptor able to trigger engulfment of large particles 
by macrophages [24]. 

The current study was designed to extend the 
knowledge on the role of CD44H in monocyte-TMVs 
interactions. We focused on the engulfment of TMV 
derived from HPC-4 cell line (TMVHPC) and the secre-
tion of selected chemokines (CXCL8 (IL-8), CCL-2 
(MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1b) and 
CCL5 (RANTES)) previously described to be induced 
by TMVs [22]. The present study shows that blocking 
of monocytic CD44H molecule with anti-CD44 mono
clonal antibody (mAb) reduced TMVHPC engulfment 
and decreased secretion of CCL4 and CCL5 but not 
CCL2, CCL3 and CXCL8. We also proved the con-
tribution of STAT3 in signalling pathway initiated by 
CD44H-TMVs interaction.

Materials and methods

Isolation of tumour derived microvesicles (TMVs). TMVs 
were obtained from the HPC-4 cell line (human pancreatic 
adenocarcinoma) TMVHPC, [25] as described previously [26]. 
Briefly, cells were cultured by bi-weekly passages in RPMI 
1640 medium (Sigma, St. Louis, MO, USA) with 5% FBS 
(foetal bovine serum, PAA Laboratories, Pasching, Germa-
ny). The cell line was regularly tested for Mycoplasma sp. 
contamination by using the PCR-ELISA kit according to 
the manufacturer’s protocol (Roche, Mannheim, Germa-
ny). For the final cultures, FBS centrifuged at 50000 g was 
used (for 1 h at 4°C). Supernatants from well-grown cell 

cultures were collected and spun down at 2000 g for 20 min  
at room temperature (RT) to remove cellular debris. Then, 
supernatants were again centrifuged at 50000 g for 1 h at 
4°C. Pellets were washed several times to remove FBS and 
were finally resuspended in serum-free RPMI 1640 me-
dium. Quantification of TMVHPC proteins was evaluated 
by the Bradford method (BioRad, Hercules, CA, USA). 
TMVHPC were tested for endotoxin contamination by the 
Limmulus test according to the manufacturer’s instruction 
(Charles River Laboratories, Inc., Wilmington, MA, USA) 
and stored at –20°C.

Isolation and culture of monocytes. Human peripheral 
blood mononuclear cells were isolated from EDTA-blood 
of healthy human donors by the standard Ficoll/Isopaque 
(Pharmacia, Uppsala, Sweden) density gradient centrifu-
gation. Monocytes were separated from mononuclear cells 
by counter-flow centrifugal elutriation with a JE-5.0 elutri-
ation system equipped with a 5 ml Sanderson separation 
chamber (Beckman, Palo Alto, CA, USA), as previously 
described [27]. Monocytes were suspended in RPMI 1640 
culture medium supplemented with L-glutamine (Sigma) 
with gentamycin (25 μg/ml). Purity of isolated monocytes 
was above 95% as judged by staining with anti-CD14 mAb 
(BD Biosciences Pharmingen, San Diego, CA, USA) and 
flow cytometry analysis (FACS Calibur, BD Biosciences 
Immunocytometry Systems, San Jose, CA, USA). Mono-
cytes (1 × 106/ml) were cultured with TMVHPC (30 µg/ml) in 
low attachment culture plates (Corning Inc., Corning, NY, 
USA) in RPMI 1640 medium supplemented with 10% FBS 
(centrifuged as above) as described before [19]. 

Engulfment of TMVs by monocytes. TMVHPC were incubated 
for 5 min with red PKH26 dye (Sigma) according to the 
manufacturer’s instructions. Next, TMVHPC were washed 
with 1% bovine serum albumin (BSA) and several times with 
serum-free RPMI 1640 medium. Monocytes (1 × 106/ml)  
were incubated with anti-CD44 mAb (10 μg/ml, clone SFF-2, 
BenderMedsystem, Vienna, Austria) or appropriate IgG1 
isotype control (10 μg/ml Bender Medsystem) for 2 h at 37°C 
followed by washing and incubation with a fluorescent dye 
PKH26-labelled TMVHPC (30 μg/ml) (30 min to 24 h at 37°C 
in serum-free medium). Binding of PKH26-labelled TMVHPC 
to control and CD44-blocked monocytes was determined 
by flow cytometry analysis of red fluorescence intensity 
(emission at 567 nm) and calculation of the percentage of 
positive cells. Vital dye crystal violet was used for quenching 
extracellular fluorescence [28]. 

