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Abstract:Abstract:Abstract:Abstract:Abstract: We studied the glycopatterns and ultrastructure of the extra-cellular matrix (ECM) of the egg of the
Apennine yellow-bellied toad Bombina pachypus, by light and electron microscopy in order to determine struc-
ture, chemical composition and function. Histochemical techniques in light microscopy included PAS and Al-
cian Blue pH 2.5 and 1.0, performed also after b-elimination. Lectin-binding was tested with nine lectins (AAA,
ConA, DBA, HPA, LTA, PNA, SBA, UEA-I, WGA). An inner fertilization envelope (FE) and five jelly layers
(J1–J5) were observed, differing in histochemical staining, lectin binding and ultrastructure. Most glycans were
O-linked, with many glucosamylated and fucosylated residues. The fertilization envelope presented a perivi-
telline space and a fertilization layer, with mostly neutral glycans. The jelly layers consisted of fibers and gran-
ules, whose number and orientation differed between layers. Fibers were densely packed in J1 and J4 layers,
whereas a looser arrangement was observed in the other layers. Jelly-layer glycans were mostly acidic and partic-
ularly abundant in the J1 and J4 layers. In the J1, J2 and J5 layers, neutral, N-linked glycans were also observed.
Mannosylated and/or glucosylated as well as galactosyl/galactosaminylated residues were more abundant in the
outer layers. Many microorganisms were observed in the J5 layer. We believe  that, apart from their functions in
the fertilization process, acidic and fucosylated glycans could act as a barrier against pathogen penetration.
(Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 306–316)
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IntroductionIntroductionIntroductionIntroductionIntroduction

Amphibian eggs are surrounded by an extra-cellu-
lar matrix (ECM) consisting of an inner vitelline
envelope and an outer jelly coat, made up of layers
whose number and composition are species-specific

[1–3]. The jelly coat layers consist mainly of glyco-
proteins and glycosaminoglycans [3–5], and their
carbohydrate-chain composition has been investi-
gated in a number of species [6–9]. In general, the
glycans are O-linked to the core proteins and sev-
eral sequences are unique to a given species
[5–11]. In most studies, the whole jelly coat is taken
for biochemical analysis, without distinguishing
between the layers or the sublayers. Histochemical
studies have demonstrated that the distribution of
neutral and acidic carbohydrates varies among the
layers in several species [1, 4, 12]. Lectin-binding
experiments on jelly coat layers have revealed het-
erogeneity in the distribution of binding sites among
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and within layers [5, 13, 14]. Electron-microscopy
studies have revealed that each layer presents
a unique fiber and glycoprotein composition, and that
the jelly coats are complex structures in which glob-
ular glycoproteins are bound to a fibrous glycopro-
teic superstructure [5, 15].

Jelly coat layers have been found to be involved
in a number of functions, such as interactions with
spermatozoa in fertilization [16, 17], mechanical
support, spacing and substrate attachment for the
egg clusters [18], hosting for oxygen-supplying, sym-
biote algae [19], and protection against predators,
pathogens, environmental stressors, and contami-
nants [3, 20, 21]. Amphibians with a more complex
jelly coat covering show a higher resistance to wa-
ter molds [22]. The penetration of contaminants is
significantly reduced and/or slowed by jelly coat
layers [21, 23], even if this is not always observed
[24, 25]. The resistance of egg ECM to environmen-
tal stresses can even vary geographically within
a single species [26]. Several papers have attempted
to link the presence of particular molecules in the
ECM to given functions [e.g. 5, 8, 10, 11, 13, 16, 27].
A relatively small number of species has been in-
vestigated taking into account the huge diversity
of ECM organization among living amphibians
[1, 3, 18], and the role of several jelly molecules is
still poorly understood [27].

Knowledge about the structure and composition
of the egg jelly coat is fundamental to understanding
both the fertilization processes and the mechanisms
by which contaminants, e.g. pesticides and pathogens,
e.g. Saprolegniacee, affect egg survival and the con-
sequent reproductive success of amphibian species,
the prevalence of many of which is declining around
the world [28, 29].

With all this in mind, in the present paper we stud-
ied, using different staining and microscopic obser-
vation techniques, the composition and organization
of ECM in the Apennine yellow-bellied toad, Bom-
bina pachypus.

