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Abstract: Dendritic cells (DCs), considered as one of the crucial immune regulatory populations, are implicated 
in the immune pathology of various disorders. Also in the thyroid gland, DCs were shown to be involved in early 
and chronic phases of various types of autoimmunity — including Hashimoto’s thyroiditis and Graves’ disease. 
In thyroid malignant processes, DCs are suggested as an important element of both tumour defence and tumour 
immune evasion mechanisms. Recent findings emphasize a crucial role of interactions between particular DC 
subsets and other regulatory cell populations (e.g. FoxP3+ regulatory T cells) in thyroid pathology. Additionally, 
an increasing attention has been paid to the control of DC function by thyrometabolic conditions. (Folia Histo-
chemica et Cytobiologica 2014, Vol. 52, No. 1, 18–28)
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Abbreviations:

AITD — autoimmune thyroid disease
APCs — antigen presenting cells
cDCs — conventional dendritic cells 
DCs — dendritic cells
EAT — experimental autoimmune thyroiditis
FasL — Fas ligand
Flt3 — fms-like tyrosine kinase receptor 3 ligand
FNAB — fine needle aspiration biopsy
GD — Graves’ disease
GM-CSF — granulocyte-macrophage colony-stimu-
lating factor
HT — Hashimoto’s thyroiditis
IDO — indoleamine 2,3-dioxygenase
IFN — interferon
IL — interleukin
ILT3 — immunoglobulin like transcript 3
LAMP— lysosomal associated membrane protein

LPS — lipopolysaccharide
LT4 — levothyroxine
MHC — major histocompatibility complex
MTC — medullary thyroid carcinoma
MxA — myxovirus resistance protein A
NF — nuclear factor
PBMC — peripheral blood mononuclear cells
pDCs — plasmacytoid dendritic cells
PSGL-1 — P-selectin glycosylated ligand 1
PTC — papillary thyroid carcinoma
T3 — triiodothyronine
TFCs — thyroid follicle cells
Tg — thyroglobulin
TGF — b1-transforming growth factor beta 1
Th — T helper (cell) 
TNF — tumour necrosis factor
Tregs — regulatory T cells 
TRs — thyroid hormone receptors
TSH — thyroid stimulating hormone

Introduction

Dendritic cells (DCs) are considered to represent 
a population of the most potent antigen presenting 
cells (APCs). Immature DCs, spread throughout 
virtually all body compartments, are able to capture 
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and process antigens in order to present them in 
the context of appropriate major histocompatibility 
complex (MHC) molecules [1]. Antigen encounter 
stimulates a process of DC maturation associated with 
profound alterations of phenotypic and functional 
properties [2]. Sequential changes in the repertoire 
of chemokine and pattern recognition receptors re-
gulate DC migratory activity [3], whereas the parallel 
enhancement of costimulatory molecules expression 
prepares activated DC for an optimal interaction with 
effector cells [2]. Among the known costimulatory 
molecules the most important for DC function belong 
to B7 (e.g. CD80, CD86, B7-H1) [4, 5] and tumour 
necrosis factor (TNF)/TNF-receptor superfamilies 
(e.g. CD40, lymphotoxin-b receptor, OX40 ligand, 
4-1BB ligand) [6]. However, multiple other DC costi-
mulatory systems have been lately described including 
Serrate-like molecules (Jagged-1 and Jagged-2) which 
upon interaction with Notch receptor on T cells take 
part in regulatory T cell (Tregs) generation [7, 8]. The 
DC maturation process encompasses also substantial 
changes in secretion profile of cytokines, chemokines 
and other humoral factors [2], as well as modification 
of activity of enzymes crucially involved in immune 
system function like indoleamine 2,3-dioxygenase 
(IDO) [9]. The phenotypic and functional changes 
undergoing during DC maturation depend strongly 
on the quality and quantity of processed antigens, 
and the microenvironmental factors including other 
immune and non-immune cells, which influence de-

eply the direction, intensity, course and outcome of 
the initiated immune reaction [10].

