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Abstract
Introduction. Ischemic stroke (IS) is a leading cause of disability and mortality worldwide. Several studies have de-
monstrated the involvement of microRNAs (miRNAs) in brain diseases. miRNA-192-5p is a regulatory molecule in 
neurodegenerative diseases and its expression was found to be significantly downregulated in the whole blood samples 
of IS patients, but the specific role of miRNA-192-5p in IS not fully understood. Here, we investigated the role of 
miRNA-192-5p in a murine model of acute cerebral injury after IS.
Material and methods. Male C57BL/6J mice received an intracerebroventricular (i.c.v.) injection of agomir-192-5p or 
antagomir-192-5p 2 h before middle cerebral artery occlusion (MCAO). Infarct volume was assessed by 2,3,5-tripheny-
ltetrazolium chloride (TTC) staining. Brain slices were subjected to Fluoro-Jade B, TUNEL, and immunofluorescence 
stainings. Contents of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured using enzyme-linked im-
munosorbent assay (ELISA) kits. In vitro, murine microglial BV-2 cells were subjected to oxygen-glucose deprivation 
(OGD), and the contents of pro-inflammatory cytokines were measured in cell lysates.
Results. miRNA-192-5p was downregulated in the ischemic penumbra of the cerebral cortex. Pretreatment with 
agomir-192-5p attenuated neurological deficits and reduced cerebral edema and infarct volume in MCAO mice. Ago-
mir-192-5p-treated animals had fewer degenerating and apoptotic neurons in the ischemic penumbra. Additionally, 
agomir-192-5p significantly suppressed neuroinflammation as evidenced by decreased immunostaining for GFAP and 
Iba1 and decreased levels of pro-inflammatory cytokines. Antagomir-192-5p pretreatment showed the opposite effect. 
Furthermore, dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) was identified as a target gene 
of miRNA-192-5p, and the elevated Dyrk1a expression in the ischemic penumbra was markedly reduced by agomir-
-192-5p. Dyrk1a overexpression in BV-2 microglial cells impaired miRNA-192-5p-mediated inhibition of OGD-induced 
activation of BV-2 microglial cells. Opposite results were obtained using miRNA-192-5p inhibitor and Dyrk1a siRNA.
Conclusions. We found that intracerebroventricular administration of miRNA-192-5p before MCAO attenuated 
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acute cerebral injury by suppressing neuronal apoptosis and neuroinflammation in mice, and these protective effects 
might be mediated by downregulation of Dyrk1a. This study would help identify novel therapeutic targets for IS.  
(Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 4, 217–230)
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Introduction

Stroke is the second leading cause of death worldwide, 
and two-thirds of stroke survivors are left disabled 
with limitations in activities of daily living [1]. Ap-
proximately 70% of strokes are caused by occlusion 
of a major cerebral artery, usually the middle cerebral 
artery (MCA). This interrupts the blood flow to the 
brain and results in an ischemic stroke [2, 3]. Curren-
tly, treatments for ischemic stroke are limited to clot 
lysis and/or mechanical removal within a few hours 
of stroke onset, from which only a small proportion of 
patients are likely to benefit [4]. Therefore, the search 
for new adjuvant therapies to thrombolysis in acute 
ischemic stroke is of great importance.

MicroRNAs (miRNAs) are small (approximately 
22 nt), non-coding RNA molecules involved in the 
post-transcriptional regulation of genes. They can bind 
to the 3’-untranslated regions (3’UTR) of mRNAs in 
a sequence-specific manner, resulting in translational 
repression or mRNA degradation [5, 6]. Emerging 

evidence has reported that miRNAs may play essential 
roles in a variety of cellular processes and diseases [7, 
8]. In particular, the role of miRNA-192-5p has been 
reported in some ischemic diseases. For example, 
downregulated miRNA-192-5p has been observed in 
the liver tissue of patients with acute liver injury and 
in ischemia and reperfusion-operated mice. Further-
more, the downregulation of miRNA-192-5p protects 
liver cells from oxidative stress-induced cell death [9]. 
Similarly, increased levels of miRNA-192-5p have 
been reported in IR-induced kidney injury and may 
serve as an important diagnostic marker [10, 11]. In 
addition, miRNA-192-5p has been shown to be a re-
gulatory molecule in neurodegenerative diseases, such 
as Alzheimer’s disease and Parkinson’s disease [12, 
13]. Moreover, miRNA-192 has been found to be si-
gnificantly downregulated in the whole blood samples 
of ischemic stroke patients [7]. The above findings 
suggest the potential involvement of miRNA-192-5p 
in ischemic stroke, but its detailed role and underlying 
mechanisms require further research.