Our goals were as follows:
1. To link the structure and glycopattern composi-

tion of such a complex structure;
2. To give some functional interpretations of the fin-

dings in the light of the available literature;
3. To obtain preliminary data in understanding the

role of ECM in the protection of the egg, and its
implications for future studies about the effects
of contaminants on the survival of eggs in this
endemic, but declining, species [30];

4. To contribute to the understanding of ECM di-
versity among anurans.

Material and methodsMaterial and methodsMaterial and methodsMaterial and methodsMaterial and methods

Egg collectionEgg collectionEgg collectionEgg collectionEgg collection. Eggs of the Apennine yellow-bellied toad,
Bombina pachypus, were collected from fields in the Gra-
vine of Laterza (Taranto, Apulia, Italy) in April 2008 soon
after their deposition. No more than one pair of eggs was
taken from each clutch, usually consisting of 15–20 eggs, to
avoid hampering reproductive success. This egg collection
was authorized by Italy’s Ministero dell’Ambiente.

Light microscopy.Light microscopy.Light microscopy.Light microscopy.Light microscopy. The eggs were embedded in a Techno-
vit 8100 kit (EMS, Hatfield, PA, USA). The eggs were fixed
in a 4% paraformaldehyde solution in 0.1 M phosphate-
buffered-saline (PBS) pH 7.4 at 4°C for three hours. After
several rinses in PBS, pieces were incubated overnight, at
4°C, in PBS with 6.8% added sucrose, and then dehydrated
with increasing acetone, also at 4°C. Infiltration was per-
formed by incubating the specimens in a Technovit 8100
monomer for six hours at 4°C with gentle stirring. Finally,
the eggs were embedded with an ice-cold solution of 15:1
infiltrating solution. Polymerization was carried out on an
ice bed for three hours. Semi-thin sections (2 μm thick) were
cut with glass knives using an LKB Ultratome and mounted
on microscope slides, coated with polylysine (Sigma, St.
Louis, MO, USA). Semi-thin sections were incubated for
five minutes at 37°C in 0.01% trypsin (Sigma) and 0.1%
CaCl2 in PBS, pH 7.8 before staining.

Histochemistry.Histochemistry.Histochemistry.Histochemistry.Histochemistry. The sections were stained with periodic
acid-Schiff (PAS) hemallum [31] for general carbohydrate
staining, and Alcian-Blue (AB) at pH 2.5 or pH 1.0 to de-
tect acidic carbohydrates. All the cited reagents were from
Sigma. PAS and Alcian stainings were also combined to dif-
ferentiate between neutral and acidic carbohydrates in the
same section [32]. PAS-AB pH 2.5 were also performed after
b-elimination, a method that removes the O-linked oligosac-
charides from glycoproteins [33]; prior to staining, sections
were incubated with 0.2M KOH in dimethylsulphoxide —
H2O — ethanol (50:40:10) for one hour at 45°C, followed by
neutralisation with 10 mM HCl and washing in PBS pH 7.4.

LLLLLectin histochemistry.ectin histochemistry.ectin histochemistry.ectin histochemistry.ectin histochemistry. The binding of nine lectins (all from
Sigma except for AAA from Vector Laboratories, Burlin-
game, CA, USA) was assessed to determine the nature and
distribution of glycosidic residues in the egg layers. Lectins
were labelled with horseradish peroxidase (HRP), fluores-
ceine isothiocyanate (FITC) or phosphatase. The lectins,
their concentrations, and their sugar specificities are sum-
marized in Table 1. References for the lectins are given in
References 34–42.

For the binding with FITC-conjugated lectins (ConA,
DBA, HPA, PNA, LTA, WGA, UEA-I), the sections were
incubated for 30 minutes in blocking buffer, i.e. 1% normal
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goat serum in 0.1 M Tris-buffered saline pH 7.4 (TBS) and
then incubated for one hour at room temperature with the
FITC-lectin solution in TBS. Sections were subsequently
rinsed in the same buffer and mounted in 70% glycerin in
TBS. For the binding with HRP-conjugated SBA lectin, the
sections were exposed to 3% hydrogen peroxide for ten min-
utes to inhibit endogenous peroxidase activity, and then in-
cubated for 60 minutes at room temperature with HRP-lec-
tin in TBS. HRP activity was then visualised with 0.005%
3–3'-diaminobenzidine (DAB: Sigma)-0.01% hydrogen per-
oxide in 0.05 M TBS [43] for ten minutes in the dark at
room temperature. Finally, the sections were dehydrated
through a graded ethanol series, cleared in Histolemon
(Carlo Erba, Rodano, Milan, Italy), and mounted in DPX
(Fluka BioChemika, Steinheim, Germany).