Dendritic cells are known as heterogeneous group 
of APCs. Two main lineage backgrounds — plasma-
cytoid (pDCs) and myeloid or conventional (cDCs), 
provide cells with distinct functional properties and 
crucial engagement both in innate and adaptive 
immune system. These two main subsets differ in 
surface molecule expression, cytokine secretion pro-
file, efficacy of antigen uptake and presentation [11]. 
The conventional myeloid DC subset is believed to 
promote typically T helper (Th)1 and Th17 immune 
response in mechanism involving secretion of high 
amounts of IL-12 and IL-23 [12, 13]. To the contrary, 
pDCs are known as one of the main sources of type I  
interferons (IFN I) and were suggested in various 
experimental settings as crucial for Th2 and regula-
tory T cells generation and function [14–17]. Figure 1 
presents morphological changes of human peripheral 
blood pDCs matured in culture.

The involvement of DCs in immune tolerance 
induction and maintenance encompasses both central 
and peripheral mechanisms [11]. In the thymus, DCs 
play a key role in the process of negative selection in 
which they present self-antigens to the developing 
thymocytes in order to detect and delete autoreacti-
ve cells [18]. In the periphery, DCs take part in the 
control of differentiation, expansion and activity of 
various regulatory cell populations including inducible 
Tregs [19–21].

Figure 1. Human peripheral blood plasmacytoid (p)DCs matured in vitro. pDCs were sorted magnetically from leuka-
pheresis preparation obtained from healthy volunteer. Isolated pDCs (purity of CD303+CD123+ pDC fraction > 95%, 
as assessed by flow cytometry) were cultured for 96 h on 48-well culture plates in culture medium supplemented with 
recombinant human IL-3 and recombinant human soluble CD40 ligand (living cells assessed by light microscopy; scale bar 
= 100 µm). (A) 24 h of culture — immature pDC form predominantly large clusters of cells. (B) 96 h of culture — pDCs 
disperse from clusters, majority of pDCs acquired “dendritic” morphology

A B
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Dendritic cells in normal thyroid

DCs represent an important element of peripheral 
organ immune surveillance. However, the exact 
characterization of tissue specific DC populations 
confers significant methodological problem due to 
the very low numbers of these cells in particular 
tissues. The prevalence of DCs in pig thyroid gland 
(analysed on the basis of cell adhesive properties and 
surface expression of MHC class II, mannose receptor 
and S-100 — a molecule considered as a nonspecific 
marker of both mature and immature DCs [22]) was 
estimated as 2–3% of total cellular components of 
the thyroid. In culture, most of these thyroid derived 
DCs presented marked endocytic capacity, sugge-
stive of initial maturation stages [23]. Early studies 
of antigen presenting cells in human thyroid gland 
found a little amount of DCs, recognized as cells 
with characteristic nucleus shape, long cytoplasmic 
protrusions and MHC class II membrane molecules. 
Those cells were localized outside thyroid follicles 
[24]. However, the characteristics of the local thyroid 
DC populations seem to be substantially affected by 
various pathological processes of the thyroid. In iodi-
ne deficient goitre number of DCs, epithelioid cells, 
and multinucleated giant cells was higher than in the 
healthy thyroid gland. DCs were seen in interstitium 
clustered in focal aggregates [25, 26]. 

Dendritic cells in thyroid  
autoimmune diseases

The first evidences of the role of DCs in pathogenesis 
of the thyroid autoaggression were demonstrated in 
BB/O rat — an animal model of spontaneously de-
veloping autoimmune disease of the thyroid [27, 28]. 
Even in the initial stages of the disease infiltrating 
DCs were present in thyroid, followed by large accu-
mulation of DCs, as well as B and T cells beginning 
from the 18th week of age [28]. DCs were also shown 
in thyroid infiltrates early in the course of iodine-in-
duced thyroiditis in autoimmune prone non-obese 
diabetic mice [29]. The involvement of DCs in thyroid 
immunopathology was further confirmed in various 
forms of the experimental autoimmune thyroiditis 
(EAT). Transfer of syngeneic splenic DCs pulsed in 
vitro with thyroglobulin (Tg) or necrotic thyrocytes 
to healthy animals resulted in a development of 
EAT [30–32]. Similarly, DCs isolated from animals 
with EAT induced by active Tg immunization, were 
able — upon adoptive transfer — to initiate thyroid 
immune reaction in healthy animals [30]. However, 
the role of DCs in EAT induction and development 
was shown to be much more complicated. In vitro or 