Graphical abstract
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Dual specificity tyrosine phosphorylation regulated 
kinase 1A (Dyrk1a) is a serine-threonine kinase en-
coded on human chromosome 21 that plays a critical 
role in the central nervous system during development 
and aging [14]. Dyrk1a is elevated in the ischemic 
penumbra of the cerebral cortex in a rat model of 
ischemic stroke [15, 16], suggesting an involvement 
of Dyrk1a in the ischemic stroke. Additionally, the 
Dyrk1a inhibitor has been found to regulate neuroin-
flammation and cognitive function in a mouse model of 
Alzheimer’s disease [17], suggesting that suppression 
of Dyrk1a may alleviate neuronal injury. Interestingly, 
using the miRDB database [18], we found a potential 
binding relationship between the 3’UTR of Dyrk1a 
mRNA and miRNA-192-5p.

Therefore, in the present study, we investigated the 
roles and underlying mechanisms of miRNA-192-5p 
and Dyrk1a in a murine model of acute cerebral injury 
after ischemic stroke, the middle cerebral artery occ-
lusion (MCAO) model. The MCAO model is the most 
widely used experimental model of ischemic stroke in 
rodents because it does not require craniectomy. Mo-
reover, it closely resembles the most common human 
thromboembolic infarcts in the territory of the MCA 
[19]. Our findings may be useful for the prevention 
or early treatment of ischemic stroke.

Material and methods

Animal experiments. All experiments were approved by the 
Ethics Committee of Qiqihar Medical University (Harbin, 
China) and were performed following the National Institutes of 
Health’s Guide for the care and use of laboratory animals. Male 
C57BL/6J mice (weighing 20–25 g) were maintained at 20 ± 2°C 
and housed under a 12-h light-dark cycle with free access to food 
and water. Two hours before MCAO surgery, mice received an 
intracerebroventricular (i.c.v.) injection (0.5 mm posterior and 
1.0 mm lateral to the bregma) of agomir negative control (NC), 
agomir-192-5p, antagomir-NC, or antagomir-192-5p (100 μM 

dissolved in 7 μL normal saline) as previously described [20]. 
Mice in the sham and MCAO groups received the same volume 
of vehicles. Focal ischemia was induced by MCAO as previo-
usly described [20, 21]. In brief, after making a midline neck 
incision, the common carotid artery, external carotid artery, 
and internal carotid artery were exposed. Then, an incision 
was made in the external carotid artery, and a monofilament 
suture was inserted into the internal carotid artery through the 
external carotid artery stump to occlude the origin of the MCA 
and block blood flow. After 1 h of MCA occlusion, the suture 
was withdrawn from the arterial lumen to allow reperfusion, 
and no occlusion was performed in the sham group. Mice were 
sacrificed by CO2 asphyxiation 24 h after reperfusion, and their 
brains were quickly removed and collected for subsequent 
experiments. Brain tissues were fixed in 4% paraformaldehyde 
for histological evaluation or snap frozen in liquid nitrogen and 
stored at –70°C for polymerase chain reaction (PCR), Western 
blot, and enzyme-linked immunosorbent assay (ELISA) assays. 
The flowchart of the animal experiments is shown in Fig. 1.

Assessment of neurological deficits and cerebral edema. Neu-
rological severity scores were used to evaluate the neurological 
deficits. Twenty-four hours after reperfusion, the scoring was 
performed as previously described [22]. Motor, sensory, balan-
ce, and reflex tests were included (normal score, 0; maximum 
deficit score, 14). Brain samples were dried in an oven (Tianjin 
Leibo Terry equipment, China) at 105°C for 24 h to obtain the 
dry weight. Brain water content was calculated as wet/dry ratio 
= [(wet weight – dry weight) / wet weight] × 100%.

2,3,5-triphenyltetrazolium chloride (TTC) staining. Brain 
samples from mice were subjected to TTC staining to measure 
infarct volume as previously described [23, 24]. In brief, the 
brain was coronally sliced into 5 sections (approximately 1 mm 
thick) and stained with 1% TTC (T109275, Aladdin, China) 
at 37°C for 10 to 15 min. The brain sections were then photo-
graphed and the infarct volume was measured using Image-pro 
Plus software (v6; Media Cybernetics Inc., Rockville, MD, 
USA). For each section, the percentage of infarct area in the 
section area was calculated. The infarction volume (%) was 
calculated as the average of the 5 sections.

