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Abstract: Although the immune status of chronic lymphocytic leukemia (CLL) patients is mostly characterized
by immunosuppression, there is an accumulation of in vivo (graft-versus-leukemia effect) and in vitro (spontane-
ous remissions after infections) data that indicates that CLL might be effectively targeted by T-cell based immu-
notherapy. Recently, we characterized receptor for hyaluronic acid mediated motility (RHAMM) as a preferen-
tial target for immunotherapy of CLL. We also completed a RHAMM-derived peptide vaccination phase I/I1
clinical trial in CLL. Here, we present a detailed immunological analysis of six CLL patients vaccinated with
HLA-A2 restricted RHAMM-derived epitope R3 (ILSLELMKL). Beside effective induction of R3-specific cy-
totoxic T-cells, peptide vaccination caused profound changes in different T-cell subsets as well as cytokines. We
present longitudinal analyses of Th17, CD8*CD103*, CD8*CD137* and IL-17 producing CD8* T cells (CD8*IL-
-17%) as well as important cytokines involved in regulation of immune response such as TGF-g, IL-10, IL-2 and
TNF throughout the peptide vaccination period. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 1, 161-167)
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but also provide survival benefit to CLL patients [3].
Unfortunately, novel treatment modalities cannot cure

Introduction

Chronic lymphocytic leukemia (CLL) is the most fre-
quent leukemia in Western countries. Its clinical course
and molecular characteristics are highly heterogeneous
[1]. While one third of patients will never require the-
rapy, others need to be treated, in some cases immedia-
tely [2]. Several novel, effective therapies have recent-
ly become available including chemo-immunotherapy
composed of cyclophosphamide, fludarabine and ritu-
ximab which can not only induce high response rates
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patients, and most of them will require next line the-
rapy. The only curative approach is allogeneic periph-
eral blood stem cell transplantation (alloPBSCT),
a procedure that nowadays can be proposed for youn-
ger patients [4]. Since most transplantations are per-
formed with reduced-intensity conditioning, the cura-
tive effect of alloPBSCT is mediated by immune cells
able to recognize foreign leukemia antigens expressed
on CLL cells and/or leukemia stem cells [4, 5].
Therefore, new therapies aim to enable recogni-
tion of leukemia antigens and thereby enhance re-
jection of CLL cells. Several immunotherapy trials
have been conducted showing promising efficacy in
restricted groups of patients [6-9]. Recently, we chara-
cterized leukemia antigen RHAMM as a molecule
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expressed in high frequency of CLL patients without
measurable expression in healthy volunteers [10]. We
further found association of antigen RHAMM expres-
sion with proliferation potential (defined by Ki-67
expression in lymph nodes) as well as functional de-
pendence on CD40-CD40L pathway, which seems
to play an important role in the pathogenesis of CLL
[11]. Most recently, we completed the first vaccina-
tion trial with the peptide R3 which represented the
most immunologic epitope of antigen RHAMM in
CLL patients [12]. Vaccination proved to be feasible,
safe, and able to induce immune responses, in six
vaccinated patients. In this current study, we evalu-
ate vaccination-induced changes in detail.

We monitored changes in T-cell subsets reported
to play a role in the regulation of immune response,
including regulatory T cells (Tregs) [13], Th17 [14],
CD8+CD103* [15] as well as IL-17 producing CD8*
T cells (CDS*IL-17%) [16]. Tregs play a pivotal role in
the modulation of immune responses [17]. The en-
hanced frequencies of Tregs can control specific T-cell
responses against viral and leukemia-associated anti-
gens (LAAs) in a dose-dependent manner [18]. Par-
ticulary, exceed of Tregs completely inhibited immune
response against the MHC-I restricted RHAMM-de-
rived epitope R3, the same peptide that was used in
the vaccination trial. Tregs can manifest their suppres-
sive function by several other mechanisms, including
inhibition of effector T cells by TGF-8 and IL-10 sec-
retion [17]. Moreover, their tolerogenic effect could
be magnified by other suppressive subpopulations like
CD8*CD103* [15]. An opposing function might be
mediated by IL-17 and IL-17-producing cells, but the
balance between these two components in leukemia
patients remains unclear.