in vivo modulation of DC differentiation, maturation 
and activation, depending on the time of interven-
tion, could significantly influence the induction 
and the clinical course of active form of EAT [33, 
34]. Different modes of immune manipulation (e.g. 
fms-like tyrosine kinase receptor 3 ligand, Flt3L vs. 
granulocyte-macrophage colony-stimulating factor, 
GM-CSF) affecting differentiation, bone marrow 
mobilization, proliferation and survival of particular 
DC subsets could lead to opposite clinical effects 
with CD11c+CD8a- DCs suggested as crucial players 
in EAT amelioration, as confirmed in an adoptive 
transfer study [34, 35]. On the other hand, the EAT 
inhibitory effects in experimental models implemen-
ting various methods of DCs functional modulation 
(such as TNF-a incubation ex vivo or GM-CSF admi-
nistration ex vivo and in vivo) seem to be mediated by 
similar mechanisms associated with DC dependent 
expansion of CD4+CD25+FoxP3+ Tregs secreting 
high amounts of IL-10 [33–36]. CD4+CD25+FoxP3+ 
Tregs play a crucial role in the control of peripheral 
immune homeostasis and tolerance maintenance. Due 
to their potent immunoregulatory properties Tregs, 
generated both in thymus (natural Tregs) and in pe-
riphery (inducible or adaptive Tregs), are considered 
as efficient regulators of various immune processes 
including autoaggressive and allergic reactions as well 
as response to tumour cells and different infectious 
factors [11, 37, 38]. 

Further studies showed that GM-CSF affected 
murine DCs regulatory properties already at the 
level of DC differentiation from bone marrow pre-
cursors resulting in a CD11c+CD8a– DC population 
secreting high amounts of TGF-b and able to expand 
CD4+CD25+FoxP3+ Tregs in vitro [8, 39]. The DC 
— Tregs interaction was contact dependent and 
involved interaction of OX40L and Jagged1 molecules 
(expressed on DC surface) with their receptors on 
Tregs (OX40 and Notch3, respectively) [8, 39]. Accor-
dingly, only the OX40L+Jagged+ DCs, upon adoptive 
transfer to EAT animals, were able to expand Tregs 
and suppress the clinical symptoms of the disease [8]. 