Figure 1. Flowchart of animal experiments. Two hours before the MCAO surgery, mice received an intracerebroventricular (i.c.v.) 
injection of agomir negative control (NC), agomir-192-5p, antagomir-NC, or antagomir-192-5p. One hour after the MCAO, the 
suture was withdrawn from the arterial lumen to allow reperfusion. Twenty-four hours after reperfusion, the mice were sacrificed, 
and their brains were quickly removed and collected for the subsequent experiments as described in Methods.
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Determination of neuron degeneration and apoptosis. As 
previously described [25], the 4% paraformaldehyde-fixed 
brain samples were sectioned into 5-μm slices and stained 
with Fluoro-Jade B (FJB; AG310-30MG, Merck Millipore, 
USA) to detect degenerating neurons. The FJB-positive (green) 
cells were observed and photographed under a fluorescence 
microscope at 400× magnification. Determination of neuronal 
apoptosis was performed using the TUNEL In Situ Cell Death 
Detection Kit (11684817910, Roche, Basel, Switzerland) and 
anti-neuronal nuclei (NeuN) antibody (1:200) (ab104224, Ab-
cam, Cambridge, UK) in the ischemic penumbra of the cerebral 
cortex according to manufacturer’s instructions. Four sections 
per brain were collected at an 80 μm distance, and four view 
fields in each section were selected for quantification.

Immunofluorescence staining. The immunofluorescence 
staining in the cortex was performed as described previously 
[26]. In brief, tissue sections were incubated with the primary 
antibodies anti-glial fibrillary acidic protein (GFAP) (1:50) (sc-
33673, Santa Cruz Biotechnology, Inc., Dallas, TX, USA) and 
anti-ionized calcium-binding adapter molecule 1 (Iba1) (1:100) 
(ab178847, Abcam, Waltham, MA, USA) at 4°C overnight, 
followed by incubation with appropriate secondary antibodies 
conjugated with Cy3 (1:200) (A0516 and A0521, Beyotime, 
Shanghai, China) at room temperature for 1  h. Finally, the 
sections were stained with DAPI (D106471-5mg, Aladdin, 
Shanghai, China) and visualized under a fluorescence micro-
scope at 400× magnification.

Cell culture and treatment. The murine microglial cell line 
(BV-2) was maintained in Modified Eagle’s Medium (MEM; 
Procell, Wuhan, China) supplemented with 10% fetal bovine 
serum (FBS; Sigma-Aldrich, St. Louis, MO, USA). Cells were 
cultured in a humidified atmosphere of 5% CO2 at 37°C. Cells 
were subjected to oxygen-glucose deprivation (OGD) treatment 
to mimic cerebral ischemia in vitro. In brief, cells were incu-
bated with glucose-free MEM in an anaerobic atmosphere of 
5% CO2 and 95% N2 at 37°C for 2 h. Cells were then incubated 
with MEM under normoxic culture conditions (5% CO2 and 
95% air) at 37°C for 24 h. Control cells were not subjected to 
OGD treatment. Twenty-four hours before OGD, cells were 
transfected with miRNA-192-5p mimic, miRNA-192-5p 
inhibitor, pcDNA3.1-Dyrk1a overexpressing (OE) plasmid, 
Dyrk1a siRNA (si-Dyrk1a), or corresponding negative control 
using Lipofectamine 3000 reagent (Invitrogen, Waltham, MA, 
USA) according to the manufacturer’s protocol (link: https://
assets.thermofisher.com/TFS-Assets/LSG/manuals/lipofecta-
mine3000_protocol.pdf). Briefly, the mixture of plasmid and 
miRNA-192-5p mimic/inhibitor was diluted in Opti-MEM 
medium and mixed with Lipofectamine 3000 and P3000  re-
agent. BV-2 cells were incubated with the mixture at 37°C for 
48 h. Transfection efficiency was determined by measuring the 
expression levels of miRNA-192-5p or Dyrk1a mRNA using 
real-time PCR.

Dual-luciferase reporter assay. BV-2  cells were seeded in 
a 12-well plate and co-transfected with the luciferase reporter 

vectors containing the wild-type (wt) or mutant (mut) 3’ UTR 
of mRNA of Dyrk1a or semaphorin 3A (Sema3a) and miRNA-
-192-5p mimic or mimic-NC using Lipofectamine 3000 reagent 
(Invitrogen). The luciferase activities were analyzed using the 
Dual-Luciferase Reporter Gene Assay Kit (KGAG040, KeyGen 
Biotech, Nanjing, China). Firefly luciferase activities were 
normalized to Renilla luciferase activities.

Reverse transcript real-time polymerase chain reaction 
(RT-qPCR). Total RNA was extracted from tissues and cells 
using TRIpure reagent (BioTeke, Wuxi City, China), chloroform, 
isopropanol, and ethanol, dissolved in RNase-free ddH2O, qu-
antified using a NanoDrop 2000 spectrometer (Thermo Fisher, 
Waltham, MA, USA), and then used for cDNA synthesis. 
Real-time PCR was performed on an Exicycler 96 instrument 
(Bioneer, Daejeon, South Korea) using 2×Taq PCR MasterMix 
and SYBR Green reagent (Solarbio, Beijing, China). Dyrk1a: 
5’-TTATGACAGAGTGGAGCAA-3’ (forward primer) and 
5’-GCAAACTTTCGTGTTAGGT-3’ (reverse primer). Sema3a: 
5’-TCAGTGCCCATCTCATC-3’ (forward primer) and 5’-TG-
TCCACCAAAGTCATTC-3’ (reverse primer). Epidermal gro-
wth factor receptor (Egfr): 5’-ACTGCTGCCACAACCAA-3’ 
(forward primer) and 5’-ATGCCATCTTCTTCCACTT-3’ 
(reverse primer). Data were analyzed using the 2–ΔΔCt method.