To complete the characterization of vaccination-
-induced changes in the immune system of CLL pa-
tients, we measured important cytokines involved in
the regulation of immune response such as TGF-3,
IL-10, IL-2 and TNEFE Finally, we assessed the CD8*
expressing TNF receptor family member 4-1BB
(CD137) which has been suggested as being able to
control Tregs [19].

Material and methods

Patients

Six patients diagnosed with CLL at the Medical Uni-
versity of Lublin, one man and five women (median
age: 63.5 years; range 38-75), were enrolled in the
present study. Approval was granted by the Local
Ethics Committee (no. KE-025411/2006) and written
informed consent was obtained in all cases. All pa-
tients were at an early stage of the disease (Binet A),
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previously untreated and presented no autoimmune
events. Molecular genetics characterization, includ-
ing the detection of genomic aberrations by fluo-
resence-in-situ-hybridization (FISH), were performed
as previously described [20]. Detailed patient char-
acteristics have previously been published [12].

Samples from patients with CLL

Peripheral blood mononuclear cells (PBMC) from
CLL patients were isolated by standard Ficoll (Bio-
chrom, Berlin, Germany) separation technique and
stored for flow cytometry assessments in liquid nitro-
gen. Serum was isolated and cryopreserved at —-80°C
until analysis. PBMC as well as serum samples were
separated before and after each peptide vaccination
dose.

Evaluation of T-cell subpopulations

Staining for the surface antigens CD3, CD4, CDS,
CD25, CD69, CD103 and CD137 was performed us-
ing the relevant fluorochrome-conjugated monoclonal
antibodies (mAbs; all from BD Biosciences, San Die-
go, CA, USA) according to the manufacturer’s rec-
ommendations. For the assessment of Th17 cells, sur-
face staining for CD4 and CDS8 was followed by fixa-
tion, permeabilization and staining with anti-IL-17
mouse mAb according to the manufacturer’s proto-
col (eBiosciences). After intracellular staining, cells
were washed twice and analyzed for IL-17 expres-
sion in both CD4* and CD8* lymphocyte subsets
without stimulation as previously reported [21].

Mixed lymphocyte peptide culture (MLPC)

Thawed PBMC from CLL patients were washed twice
and subsequently selected by magnetic beads through
a MACS column (Miltenyi, Bergisch-Gladbach, Ger-
many) to isolate CD8" T cells. More than 95% purity
was reached in the CD8* fraction as assessed by
FACS. MLPC was performed for influenza-matrix-
-peptide (IMP) and R3 as previously described [10].

ELISA for TNE TGF-a, IL-10 and IL-2

At the time of analysis, samples were thawed and se-
rum levels of TNE TGF-f and IL-10 were determined
using ELISA kits (Quantikine for TGF-3, Quantiki-
ne HS for TNF and IL-10; R&D Systems, Minneap-
olis, MN, USA) adhering to the manufacturer’s in-
structions. For the measurement of serum IL-2 le-
vels, we used the highly specific and sensitive chemi-
luminescence ELISA kit (QuantiGlo, R&D Systems)
adhering to the manufacturer’s instructions.
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Statistical analysis

Results from ELISA (in duplicate) assays are shown
as mean values = SD. All other results are presented
as median values *+ range. The Spearman rank test
was used to evaluate the correlation between T-cell
subpopulations and serum cytokine levels.

Results

Changes in T lymphocyte subsets during
vaccination

Peptide vaccination induced several changes in T-lym-
phocyte subsets (summarized for four patients in Ta-
ble 1). Changes in Treg frequencies, peptide-specific
cytotoxic T cells (tetra/CD8) as well as analysis of acti-
vation markers were discussed in our previous report
[12]. For the present study, we focused on the follo-
wing subpopulations: CD8+*CD103*, CD8*CD137",
CD8* IL17* as well as Th17 (CD3*CD4*IL17%).

The frequency of Th17 cells did not change sig-
nificantly during vaccination in Patient#1 (Figure 1A,
Table 1A), while more dynamic changes in Th17 cell
levels were observed in Patient#2 (Figure 1B, Table
1B) who did not respond to therapy.