For the binding with AAA phosphate-conjugated lec-
tin, the sections were incubated for one hour at room tem-
perature with the lectin solution in TBS. Sections were sub-
sequently rinsed in the same buffer and incubated in the
substrate working solution (BCIP/NBT alkaline phosphatase
substrate Kit IV from Vector Laboratories, Burlingame, CA,
USA) for 15 minutes at room temperature. The endoge-
nous alkaline phosphatase activity was inhibited by adding
levamisole to the working solution. After washing in 0.1 M
TBS pH 9.5 for five minutes, the sections were counter-
stained with methyl green (Sigma) dehydrated, cleared and
mounted following the HRP-lectin protocol.

Two different controls for lectin labeling were used:
1) substitution of the respective lectin with TBS alone; and
2) incubation in the lectin with the addition of the appropriate
inhibitory sugar (concentrations are set out in Table 1). Pos-
itive controls were included from different regions of the
digestive system from two amphibians, Bufo balearicus (for-
merly known as Bufo viridis) and Triturus carnifex, whose
mucins are known to bind to the tested lectins [44, 45].

TTTTTransmission electron microscopy.ransmission electron microscopy.ransmission electron microscopy.ransmission electron microscopy.ransmission electron microscopy. The eggs were fixed
in 4% glutaraldehyde and processed for embedding in Ep-
oxy Resin-Araldite (M) CY212 (TAAB, Aldermaston, UK)
as previously reported [46]. Semi-thin sections 2 μm thick
were stained with Toluidine blue-PAS (PAS-TB). Ultra-thin
sections were mounted on formwar-coated nickel grids and
stained routinely with uranyl acetate and lead citrate [47].
Images were captured using a Nikon Eclipse 600 photomi-
croscope equipped with a Nikon DMX 1200 camera
(Nikon Instruments SpA, Calenzano, Florence, Italy).

Each experiment was repeated twice on specimens tak-
en from three different eggs, giving a total of six repeti-
tions. Staining/labeling in each experiment was assessed
by at least two independent observers and scored as posi-
tive (+), moderately positive (– +), or negative (–) ac-
cording to their intensity.

RRRRResultsesultsesultsesultsesults

Freshly-collected eggs of B. pachypus were surround-
ed by an ECM about 3–4 mm thick. Embedding re-
duced the ECM thickness because of dehydration.
Staining techniques revealed an inner fertilization
envelope (FE), and a jelly coat subdivided into five
main layers, called J1–J5, with J1 being the innermost.

HistochemistryHistochemistryHistochemistryHistochemistryHistochemistry

Table 2 summarizes the histochemical staining pat-
terns observed. Figures 1A and 1B show the ECM
stained by PAS combined with AB ph 2.5 and pH 1.0,
respectively. The FE is weakly PAS-positive and neg-
ative with AB at both pH 2.5 and 1.0. PAS-positivity
of FE increases towards the J1 layer, where a more
intensely stained sublayer is observed. The J1 layer

TTTTTable 1.able 1.able 1.able 1.able 1. Characteristics of the lectins utilized

LLLLLectinectinectinectinectin Source andSource andSource andSource andSource and Binding specificityBinding specificityBinding specificityBinding specificityBinding specificity LLLLLectinectinectinectinectin InhibitoryInhibitoryInhibitoryInhibitoryInhibitory
reference numbersreference numbersreference numbersreference numbersreference numbers  concentration concentration concentration concentration concentration sugarsugarsugarsugarsugar

[mg/ml][mg/ml][mg/ml][mg/ml][mg/ml]

Con A Canavalia ensiformis [34] D-mannose, D-Glucose 0.005 0.1 M MaM

WGA Triticum vulgaris [35] (GlcNAcb1,4)n 0.02 0.01 M TACT

SBA Glycine max [36] GalNAc 0.02 0.2 M GalNAc

HPA Helix pomatia [37] GalNAc 0.02 0.2 M GalNAc

DBA Dolichos biflorus [38] a-GalNAc 0.02 0.2 M GalNAc

PNA Arachis hypogaea [39] Galb1,3GalNAc 0.01 0.2 M Gal

AAA Aleuria aurantia [40] Fuca(1,6)GlcNAc-bNAsn Fuca(1,3), Fuca(1,4) 0.01 0.2 M L-Fuc