Surprisingly, there are relatively few studies availa-
ble regarding the role of DCs in human autoimmune 
thyroid disease (AITD). Several studies have shown, 
that population of DCs was increased in thyroid infil-
trating cells in both main AITD forms — Hashimoto’s 
thyroiditis (HT) and Graves’ disease (GD). Compa-
red with toxic and non-toxic goitre, the number of 
infiltrating DC was increased in GD. Immature DC 
were selectively found perifollicularly, while partially 
matured DC were seen in connective tissue and focal 
interstitial clusters [40]. Another analysis of cellular 
components of thyroid tissue from GD and HT sub-
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jects showed that mature CD83+ DC were present in 
the infiltrates scattered outside thyroid follicles or in 
the periphery of lymphoid follicles. Further characte-
rization with fluorescence microscopy demonstrated 
also expression of CD1 molecules (CD1a, CD1b, and 
CD1c) on the surface of thyroid DCs [41]. Higher 
proportion of S-100 and CD83 positive DCs was also 
found in HT and GD thyroid specimens, as compared 
with follicular thyroid adenoma [42]. An analysis of 
gene expression pattern in GD thyroid tissue using a 
gene chip system revealed disease stage dependent 
(short vs. long course GD) regulation of many genes 
associated with immune system including induction 
of lineage specific antigens of T- and B-cells, macro-
phages, as well as DCs in long course GD. Immuno-
fluorescence analysis of thyroid specimens confirmed 
the presence of CD303+CD123+CD83- immature 
pDCs typically in close contact with lymphocytes, 
as well as CD11c+ cDCs, which were also identified 
as a potential local source of IFNa [43]. Disease 
stage dependent changes in the structure of thyroid 
immune infiltrates was also shown by Hammerstad 
and colleagues in immunostaining assays of thyroid 
tissue obtained both from HT [44] and GD patients 
[45]. In the newly diagnosed untreated GD patients, 
the authors observed a significant increase of thyroid 
pDC population, as compared with chronic GD and 
healthy subjects. Importantly, the number of pDCs 
correlated with the expression of interferon-inducible 
Myxovirus Resistance Protein A (MxA) regarded as 
a marker of IFN I production [45]. Similar increase 
in thyroid pDCs population and MxA expression was 
observed in HT patients. However, in contrast to GD, 
these parameters did not depend on HT clinical stage 
[44], whereas in both AITD forms the later phases 
of the disease were associated with local accumula-
tion of CD8+ T cells [44, 45]. Interestingly, also in a 
study analysing peripheral blood DCs in AITD pDC 
(but not the whole DC) population was significantly 
increased in untreated hyperthyroid GD patients as 
compared with healthy subjects, euthyroid GD and 
euthyroid HT patients. Moreover, the expression 
of CD80, CD86, and CD40 was slightly increased 
in untreated GD patients, comparing with healthy 
subjects [46]. The pDC/DC ratio was considerably 
higher in untreated GD (as juxtaposed to other AITD 
patients) and correlated negatively with the count 
of CD4+CD25+FOXP3+ population of peripheral 
blood Tregs. Furthermore, pDCs obtained from 
untreated GD patients revealed significant ability to 
suppress inhibitory action of regulatory T cells and 
in this way promoted the proliferation of effector T 
cells in co-cultures. Importantly, such pronounced 
Tregs-inhibitory activity was not observed with none 

of the cDC populations nor with pDCs derived from 
euthyroid patients [46].

In the recently published study, Leskela and colle-
agues performed for the first time a complex analysis 
of DC subpopulations parallel in the thyroid gland and 
peripheral blood of patients with different forms of 
AITD [47]. The peripheral blood pDC population was 
significantly lower in both HT and GD patients than in 
healthy controls and such difference was not observed 
in cDC population. The phenotypic analysis revealed 
additionally differences in DC specific expression of 
lymphocyte inhibitory molecules (immunoglobulin 
like-transcripts — ILT3 and P-selectin glycosylated 
ligand — PSGL-1) [47]. In HT patients, periphe-
ral blood pDCs showed significantly lower level of 
ILT3 expression, whereas in GD peripheral blood 
pDCs were characterized by decreased expression 
of PSGL-1. Moreover, the percentage of peripheral 
blood pDCs positive for CD69 activation marker was 
negatively correlated with disease progression in GD 
patients. The percentage of pDCs was significantly 
higher in thyroid tissue than in peripheral blood of 
the same AITD patients — both in GD and HT. 
However, thyroid derived pDCs obtained from HT 
and GD patients expressed lower levels of ILT3 and 
PSGL-1 than peripheral blood pDCs [47]. In order to 
better characterize possible pDC specific functional 
abnormalities the authors analysed the expression 
of IDO — enzyme involved in tryptophan meta-
bolism, with well-known potent immunoregulatory 
activities [48]. The abnormalities of DC specific IDO 
expression have been shown earlier to participate 
in the pathogenesis of organ specific autoimmune 
reactions [49]. Accordingly, in HT patients signifi-
cantly lower percentage of peripheral blood pDCs 
expressed IDO as compared with healthy subjects, 
which was paralleled by abnormal serum tryptophan/ 
/kynurenine ratios in those patients. Furthermore, HT 
derived pDCs showed increased IFN-a production in 
response to TLR7/9 stimulation in vitro [47]. Another 
study comparing the properties of local thyroid and 
peripheral blood DCs showed that in AITD patients 
intrathyroidal CD4+ T lymphocytes revealed higher 
expression of Fas compared with those in blood and 
intrathyroidal DCs showed higher expression of Fas 
ligand (FasL) than peripheral blood DCs. Since Fas 
molecule — member of TNF/TNF-receptor super-
family — is regarded as one of the main cell-death 
signal transducers, this observation may be of po-
tential importance for local control of lymphocyte 
activation and apoptosis and, thus, may represent  
a sign of the ongoing disease suppressing processes [50]. 
Fas ligation by FasL present on DCs and thyrocytes 
may induce caspase 8 dependent apoptosis pathway 
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in Fas-expressing immune cells and thus serve as 
one of the peripheral tolerance mechanisms in the 
thyroid [50]. Significantly higher expression of Fas 
and FasL was also presented by flow cytometry in 
the thyroid follicle cells (TFCs) obtained from AITD 
patients as compared with non-toxic nodular goitre 
controls. Interestingly, the TFCs specific expression 
of Fas and FasL was significantly higher in HT than 
GD patients, whereas the intrathyroid lymphocytes 
expressed higher levels of these proapoptotic mole-
cules in GD than in HT [51]. The higher expression 
of Fas and FasL molecules in HT than GD derived 
thyrocytes was confirmed also by Xu and co-workers, 
and correlated additionally with the differences in the 
expression of Bcl-2 apoptosis-related protein which 
was strongly expressed by GD thyrocytes but not in 
HT thyroid cells [42]. Altogether, these data suggest 
a substantial, disease specific role of particular DC 
subsets — especially pDCs — in the control of various 
phases of thyroid autoimmune processes. 