Interestingly, while the first dose of peptide vac-
cine reduced Th17 cells, Tregs increased. A similar
tendency was observed also in Patients#3 and #4.
Indeed, in Patient#3 (Table 1C), a dramatic reduc-
tion in Th17 was observed, along with an increase of
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Treg. However, taken together, there was no correla-
tion between Th17 and Tregs (p > 0.05, r> = -0.05).
Longitudinal analysis of Th17 T cells for Patients #1
and #2 is shown in Figure 1.

We also assessed CD137 and CD103 markers on
CDS8 T lymphocytes. It has been reported that CD137
represents a marker for antigen-specific CD8* T cell
reactivity that might be suitable for immunomonito-
ring [22]. Moreover, MLPC pre-stimulation might lead
to prolonged T-cell receptor (TCR) internalization by
R3-specific CD8* T cells, thereby limiting the efficien-
cy of tetramer-based detection. We therefore assessed
CD137 expression on MLPC-amplified CD8* T cells.

Overall, there was no correlation between the fre-
quencies of R3-tetra*CD8* T cells and CD8*CD137+
lymphocytes (in contrast to positive correlation of
CD8*CD137* with Tregs > = 0.66, p < 0.05). In Pa-
tients #1 and #2, we observed similar response pat-
terns in terms of CD137 expression. Initial increases
in the frequencies of CD8*CD137* lymphocytes af-
ter the first vaccination were followed by subsequent
decreases (Table 1, panels A and B respectively). In
contrast, higher initial frequencies of CD8*CD137*
T cells in Patients#3 and #4 declined after the first
vaccination and then increased substantially after the
third dose of the vaccine (Table 1, panels C and D
respectively). Although both patients responded he-
matologically, Patient#4 did not respond immuno-
logically according to our definitions [12] and Pa-
tient#5 was discordant with respect to R3-tetra
staining and the release of IFN-y in ELISpot as-
says. Interestingly, CD8*CD137* T cell frequencies
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Figure 1. Peptide vaccination induces changes in Th17 T cells in responder (A) and non-responder (B) CLL patients.
Figure 1 summarizes changes in frequency of Th17 T lymphocytes during R3 peptide vaccination of two CLL patients
(A — responded hematologically, and B — did not respond clinically during vaccination)
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Table 1. Evaluation of T-cell subsets during R3 peptide vaccination. Data from flow cytometric evaluations of the listed
T-cell subset frequencies (%) is shown before and after each dose of the R3 peptide vaccine. Patients #1, #2, #3 and

#4 are shown in panels A, B, C and D, respectively

A Before After 1 After 2 After 3 After 4
CD103/CD8 1.30 1.13 2.00 1.49 1.29
Treg/CD4 2.55 2.87 2.77 2.59 2.35
tetra/CD8 0.10 0.90 0.70 1.20 0.90
CD137/CD8 0.22 1.09 0.22 0.09 0.00
CD69/CD4 3.52 22.84 18.89 12.84 14.31
CD25/CD4 11.88 63.25 64.27 49.45 54.41
CD69/CD8 1.77 4.49 4.07 5.62 4.06
CD25/CD8 7.37 14.94 15.26 10.71 8.85
IL17/CD8 0.21 0.28 0.17 0.25 0.28
Th17 4.92 4.93 3.37 6.47 5.15
B Before After 1 After 2 After 3 After 4
CD103/CD8 1.46 2.49 3.34 2.17 2.56
Treg/CD4 3.60 9.06 9.58 6.14 5.33
tetra/CD8 0.08 0.38 0.17 0.22 0.31
CD137/CD8 0.16 0.94 0.86 0.24 0.64
CD69/CD4 30.92 28.87 26.60 20.68 27.25
CD25/CD4 73.60 70.89 75.52 68.82 70.47
CD69/CD8 17.36 9.42 9.36 10.06 12.46
CD25/CD8 22.33 8.60 15.67 8.41 24.63
IL17/CD8 0.94 2.45 0.69 1.10 0.40
Th17 16.04 3.26 8.21 13.17 2.46
C Before After 1 After 2 After 3 After 4
CD103/CD8 1.04 1.19 2.98 0.41 1.54
Treg/CD4 8.04 14.08 21.97 14.36 12.67
tetra/CD8 0.27 1.30 5.78 1.17 0.80
CD137/CD8 3.64 0.40 1.99 8.98 1.43
CD69/CD4 4.06 18.84 22.13 9.01 2.46
CD25/CD4 10.54 56.23 49.45 11.49 12.32
CD69/CD8 19.15 8.67 23.08 23.19 7.78
CD25/CDS8 6.08 10.66 6.82 9.79 2.13
IL17/CD8 31.65 0.00 0.11 38.56 30.58
Th17 46.04 0.00 0.21 50.56 50.00
D Before After 1 After 2 After 3 After 4
CD103/CD8 5.63 3.20 1.68 4.97 5.07
Treg/CD4 4.66 8.79 6.91 5.56 5.31
tetra/CD8 0.65 0.95 N/A N/A 0.68
CD137/CD8 1.23 0.48 0.33 6.95 0.39
CD69/CD4 8.86 0.91 1.70 2.40 8.28
CD25/CD4 43.43 38.75 8.78 8.47 44.33
CD69/CD8 52.15 54.71 5.83 6.55 54.55
CD25/CD8 1.74 1.55 2.02 3.38 1.28
IL17/CD8 11.45 3.83 9.17 5.93 1.20
Th17 4.39 1.41 4.93 2.33 0.48
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correlated with those of IL-17 producing CD8* T cells
(r*= 0.54, p < 0.05).