UEA-I Ulex europaeus [41] Fuca(1,2) 0.01 0.2 M L-Fuc

LTA Tetragonolobus purpureus [42] L-Fuca1,6GlcNAc 0.02 0.2 M L-Fuc
and L-Fuca1,2Galb1,4[L-Fuc1,3] GlcNAcb1,6R

Fuc — fucose; Gal — galactose; GalNAc — N-acetylgalactosamine; GlcNAc — N-acetylglucosamine; MaM — methyl-a-mannopyranoside;
TACT — N,N’,N”-triacetylchitotriose
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stains deep blue with combined PAS-AB pH 2.5,
whereas it stains violet with PAS-AB pH 1.0, suggest-
ing that PAS-positivity is masked by intense alciano-
phily with PAS-AB pH 2.5. The J2 layer is made up of
a network of fibers and granules positive to PAS and
AB stainings. The J3 layer stains mostly blue at both
PAS-AB pH 2.5 and PAS-AB pH 1.0. The J4 layer is
positive to PAS and weakly positive to the AB stain-
ings, with a stronger alcianophilic sublayer at the tran-
sition zone with the J5 layer. The latter has a ‘foamy’
appearance and hosts several microorganisms, with
fibers and granules positive to PAS and/or to AB stain-
ings. After b-elimination, only the J1, J4 and J5 layers
keep their PAS-positivity, but not their alcianophily,
whereas the other layers are not stained or weakly
stained (Figure 1C).

LLLLLectin histochemistryectin histochemistryectin histochemistryectin histochemistryectin histochemistry

Table 3 sets out the lectin-binding patterns observed.
Figures 1D–L show the binding patterns of each lec-
tin. Of the nine lectins tested, AAA (Figure 1D) and
WGA (Figure 1H) bind to both the FE and all the
jelly layers, whereas the others show selectivity to-
wards one or more layers. Each layer binds to at least

three different lectins. In general, the J1, J4 and J5 lay-
ers bind to a higher number of lectins than J2 and J3,
even if it is not always easy to state the positivity of
layers with a loose texture, like J2, J3, and J5. PNA
(Figure 1J) and DBA (Figure 1K) bind mostly to the
outer jelly layers. UEA-I binds weakly only to the J5
layer (Figure 1E). No labeling was observed in con-
trol sections exposed to DAB-H2O2 medium after sub-
stitution of TBS for lectin or incubated with the cor-
responding hapten sugars (Figure 1G).

TTTTTransmission electron microscopyransmission electron microscopyransmission electron microscopyransmission electron microscopyransmission electron microscopy

The FE shows two areas, the innermost being less elec-
tron-dense than the outer (Figure 2A). In the inner
area, sparse granules are observed, whereas in the outer
there is a loose mesh of fibers with no clear orienta-
tion. In the jelly envelope, each of the five layers ob-
served in light microscopy presents a peculiar struc-
ture. J1 is made up of densely-packed fibers running
parallel to the egg’s surface (Figures 2A, B). Fibers
with the same orientation of J1 are also seen in the J2
layer, but they are more loosely arranged and present
a series of granules (Figure 2B). In the J3 layer, the
number of fibers decreases and their orientation is less

TTTTTable 2.able 2.able 2.able 2.able 2. Histochemical stainings of the egg extra-cellular matrix of Bombina pachypus

LLLLLayerayerayerayerayer StainingStainingStainingStainingStaining

PPPPPAAAAASSSSS AB pH 2.5AB pH 2.5AB pH 2.5AB pH 2.5AB pH 2.5 AB pH 1.0AB pH 1.0AB pH 1.0AB pH 1.0AB pH 1.0 bbbbb-elimination-elimination-elimination-elimination-elimination
PPPPPAAAAAS AB pH 2.5S AB pH 2.5S AB pH 2.5S AB pH 2.5S AB pH 2.5

FE + –/+ +1 – – – – – –

J1 + + + + + + Red

J2 + – + – + – – –

J3 – – + + + + – –

J4 + + + –/+ +2 + – Red

J5 + + + – + – Red

Layers: FE — fertilization envelope; J1–J5 — jelly coat layers; 1PAS-positivity increases in a sublayer at the boundary with J1;
2Alcianophily increases in a sublayer at the boundary with J5