Thyroid cancer

It has been suggested that chronic inflammation 
characterized by sustained tissue damage followed 
by damage-induced repair may lead to atypical cell 
production and proliferation, as well as to accumu-
lation of highly mutagenic agents which may in turn 
contribute to the carcinogenesis [52]. Accordingly, 
chronic immune processes were widely investigated 
as important elements of tumourigenesis of many 
origins [53–55], including the possible connection 
of thyroid malignancies with HT associated thyroid 
microenvironment – rich of immune cells producing 
large amounts of humoral mediators, such as cytoki-
nes, growth factors and oxygen and nitrogen reactive 
species [52, 56]. The coexistence of papillary thyroid 
carcinoma (PTC) and HT was a subject of many stu-
dies which investigated the causative linkage between 
this two thyroid pathologies [57–61]. However, the 
recently published review showed high discrepancy of 
the results and revealed many conflicting reports on 
the correlation of PTC and HT [62]. The prevalence 
rate of PTC in HT patients was estimated in different 
studies from 0% to 36.6% and the results seemed to 
be strongly dependent on the research methodology. 
Studies based on the material obtained from fine ne-
edle aspiration biopsy (FNAB) revealed low (average 
1,20%) prevalence and also low relative risk ratio of 
PTC in HT. To the contrary, studies analysing archival 
thyroidectomy specimens reported a statistically signi-
ficant correlation between PTC and HT with higher 
prevalence (average 27.56%) and higher risk ratio of 
PTC in HT patients [62]. Additionally, some of the 