Determination of chemokines’ secretion by monocytes 
incubated with TMVs after blocking of CD44 molecule on 
monocytes. To determine its role in monocyte-TMVHPC 
interactions, the blocking mAb against CD44H was used. 
Monocytes were incubated on 96 microwell plates with 
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anti-CD14 mAb (10 μg/ml, clone MY4, Coulter Corp., 
Miami, FL, USA) or appropriate IgG1 isotype control for 
2 h at 37°C. Then, monocytes were washed and cultured 
with TMVHPC (30 μg/ml) for 18 h. Next, the supernatants 
were collected and chemokines’ (CXCL8, CCL2, CCL3, 
CCL4 and CCL5) concentration was assessed by the FlexSet 
method (BD Biosciences Pharmingen) according to the 
manufacturer’s protocol. The FlexSet beads were discrim-
inated in FL-4 and FL-5 channels, while the concentration 
of specified chemokine was determined by the intensity of 
FL-2 fluorescence. The concentration of chemokines was 
computed by using the respective standard reference curve 
and FCAP Array software (BD Biosciences). For all the 
tested chemokines the detection level was 10 pg/ml.

Western blotting. Monocytes were preincubated in the 
medium alone or with anti-CD44 mAb (10 μg/ml) for 2 h 
followed by washing and incubation with TMVHPC  (30 μg/ml)  
for 30 min (37°C, 5% CO2), then lysed in M-Per lysing 
buffer (Pierce, Rockford, IL, USA) containing protease 
and phosphatase inhibitors (Sigma). The extracted proteins 
(20 μg) were loaded on 4% loading gel, electrophoresed in 
12% SDS gel, and transferred to the polyvinylidene fluoride 
membranes (Immune-blot PVDF, 2 μm, BioRad). Phos-
phorylation of STAT-3 (Signal Transducers and Activators 
of Transcription, Tyr 705, #9131) protein was detected 
with rabbit polyclonal anti-phospho-STAT-3 antibody 
(Cell Signaling Technology, Beverly, MA, USA) and with 
horseradish peroxidase-conjugated goat anti-rabbit IgG as 
a secondary antibody (Santa Cruz Biotech, Santa Cruz, CA, 
USA). The equivalence of protein loading was evaluated 
by treating the membranes with stripping buffer (Restore 
Western Blot Stripping Buffer, Pierce) and incubation with 
total anti-STAT-3 antibody (clone #9132, Cell Signaling). 
Blots were developed with the SuperSignal West Pico 
Chemiluminescent Substrate (Pierce), dried and subse-
quently exposed to HyperFilm (Amersham Life Science, 
Little Chalfont, UK). 

Statistical analysis. Statistical analysis was performed by 
nonparametric Mann-Whitney test. Differences were con-
sidered significant at p < 0.05. 

Results

The role of CD44H in TMVs engulfment by monocytes
Engulfment of TMVHPC was significantly reduced 
when incubation with TMVHPC was preceded by block-
ing CD44 on monocytes for 2 h. We did not observe 
significant changes after 30 min (data not shown); 
however, after 2 h and 24 h, the TMVHPC engulfment 
was reduced by half (Fig. 1). Appropriate isotype 
control did not diminish TMVHPC engulfment (data 
not shown). 

CD44H is important for chemokines’  
secretion by monocytes
The release of CCL5 (Fig. 2A) and CCL4 (Fig. 2B) 
from human monocytes incubated with TMVHPC 
overnight (18 h) was decreased when CD44H, but 
not CD14 (data not shown), was blocked by the pre-
incubation of cells with appropriate mAb. We did 
not observe significant changes in the levels of CCL2 
(Fig. 2C), CCL3 (Fig. 2D) and CXCL8 (Fig. 2E) after 
CD44 blocking. 

The role of CD44H molecule in signal transduction
TMVHPC induced phosphorylation of STAT-3 pro-
teins in monocytes. Phosphorylation of STAT-3, as 
determined by Western blotting, was reduced when 
monocytic CD44H was blocked with anti CD44mAb 
before stimulation with TMVHPC. Results of one 
representative experiment out of three performed is 
presented in Figure 3.

Discussion

Monocytes and TMVs derived from CD44-positive 
tumour cell lines express CD44H molecules [29, 30]. 
TMVs can also carry HA derived from cancer cells 
[21]. Interaction between monocytes’ CD44 molecule 
and HA carried by TMVs results in the activation 
of monocytes [19, 21]. Previously, we showed that 
monocytes activated with TMVs secreted more TNF, 
IL-10 and IL-12p40 and expressed higher levels of 
these cytokines’ mRNA compared to the control [19]. 
The inhibitory effect of anti-CD44H mAb provided 
evidence that this molecule is important for TNF 
secretion by monocytes stimulated with TMVs [19]. 
Current data add to the knowledge about the role of 
CD44 in interactions between monocytes and TMVs. 
CD44 molecule seems to be important in the process 
of TMVHPC engulfment, which is strongly inhibited 
by blocking monocytic CD44 with anti-CD44 mAb. 
This observation is in concordance with the report 
that demonstrated inhibition by anti-CD44 mAb of 
erythrocytes’ phagocytosis by murine macrophages 
[31]. Moreover, CD44 is considered as a phagocyt-
ic receptor that effectively recognizes and ingests 
HA-coated particles [24]. CD44 not only mediates 
the phagocytic mode of internalization but it also 
facilitates the HA-controlled uptake of a gene vector 
in CD44 positive tumour cancer cell lines via mi-
cropinocytosis [32]. The mechanism by which CD44 
is engaged in this process is unclear; however, its in-
volvement in the first step of interaction (binding) was 
suggested [33]. In our current study, the engulfment of  
TMVHPC was not completely reduced by anti-CD44 
mAb, which may suggest other mechanisms and sur-
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face molecules to be involved in their internalization, 
e.g. phosphatidylserine [34]. To our best knowledge, 
the presented data, for the first time, provide the evi-
dence of the role of CD44 in the engulfment of TMVs 
in a manner similar to that suggested for particles 
coated with HA [32]. 