TTTTTable 3.able 3.able 3.able 3.able 3. Lectin binding of the egg extra-cellular matrix of Bombina pachypus

LLLLLayerayerayerayerayer LLLLLectinectinectinectinectin

Con ACon ACon ACon ACon A WGWGWGWGWGAAAAA SBASBASBASBASBA HPHPHPHPHPAAAAA DBADBADBADBADBA PNAPNAPNAPNAPNA AAAAAAAAAAAAAAA UEAUEAUEAUEAUEA-I-I-I-I-I LLLLLTTTTTAAAAA

FE – – +– – – + – – – ++ + – – – – –

J1 + – + + + – – – – – – – + + – – + –

J2 – – + + – – – – – – – – +– – – – –

J3 + – + + – – + + – – – – +- – – – –

J4 + + + + – – + + + – + + + + – – + –

J5 + + + + – – – – + – + + + – + – + –

Layers: FE — fertilization envelope; J1–J5 — jelly coat layers
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clear, whereas the granular component is more abun-
dant (Figures 2C, D). Densely-packed fibers are again
visible in the J4 layer, the organization of which looks
similar to the J1 layer (Figures 2 D, E). The J5 layer is
characterized by several granules and a loose network
of fibers, hosting several microorganisms (Figures 2
E, F). It was not possible to observe the two sublayers
revealed by histochemical techniques at the FE/J1 and
J4/J5 boundaries, respectively: in these areas, the layers
trespass one into another rather abruptly, with no par-
ticular structural organizations suggesting the existence
of the cited sublayers (Figures 2A, E).

DiscussionDiscussionDiscussionDiscussionDiscussion

By combining histochemical and lectin-histochemi-
cal techniques in light microscopy and electron mi-

croscopy, we showed that the extra-cellular matrix of
the egg of B. pachypus is a complex structure with an
envelope and five jelly layers, each characterized by
a specific structure and carbohydrate composition.

Lectin-binding patterns do not suggest the presence
of a monosaccharide in a glycan, but rather of an oligo-
mer in which a specific monosaccharide is probably
present. In any case, lectin-histochemistry is very useful
in comparing structures and detecting variations between
different layers of the egg envelope [5, 13, 14].

The fertilization envelope, the innermost layer of
the ECM, is made up of two zones with different tex-
tures, the inner comprising sparse granules and the
outer comprising a loose mesh of fibers. The inner
and outer zones should correspond to the perivitelline
space and the fertilization layer, respectively, observed
in Xenopus laevis [48]. Glycoconjugates in the FE are

Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. Egg extra-cellular matrix of Bombina pachypus. A. A. A. A. A. PAS-Alcian Blue pH 2.5. Layers J1, J3 and a sublayer between
J4 and J5 (white arrow) are intensely alcianophilic. An intensely PAS-positive area is seen in the fertilization envelope (*)
towards J1 (black arrow). J1,–J5 — jelly coat layers 1 to 5; o, egg. B.B.B.B.B. PAS-Alcian Blue pH 1.0. J3 is still markedly alcianophi-
lic. The sublayer between J4 and J5 is still evident. J1,–J5 —  jelly coat layers 1 to 5; o, egg; * — fertilization envelope.
CCCCC. PAS-Alcian Blue pH 2.5 after b-elimination. PAS-positivity persists in J1, J4 and J5 layers, whereas alcianophily is
suppressed. J1,–J5 — jelly coat layers 1 to 5; o, egg. DDDDD. Binding with AAA lectin (phosphatase-conjugated). J1 and J4 are
intensely stained. Several microorganisms can be seen in J5 layer. J1,–J5 — jelly coat layers 1 to 5; o, egg; * — fertilization
envelope. EEEEE. Binding with UEA-I lectin (peroxidase-conjugated). Moderate binding can be seen only in J5 layer. J5 — jelly
coat layer 5; o, egg. FFFFF..... Binding with SBA lectin (peroxidase-conjugated). Moderate binding can be seen only in the J1

layer. J1 — jelly coat layer 1; o, egg; * — fertilization envelope

A B

C D

E F
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mostly neutral and O-linked, presenting galactosyl/
galactosaminylated, glucosaminylated and fucosylat-
ed residues. Towards the J1 layer, a zone that stains
more intensely can be seen; boundary zones like these
should be referred to as ‘membranes’ [3] and it is
unclear whether they are actual, distinct structures
or simply optical representations of transition between
two layers that have different densities. The lack of
differences in lectin binding or structure of this mem-
brane in respect to the FE or the J1 layer does not
support the existence of a true layer between them.