molecular and genetic markers of thyroid malignancy 
were found in the immune infiltrates surrounding 
tumour cells and/or in chronic thyroiditis specimens 
(including RET/PTC gene recombination present 
in multiple investigated HT cases) [63, 64]. In the 
study performed in our department, however, Cy-
niak-Magierska and co-workers did not found RET/ 
/PTC1 or RET/PTC3 rearrangements in patients with 
HT [61]. Moreover, in RET/PTC transgenic animals 
thyroid tissue was characterized by significantly higher 
production of inflammatory mediators [65]. These 
observations support the possible engagement of 
chronic inflammation molecular mechanisms in the 
tumourigenesis induction. However, immune system 
plays a substantial role also in later stages of tumour 
development. A modulation of the host defence 
into immune settings, supporting or not cancer cell 
survival, is assumed as one of the most important 
conditions governing the extend of tumour growth 
and spreading [66, 67]. Numerous tumour specific 
and tissue damage associated humoral factors attract 
immune cells and modulate their functional proper-
ties [68–71]. The tumour infiltrating immune cells 
could serve for example as an important source of 
angiogenetic factors [72–74]. Additionally, the local 
tumour specific microenvironment may lead to the 
induction of dominant tolerance mechanisms and in 
consequence to tumour immune escape. An expan-
sion of various regulatory cell populations such as DCs 
[72, 75, 76], Tregs [67, 74, 77, 78] or myeloid-derived 
suppressor cells [67, 79, 80] plays most probably  
a crucial role in this process. In thyroid carcinoma 
the process of infiltration with particular immune cell 
populations, including tumour associated monocytes, 
myeloid-derived suppressor cells, FoxP3+ Tregs, and 
other lymphocytic subsets, was correlated with tumour 
type and level of aggressiveness [67, 81–83]. Also, the 
role of DCs mediated immunoregulatory processes 
was postulated in the development of thyroid mali-
gnancies. Already the first studies showed significant 
differences in the intensity of S-100+ DCs infiltration 
in particular types of thyroid carcinoma with PTC 
specimens characterized by the highest DCs density 
[84, 85]. Such observation was confirmed in further 
analyses, demonstrating significantly higher accumu-
lation of S-100+ DCs or CD1a+ immature DCs in PTC 
as compared with follicular carcinomas [68, 86, 87], 
medullary carcinomas [69] and poorly differentiated 
and undifferentiated carcinomas [87, 88], as well as 
adenomas [86, 89–91] and benign thyroid nodules [92]. 
The abundant DCs infiltration in PTC was observed 
in all tumour histotypes including diffuse sclerosing 
variant [86, 88, 93, 94]. A specific distribution of in-
filtrating DCs was demonstrated in various tumours, 
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where immature CD1a+ DCs of Langerhans cell-type 
(expressing Langerin — a member of Ca2+-dependent 
(C-type) lectin family, associated with the structure of 
Birbeck granules — uniquely formatted cytoplasmic 
organelle of Langerhans cell [95]) tended to reside 
within the tumour, while mature DCs were mostly 
found in peritumoural areas [96-98]. Similarly, DCs 
infiltrating PTC nodules were shown to represent 
mainly immature CD1a+ phenotype [69, 86, 88, 92]. 
Mature CD83+ DC were described predominantly 
outside carcinoma nodules [89, 90]. However, DCs 
expressing another maturation marker — Lysoso-
mal-Associated Membrane Protein (LAMP) were 
found also in the intratumoural area [86, 91]. Most 
importantly, the study comparing DC infiltration 
in follicular variant of PTC and thyroid adenomas, 
revealed significantly increased numbers of CD1a+ 
immature DCs in PTC, whereas mature LAMP+ DCs 
accumulated to similar extent in malignant and benign 
thyroid tumours [91].

The clear association of tumour infiltrating DCs 
with PTC, as compared with more aggressive carci-
nomas of the thyroid, led to an assumption that the 
extend of DC accumulation in PTC could correlate 
positively with favourable clinical course [84, 87]. The 
recently published study analysing retrospectively 
thyroid specimens of 69 classical-type PTC patients 
revealed that S-100+ DC density, both in the tumoural 
tissue and areas of concomitant thyroiditis, was asso-
ciated with the intensity of lymphocytic thyroiditis. 
Moreover, short-term disease-free survival correlated 
positively with the thyroiditis grade but not with the 
number of infiltrating DCs [99]. This observation 
seems to be very interesting in the light of earlier 
reports, showing distinctive for PTC phenotypes of 
infiltrating DCs including expression pattern of che-
mokines receptors and adhesion molecules [68, 86], 
as well as low expression of costimulatory molecules 
such as CD86 [69, 89, 90]. These data suggest that DCs 
recruited to thyroid lesions in PTC instead of exerting 
defensive actions may be engaged in tumour immu-
ne escape processes. Unfortunately, the knowledge 
of the interaction between DCs and other immune 
regulatory cell populations in thyroid malignancies 
remains scarce. In the newly published study, Yu and 
co-workers demonstrated expansion of FoxP3+ Tregs 
in peripheral blood and thyroid tissue of patients with 
multinodular goitre coexisting with PTC as compared 
with multinodular goitre cases without malignancy 
[100]. The subpopulation of FoxP3+ Tregs expressing 
Inducible T cell Costimulator (ICOS, costimulatory 
molecule belonging to B7 superfamily) was shown to 
be a strong predictor of progression in metastatic PTC 
cases. Interestingly, in thyroid tissue of PTC patients 