McKee et al. [17] showed that low molecular weight 
HA induced the expression of mRNA for CCL2, 
CCL3, CCL4, CCL5 and CXCL8 in alveolar mac-
rophages [17] and that small fragments of HA were 
able to induce secretion of CCL2, CCL3, CCL4 and 
CCL5 by these cells. These authors also demonstrated 
that anti-CD44 mAb completely blocked HA binding 
and significantly inhibited HA-induced expression 
of CCL4 and CCL5 in this cell type [17]. In parallel, 
we reported that TMVs of different origin (lung, 
pancreas and colon cancer cell lines) induced expres-
sion of chemokines mRNA followed by secretion of 
chemokines by human monocytes [22]. Keeping in 
mind that TMVHPC carry low molecular weight HA 
[21], we blocked CD44H on human monocytes and 
observed the reduction of CCL4 and CCL5 secretion 
by monocytes. The incomplete reduction in chemok-
ines secretion that we have seen may be a result of 
the contribution of other HA receptors, which were 

not blocked by the anti-CD44H mAb used. Levesque 
et al. described that blood monocytes up-regulated 
CD44v6 and v9 expression after in vitro culture [35]. 
Also, co-culture with tumour cells induced expression 
of CD44v6 and v7/8 on human monocytes [15]. Thus, 
in our study, the mAb specific for CD44H blocking 
may have not blocked CD44v, which in turn could 
have resulted in HA binding. Also, other molecules, 
such as TLR4, have to be taken under consideration 
as HA receptors [36]. Moreover, lipids, heat shock 
proteins [37] or nucleotides [38] carried by TMVs may 
be involved in the induction of chemokines. Other 
components of TMVs may address the question about 
the role of CD44H in the signalling pathway for the 
chemokines which secretion was unaffected by an-
ti-CD44 mAb and TMVs (CXCL8, CCL2 and CCL3). 
Another possible explanation is horizontal transfer of 
chemokines by TMVs, as TMVs are a storage pool for 
CC and CXC chemokine families [22, 39]. 

It was reported that phosphorylation of STAT3 
transcription factor is important for the synthesis of 
chemokines by monocytic cells [40–42] or vascular 
smooth muscle cells [43]. TMVHPC-induced STAT-3  
phosphorylation in monocytes was shown to be 
involved in TNF and IL-10 gene transcription [19]. 

Figure 1. Transfer of PKH26 labelled TMVHPC to monocytes in the absence (upper dot plot panel) and presence (lower dot plot 
panel) of anti CD44H mAb (10 µg/ml). Monocytes were exposed to TMVHPC for 24 h and incubated either in the medium alone or 
with crystal violet (right panel). One representative experiment of four independent experiments is presented. Flow cytometry 
was performed as described in Methods.



32 Monika Baj-Krzyworzeka et al.

©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2019
10.5603/FHC.a209.0005

www.fhc.viamedica.pl

Reduction in STAT3 phosphorylation after CD44H 
blocking may suggest that this signalling pathway is 
induced in monocytes by TMVHPC. Taken together, 

the results of this study point out to the role of 
CD44 in TMVHPC –monocyte interaction. TMVHPC 
carry information which is, at least partially, passed 
through the signalling pathway initiated by CD44 
molecules. TMVHPC, may be considered as an im-
portant chemokine secretion trigger during tumour 
progression. The presented data imply that TMVs 
may play a role in the communication between var-
ious types of cells, including tumour cells, at local 
and distant levels. 
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Figure 3. Expression of phosphorylated (Tyr 705) and total 
STAT-3 determined by Western blotting in unstimulated 
monocytes (lane 1) or in monocytes stimulated for 30 min 
with TMVHPC (lane 2) alone or after preincubation with an-
ti-CD44H mAb (lane 3).

Figure 2. Secretion of chemokines by monocytes stimulated with TMVHPC alone or in the presence of anti-CD44H mAb 
(10 µg/ml). A-CCL5, B-CCL4, C-CCL3, D-CCL2, E-CXCL8. Concentration of chemokines was measured by the FlexSet 
method as described in Methods. Data presented as mean ± SD of five independent experiments. * p < 0.05.
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