The J1 layer of B. pachypus consists of a number
of densely-packed fibers running parallel to the egg’s
surface. It is rich in acidic oligosaccharidic residues,
as demonstrated by its intense staining with AB pH
2.5. Reduction of alcianophily with AB pH 1.0 sug-
gests that the acidic residues are mostly sialylated,

whereas its suppression after b-elimination indicates
that such residues are O-linked. By contrast, the per-
sistence of PAS-positivity after b-elimination indicates
the presence of neutral, N-linked glycans. Besides,
lectin-binding experiments indicate the presence of
mannosylated and/or glucosylated, galactosaminylat-
ed, and fucosylated residues. WGA-binding could be
explained by either the presence of N-acetylglu-
cosamine or Neu5Ac sialic acid.

The J2 layer has a loose structure, with fibers ar-
ranged in a parallel orientation similar to J1 and gran-
ules. Neutral and acidic, mostly O-linked glycans are
present, with N-acetylglucosamine and fucose resi-
dues in the oligosaccharidic chains.

The J3 layer present a fibrous structure like the
previous layers, but the fibers are more spaced, with
a less clear orientation and an increased number of

G H

K L

Figure 1 — continued. G.Figure 1 — continued. G.Figure 1 — continued. G.Figure 1 — continued. G.Figure 1 — continued. G. Binding with ConA lectin (FITC-conjugated). Binding is seen mostly in J4 and J5 layers. Insert:
negative control. J1,–J5 — jelly coat layers 1 to 5. H.H.H.H.H. Binding with WGA lectin (FITC-conjugated). The lectin binds to all
layers. In the J2 layer lectin binds to both fibers and granules (white arrow). Insert: section with partial detachment of J1 to
show lectin binding to the fertilization envelope (*). J1,–J5 — jelly coat layers 1 to 5; * — fertilization envelope. IIIII. Binding
with LTA lectin (FITC-conjugated). The lectin binds to J1, J4 and J5 layers. J1,–J5 —  jelly coat layers 1 to 5; * — fertiliza-
tion envelope. J.J.J.J.J. Binding with PNA lectin (FITC-conjugated). Binding is mainly observed to the fertilization envelope,
J4 and J5. White arrow indicates a fragment of a filamentous green alga. J1,–J5 — jelly coat layers 1 to 5; * — fertilization
envelope. K.K.K.K.K. Binding with DBA lectin (FITC-conjugated). J4 and J5 layers bind to the lectin. J4, — jelly coat layer 4;
J5 — jelly coat layer 5. L.L.L.L.L. Binding with HPA lectin (FITC-conjugated). Main binding is seen to the fertilization envelope,
J3 and J4 layers. J1, — J5 — jelly coat layers 1 to 5; * — fertilization envelope. Scale bar = 50 μm

I J
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granules. It stains blue with both AB pH 2.5 and AB
pH 1.0, and is PAS-negative, whereas b-elimination
suppresses alcianophily. These results suggest that the
fibers contain proteoglycans with carboxylated and
sulfated glycosaminoglycans O-linked to the core pro-
tein, since both proteoglycans and glycosaminoglycans
are scarcely, or not at all, PAS-positive [49]. Residues
of mannose and/or glucose, N-acetylglucosamine,
N-acetylgalactosamine and fucose are probably
present in the oligosaccharidic chains.

Similar to J1, the J4 layer has densely-packed fi-
bers. These are PAS-positive and weakly alcianophilic
with AB pH 2.5. The suppression of alcianophily with
AB pH 1.0 and b-elimination indicate the presence
of carboxylated, O-linked oligosaccharidic chains.

Several lectins bind to this layer, suggesting the pres-
ence of mannosylated, glucosyl/glucosaminylated, ga-
lactosyl/galactosaminylated and fucosylated residues.
Similar to that observed at the FE/J1 boundary,
a ‘membrane’ can be seen between J4 and J5 intensely
stained with PAS-AB pH 2.5 and PAS-AB pH 1.0, but
the lack of distinctive ultrastructural and lectin-bind-
ing features in respect of the bordering layers sug-
gests that this membrane is merely an optical transi-
tion between the layers.