the number of FoxP3+ICOS+ Tregs correlated po-
sitively with pDCs suggesting an engagement of PTC 
infiltrating pDCs in expansion of other regulatory cells 
and in consequence in tumour immune evasion [100].

The postulated engagement of DCs in the immune 
control of thyroid malignancies formed a basis for the 
application of DCs in experimental immune therapies 
— mainly in medullary thyroid carcinoma (MTC). In 
Ret/Cal mice (regarded as an animal model of MTC) 
vaccination with amino acid-modified calcitonin-pul-
sed DCs resulted in diminished tumour outgrowth 
[101]. Few cases of partial disease stabilization were 
also observed in several small series of medullary 
thyroid carcinoma studies and in a single study with 
PTC and follicular carcinoma patients vaccinated with 
autologous DCs preincubated with tumour lysates 
[102–106]. However, taking in consideration rather 
mediocre clinical benefits, further research is needed 
to enhance the anti-tumour activity of DC-based anti
-tumour vaccines in thyroid carcinomas. 

Dendritic cells and thyroid-pituitary axis

The expression of thyroid hormone receptors (TRs) 
was found in both immature and mature murine bone 
marrow-derived DCs — the b1 isoform of TR (TRb1) 
was highly expressed in cDCs and preferentially lo-
calized in cytoplasm. It was shown that physiological 
levels of triiodothyronine (T3) induced DC matu-
ration and surface expression of HLA-DR, CD80, 
CD86 and CD40 in vitro. Moreover, IL-12 production 
in T3 stimulated DCs was markedly increased, with 
no effect on IL-10 secretion. T3 potentiated also the 
ability of bone marrow derived DCs to induce naive 
T cell proliferation and IFN-g production in alloge-
neic cocultures. Importantly, in this experimental 
model, DC phenotype changes associated with T3 
stimulation were similar to those induced by lipopoly-
saccharide (LPS), the potent DC activation and mat-
uration factor [107]. Additionally, dexamethasone —  
a glucocorticosteroid, known as a suppressor of LPS 
induced DC maturation, inhibited in vitro the effects 
exerted by T3 on murine bone marrow DCs including 
changes in costimulatory phenotype and secretion 
profile, as well as their immunoregulatory function 
[108]. Further analysis of molecular mechanisms un-
derlying the effects of thyroid hormones on murine 
bone marrow-derived DC suggested an activation of 
signal transduction pathways associated with Akt and 
Nuclear Factor (NF)-kB. Increased Ser-473 phos-
phorylation of Akt was shown to be specific for T3 
dependent DC maturation, whereas NF-kB activation 
was presented as an important element of both T3- 
and LPS-associated intracellular signalling pathways. 
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On the contrary, T3 dependent maturation processes 
in murine bone marrow DCs did not involve activation 
of extracellular signal-regulated kinase, protein kinase 
A, c-Jun N-terminal kinase and protein phosphatase 
2A signal transduction pathways. Importantly, the 
effects exerted by T3 on DCs in vitro were TRb1 — 
binding dependent and encompassed regulation of 
TRb1 expression [109].