The median CD103 expression frequency on CD8*
T cells was 1.84% (range: 0.41-5.63%). In Patients#1,
#3 and #4, we observed fluctuations in CD8+*CD103*
T cell frequencies that essentially normalized after the
fourth vaccination. In Patient#2, who responded clini-
cally, a more sustained increase in CD8*CD103*
T-cell frequencies, from 1.46% to 2.56%, was observed
over the course of vaccination (Table 1, panel B). Over-
all, changes in the CD8*CD103* T-cell subset did not
correlate with Treg frequencies; there was, however,
an inverse correlation with Th17 T-cell frequencies (1* =
= —-0.5, p < 0.05). In addition, there was a correlation
between Treg frequencies and levels of activated
CD8*CD69* T cells (r* = 0.51, p < 0.05).

Changes in serum cytokines levels during vaccina-
tion

In addition to the evaluation of immune responses at
the cellular level, we monitored changes in cytokines
levels reported to play a role in the polarization of
immune responses, such as IL-2 (Thl) and IL-10
(Th2), or in the immunopathogenesis of CLL, such
as TNF and TGF-$. Median concentrations of these
soluble factors were as follows: 0.026 pg/mL for IL-2
(assay sensitivity 0.02 pg/mL), 1.25 pg/mL for IL-10
(assay sensitivity 0.5 pg/mL), 2.2 pg/mL for TNF (as-
say sensitivity 0.13 pg/mL) and 292 pg/mL for TGF-8
(assay sensitivity 1.7 pg/mL). Results for every patient
both before and after each vaccination are presented
in Figure 2. After the first vaccination, all responders
reduced TNF serum levels. Further, TNF concentra-
tions increased after the second vaccination in Pa-
tient#4, after the third vaccination in Patient#5 and
after the fourth vaccination in Patients #1 and #3.
In contrast, Patient#2, who did not respond clinical-
ly, exhibited increased TNF levels after the first vac-
cination. Serum TNF concentrations correlated with
TGF-f serum levels (1> = 0.59, p < 0.05). In two pa-
tients (#1 and #5), we observed no changes in IL-2
serum levels during vaccination; both of these patients
responded to therapy, and Tregs were not induced
during the course of vaccination. Increased serum IL-2
levels were detected in the other four patients (two
responders and two non-responders) during the vac-
cination regimen. Further, we also noted a correla-
tion between IL-2 concentrations in the serum and
Treg frequencies (1> = 0.39, p < 0.05). In Patients#1,
#2 and #4, we observed low values of IL-10 that did
not change significantly during the course of vacci-
nation. Patients #3 and #6 showed higher levels of
IL-10 after completion of the vaccination schedule
compared to initial concentrations (from 1.98 pg/mL
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to 3.92 pg/mL and from 1.55 pg/mL to 2.38 pg/mL,
respectively). Moreover, Patient#6 showed the high-
est serum concentration of IL-10 after the first vacci-
nation (5.56 pg/mL). In Patient#5, serum IL-10 levels
decreased from 2.36 pg/mL before vaccination to 1.06
pg/mL after the fourth dose of R3 peptide (Figure 2).