The J5 layer appears foamy in light microscopy,
being made up of a very loose network of fibers and
granules. The J5 layer is involved in the spacing and
adhesion of the eggs among them and to the substrate.
Neutral and acidic glycans, both O- and N-linked, are

A B C

D E F

FigureFigureFigureFigureFigure 2.2.2.2.2. Ultrastructure of egg extra-cellular matrix of Bombina pachypus in transmitted electron microscopy.  A. A. A. A. A.
Fertilization envelope (*) showing the perivitelline space (ps) next to the egg (o) and the fertilization layer (F), and J1
layer with densely fibrous packing. Scale bar = 1.4 μm. B. B. B. B. B. J1 (upper) and J2 (lower) layers, with the latter having a looser
arrangement of fibers and granules (arrows). Scale bar = 1.8 μm. CCCCC. J3 layer with granules (arrows) along fibers. Scale bar
= 1.8 μm. DDDDD. J3 (upper right) and J4 (lower left) layers, the fibers of the latter being densely packed. Arrows indicate
granules in the J3 layer. Scale bar = 1.8 μm. E.E.E.E.E. Transition between J4 and J5 layers, with a reduced number of fibers and an
increased number of granules (simple arrows) in the latter. The double arrow indicates a microorganism, possibly a blue
alga. Scale bar = 0.7 μm. FFFFF..... Detail of J5 layer with granules (simple arrows) and two microorganisms (double arrows).
Scale bar = 0.45 μm
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present, with residues of mannose and/or glucose,
galactose, N-acetyl-glucosamine, N-acetyl-galac-
tosamine, and fucose. Several microorganisms found
at this level can sometimes confuse the interpreta-
tion of lectin-binding to the J5 layer because they are
coated with autogenous mucins.

In the jelly envelopes of the species Bombina
bombina and B. variegata (B. pachypus is sometimes
included in the latter species [50]), 28 O-linked car-
bohydrate chains have been identified [7]. The spe-
cies have very similar glycans, sharing the sequenc-
es GlcNAc(b1-3)[Fuc(a1-4)]GlcNAc(b1-6) and
GlcNAc(a1-4) Gal(b1-4)Gal(b1-3), and fucosylated
residues are linked mostly in (1,4) to proximal
N-acetylglucosamine or in (1,2) to galactose [7]. The
presence of similar residues in B. pachypus can be
inferred from our lectin-binding experiments, but we
cannot compare the results for each single layer with
those from B. bombina and B. variegata, because their
jelly envelopes were analyzed as a whole, without dis-
tinction between layers [7].

The fertilization layer in the FE of B. pachypus
differs from that of X. laevis in lacking both a clear
parallel orientation of the fibers and a more electron-
dense Fc layer [48]. The latter is apparently also miss-
ing from the FE of other species [4, 51]. It is unclear
whether this layer is really missing in B. pachypus or
was not revealed by our techniques. The filamen-
tous structures in the FE are interpreted as aggre-
gates of ZP glycoproteins [17]. In Xenopus laevis,
these present mostly N-linked, neutral glycans [52].
Reduction of PAS-positivity after b-elimination sug-
gests that in B. pachypus O-linked glycans are also
present, even if is not possible to state whether they
are attached to glycoproteins of the ZP family. An
O-linked, galactosaminylated residual is also found
in a Xenopus laevis ZP [17].

Similar to B. pachypus J1, a strongly acidic layer
adjacent to the FE is found in a number of species
[4, 12, 53–55] and contains both carboxylated and
sulfated glycoconjugates. Carboxylated glycans prob-
ably include sialic acid, as suggested by positivity to
WGA lectin, which is involved in several functions,
such as viscosity of the layer, three-dimensional con-
formational stability, protection from attack and deg-
radation, hydration, osmotic regulation as well as
sperm interaction [56–58]. Sulfated glycans can have
functions similar to the sialylated (and, possibly, be
present in the same chains [59]), and are known to
inhibit polyspermy, whereas neutral glycans select
sperms for penetration [8]. The presence of N-linked
glycans suggests a structural role in keeping the
three-dimensional organization of the layer and,
possibly, the correct orientation of regulatory mole-

cules [59]. This is supported by the presence of fuc-
osylated residues, suggesting the existence of a fu-
can fibrous superstructure to which globular glyco-
proteins are bound [5, 60]. Fucosylated residues can
also act in reducing bacterial motility [61]. Manno-
sylated residues can be present in the core of the N-
linked glycans [59]. The corresponding layer of Xe-
nopus laevis resembles that of B. pachypus in hav-
ing a fibrous structure and binding sites for WGA
and ConA [5, 13, 17].