In the study performed in our laboratory, we 
investigated the influence of thyroid hormones on 
naturally occurring human peripheral blood DCs. 
In order to gain an insight into the in vivo regula-
tory processes associated with thyroid hormones in 
humans, we implemented an experimental model in 
which we assessed immune parameters in patients 
who underwent total thyroidectomy, i.e. patients 
lacking endogenous thyroid hormones production. 
The quantity and phenotype of cDCs and pDCs were 
analysed in two consecutive time points: before com-
mencement of levothyroxine (LT4) supplementation 
(hypothyroidism) and after two months of sufficient 
LT4 administration (euthyroidism). Interestingly, in 
peripheral blood of LT4 treated patients we observed 
an increased proportion of pDC and cDC populations. 
The phenotypic analysis revealed increased level of 
HLA-DR surface expression in both main DC subsets. 
Moreover, the expression of CD86 on pDCs increased 
in euthyroidism, whereas this parameter remained 
stable in cDCs population. Expression of the other 
maturation markers (CD40, CD80 and CD83) did 
not change in the course of LT4 treatment in none 
of the investigated DC subsets [110]. In autologous 
coculture experiments, T3 enhanced the ability of 
freshly isolated human peripheral blood DCs to 
stimulate the proliferation and IL-12 production of 
peripheral blood mononuclear cells (PBMC) in re-
sponse to mitogen (concanavalin A). Interestingly, in 
this autologous coculture system T3 showed additive 
action with signals mediated through soluble CD40 
ligand (CD154) [110].

Because of the potent regulatory feedback loops, 
characteristic for the hypothalamus-pituitary-thyroid 
axis, TSH fluctuations may with great probability 
influence the immune effects of thyroid hormones 
observed in vivo. High level of TSH-receptor expres-
sion was found in murine DCs localized in spleen and 
lymph nodes. In vitro stimulation with TSH enhanced 
phagocytic activity of immature murine DCs, prolon-
ged the initial state of phagocytosis and increased 
secretion of proinflammatory cytokines (IL-1b and 
IL-12) [111]. Moreover, an analysis of DC — TFC 
interactions in coculture revealed an existence of 
a complex crosstalk between these cellular compo-

nents of the thyroid gland. The ability to survive in 
culture, proliferative activity and maturation of pig 
thyroid derived DCs depended strongly on humoral 
factors secreted by autologous TFCs stimulated with 
TSH – identified as GM-CSF and TGF-b1 [112]. On 
the other hand, rat spleen derived DCs exerted an 
inhibitory action on TSH stimulated TFC growth and 
T3 secretion in coculture. Also in this case, cytokines 
(IL-1b and IL-6) seemed to play a role of crucial me-
diators [113]. However, there is still little knowledge 
of TSH receptor expression in main human leukocyte 
subsets and immune function of TSH in humans. In 
our clinical model, based on the thyroidectomised 
patients receiving systemically recombinant human 
(rh) TSH, we assessed conventional and plasmacytoid 
peripheral blood DCs under conditions independent 
from “natural” thyroid hormones fluctuations and 
found that systemic administration of rhTSH did not 
exert any significant effects neither on quantitative 
nor phenotypic parameters of the assessed DC subpo-
pulations [114]. 

In the light of these in vitro and ex vivo observa-
tions we may assume that the DCs interactions with 
the humoral and cellular components of the pituita-
ry-thyroid axis depend not only on the DC functional 
characteristics (DC subtype, stage of maturation, 
activation state) but are also influenced by multiple 
local, organ-specific, regulatory circuits. This sugge-
stion seems to be further supported by the fact that 
murine DCs located in secondary lymphoid tissues 
were shown to produce and secrete TSH and in vitro 
studies confirmed DCs as the most potent known TSH 
producers in immune system. Interestingly, TSH pro-
duction by DCs increased considerably in response to 
bacterial products [115, 116], suggesting possible role 
of DC associated auto- and paracrine TSH secretion 
in primary immune response.

Conclusions

An increasing evidence points at DCs as crucial play-
ers in autoimmune and malignant thyroid disorders. 
The wide engagement of DCs in virtually all phases of 
thyroid autoaggression and malignancy underlines the 
need of further research directed on characterization 
of the role of particular DC subpopulations in thyroid 
pathology. The recent findings suggest plasmacytoid 
DCs and their interaction with regulatory T cells as 
particularly interesting. The DC associated local regu-
latory processes (including secretion of TSH and other 
mediators) represent another poorly understood issue 
of great importance for both thyroid physiological 
function and pathology.
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