Discussion

The efficacy of peptide vaccination depends on the
balance between effector T cells (Teff) and Tregs, as
well as their interaction with the tumor microenvi-
ronment. Interestingly, Tregs have been reported to
be highly sensitive to CD95L-induced apoptosis, in
contrast to their more resistant Teff counterparts [23],
thereby enabling killing of tumor cells during the ini-
tial phase of the immune response.

However, several days after TCR-mediated stimula-
tion, Teff upregulate CDI95L which subsequently trig-
gers the apoptosis of CD95-activated T cells via activa-
tion-induced cell death (AICD), a process that controls
lymphocyte homeostasis [24]. This differential sensiti-
vity to CD95L-induced apoptosis during the early and
late phases of the immune response might explain the
decrease in R3-tetratCD8* Teff cells observed in most
patients after repeated doses of the peptide vaccine. The
addition of MHC Il-restricted epitopes to the vaccine
might also increase the efficacy of peptide vaccination
in this situation, since effective TCR stimulation with
concomitant activation of phosphatidyl inositol 3-kinase
(PI3K), protein B kinase (Akt) and mammalian target
of rapamycin (mTOR) antagonizes FoxP3 induction
[25]. Strikingly, compared to Teff, Tregs appear to pos-
sess higher affinities for epitopes derived from tumor-
-associated antigens, which are mostly composed of over-
expressed self antigens [26]. Moreover, Tregs appear to
share TCRs [27]. Thus, the use of MHC Il-restricted
epitopes is likely to be confounded by the induction of
Treg proliferation.

Interestingly, Patient#2, who showed an increase
in Treg frequency during vaccination and did not re-
spond clinically, initially exhibited high levels of CD25
expression in the CD4* T-cell compartment; in con-
trast, two out of three responders exhibited increased
CD25 levels in response to vaccination (Table 1). High
CD25 expression and the production of IL-2 in re-
sponse to antigen might facilitate the generation of
Tregs [28]. Accordingly, we observed a correlation bet-
ween IL-2 serum levels and the frequency of Tregs.
And we also found an increase in the frequency of
CD8*CD103* T cells in Patient#2. The CD8*CD103*
T-cell subpopulation, which is immunosuppressive,
increases after allogeneic stimulation in vitro [15] and
is activated via a contact-dependent mechanism that
produces large amounts of IL.-10 [29].
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Figure 2. Changes in TNF (A), TGF-6 (B), IL-10 (C) and IL-2 (D) serum levels during R3 peptide vaccination. Serum
concentrations of TNF (A), TGF-f (B) and IL-10 (C) were assessed by ELISA; IL-2 serum levels were evaluated using

a highly sensitive chemiluminescence ELISA as described in the ‘Material and methods’ section of the text. Both TNF (A)
and TGF-3 (B) have been reported to play a role in the immunopathogenesis of CLL; TNF has been reported to carry

a negative prognosis for CLL and the immunosuppressive cytokine TGF-f plays a role in the generation of Tregs.

The immunosuppressive cytokine IL-10 (C) is involved in Th2 responses; IL-2 (D) is involved in Th1 responses

Vaccination also induced dynamic changes in other
T-cell subpopulations involved in immune responses.
In an earlier report, we detected increased frequen-
cies of Th17 cells and IL-17 producing CD8* T cells
in CLL patients [21]. Similarly, increased frequencies
of Th17 cells have been described in patients with ova-
rian cancer [16]. In the current study, we found an in-
verse correlation between CD8*CD103* regulatory T
cells and inflammatory Th17 cells. We also found an
association between antigen-specific CD8+*CD137+
lymphocytes and an enigmatic CD8* T-cell subpopu-
lation that produced IL-17.

In summary, we have shown that peptide vaccina-
tion in CLL patients is safe, and can induce immune
responses against the leukemia antigen RHAMM.
Furthermore, we have shown that peptide vaccination
induces changes in several different cellular compart-
ments of the immune system, and that the clinical res-
ponse to peptide vaccination might depend on the
complex interactions between different T-cell subsets.
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