Further comparisons between our results and those
of previous workers on other species are very difficult
because of differences in the number of layers, tech-
niques, interpretations, and terminology [3, 4].

In the J2 layer of B. pachypus, the loose structure
and the presence of mostly O-linked, acidic chains
suggest a prevailing function in osmoregulation, hy-
dration and spacing. Similar to J1, WGA-binding could
be explained by sialic acid and fucosylated residues
could act against pathogens.

The J3 layer is rich in proteoglycans, glycosami-
noglycans and granules, probably made by globular
glycoproteins. The highly acidic residues are proba-
bly involved in the same functions hypothesized for
the previous layers; in particular, the relatively larger
spaces among fibers can be important in terms of stor-
ing water and diffusible molecules, like sperm
chemoattractants. Galactosaminyl and glucosaminyl
residues found in J3 layer can be explained by the pres-
ence of glycosaminoglycans [59].

The structure of the J4 layer is similar to that of J1,
and carboxylated, mannosylated, galactosaminylated,
glucosaminylated and fucosylated residues are also
present. Thus, this layer could have functions similar
to that of J1. J4 differs from J1 in having galactosylat-
ed residues and in lacking sulfated and N-linked oli-
gosaccharides. Galactose could be associated with
N-acetylglucosamine in lactosamine structures that are
common in O-linked glycan chains [62]. Polylac-
tosamine chains, usually fucosylated or sialylated, can
be involved in water retention, the presentation of
glycan for interaction with lectin-like receptors, and
in mucin/microorganism interactions [59].

J5 is the outermost jelly coat and is probably in-
volved in the adhesion and spacing between eggs, as
well as in storing diffusible molecules involved in fer-
tilization, something that has been observed in other
species [14, 27, 63–65]. Its structural functions are sug-
gested by the presence of N-linked glycans and man-
nosylated residues that can form the core of these
glycans, as observed in the J1 layer. Another impor-
tant function of the J5 layer is in interacting with the
microorganisms coating the egg. It is unclear wheth-
er these organisms are epibionts, symbionts or patho-
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gens. Oxygen supply and protection from excessive
lighting functions have been proposed for several al-
gae, some of which are even exclusive to amphibian
egg jelly layers [3, 18], whereas a number of bacteria
and molds feed on jelly layers and/or eggs and em-
bryos [28]. Since microorganisms are found in B. pa-
chypus J5 layer, but not in the inner ones, it is proba-
ble that the mucins of the inner layers act as a barrier
against them, as previously observed.

The previous functional interpretations are to be
regarded as a preliminary attempt to link glycopat-
terns and structures; the functions proposed for a giv-
en layer can be shared with other ones. For example,
fucosylated residues are present in all layers, so that
structural and antibacterial functions could be sug-
gested for each of them. Furthermore, functions of
the same residues can differ between layers: acidic
glycans can play a more important role in sperm in-
teractions in the outer layers [8], whereas they could
have a prevailing function in hydrosaline and acidic
homeostasis in the inner ones.

B. pachypus presents a relatively high number of
jelly layers in respect of other anurans [1, 3]. The num-
ber of layers itself can be linked to an increased pro-
tection against pathogens, since species with thicker
jelly-coated eggs are less exposed to water mold in-
fection than species with thinner coats [22]. None-
theless, the jelly coat is not a sufficient barrier against
penetration by herbicides like isoproturon [24], or
insecticides like a-cypermethrin and endosulfan
[25, 66], although it seems to reduce penetration by poly-
cyclic aromatic hydrocarbons [21] and 2,4-D butoxy-
ethyl ester [23], even though it is supposed that eggs of
species with different jelly-coat thickness should differ
in resistance to chemical penetration [21].

In conclusion, our study confirms the complex or-
ganization of the extracellular matrix of the amphib-
ian egg and its species-specificity that can be fully un-
derstood only by integrating data from multiple ap-
proaches. Further studies are needed to fully under-
stand the role of glycans in functions such as
protection from pathogens and possible hosting for
oxygen-supplying algae, as well as the effects of pol-
lutants on their structure, and thus possible alterations
of their protective functions.
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