Western blot analysis. Cells were lysed on ice in RIPA buffer 
(P0013, Beyotime, China) containing PMSF (ST506, Beyotime, 
China). Protein samples were then subjected to SDS-PAGE 
and transferred to PVDF membranes (Millipore, Burlington, 
MA, USA). The membranes were blocked with 5% skim 
milk in TBST for 1  h, washed, and incubated with primary 
antibodies against Dyrk1a (1:400, A0595, ABclonal, Wuhan, 
China), Sema3a (1:1000, DF8609, Affinity, Shanghai, China), 
and β-actin (1:1000, sc-47778, Santa Cruzb Biotechnology) at 
4°C overnight. Subsequently, the membranes were incubated 
with secondary antibodies (1:5000, A0208/A0216, Beyotime, 
China) at 37°C for 45 min. Immunoblots were visualized using 
a BeyoECL Moon kit (P0018, Beyotime, China).

ELISA. Commercially available ELISA kits were used to 
measure tumor necrosis factor (TNF)-α (EK282, Liankebio, 
China), interleukin (IL)-1β (EK201B, Lianke Biotech, Hang-
zhou, China), and IL-6 (EK206, Liankebio, China) contents in 
the ischemic penumbra of the cerebral cortex and BV-2 cells. 
Brain tissue was homogenized at a ratio of 1:9 (w/v) in normal 
saline and centrifuged at 430 g for 10 min. BV-2 cells were 
collected and lysed by sonication in PBS and centrifuged at 
1500 g for 10 min. The supernatants of brain homogenates and 
cell lysates were collected and the protein concentration was 
quantified using the BCA assay kit (Solarbio, Beijing, China). 
The supernatants were then subjected to ELISA according to 
the manufacturer’s instructions.

Statistical analysis. GraphPad Prism 8  software (GraphPad 
Software Inc., San Diego, USA) was utilized for graphing and 
data analysis. Quantitative data were presented as mean ± SD. 
One-way ANOVA with post hoc test was used to determine 
differences between groups. For nonparametric data such as 
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neurological severity scores, Kruskal-Wallis with post hoc test 
was performed. P < 0.05 was considered statistically significant.

Results

miRNA-192-5p attenuates cerebral injury after 
MCAO
As shown in Fig. 2a, we found that i.c.v. injection of 
agomir-192-5p before MCAO significantly rescued the 
downregulated expression of miRNA-192-5p in the 
ischemic penumbra of the cortex 24 h after MCAO, 
but antagomir-192-5p reduced miRNA-192-5p 
expression. Neurological severity scores showed that 
neurological function deficits of MCAO mice were 
attenuated by agomir-192-5p and exacerbated by anta-

gomir-192-5p (Fig. 2b). Furthermore, miRNA-192-5p 
alleviated brain edema in MCAO mice, as evidenced 
by the decreased brain water content in agomir-
-192-5p-treated MCAO mice and the increased water 
content in antagomir-192-5p-treated MCAO mice 
(Fig. 2c). TTC staining showed that administration of 
agomir-miRNA-192-5p significantly reduced infarct 
volume in MCAO mice, whereas antagomir-192-5p 
exacerbated brain infarction (Fig. 2d). These results 
indicated that intracerebroventricular administration 
of miRNA-192-5p attenuated cerebral injury after 
MCAO.

Figure 2. Effects of miRNA-192-5p on cerebral injury in MCAO mice. Mice received i.c.v. injection of agomir-NC, agomir-192-5p, 
antagomir-NC, or antagomir-192-5p 2 h before MCAO. A. Relative miRNA-192-5p expression (normalized to U6) in the ischemic 
penumbra. B. Neurological severity scores in different groups. Twelve mice per group. C. Brain water content in different groups. 
D. Representative images of TTC staining of brain sections and statistical analysis of infarct volume. Samples were obtained 24 h 
after reperfusion. Except for nonparametric data (neurological severity scores), other data are expressed as mean ± SD of six mice 
per group, *P < 0.05, and **P < 0.01.
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miRNA-192-5p inhibits neuronal apoptosis after 
MCAO
Coronal brain sections were subjected to FJB staining 
to visualize degenerating neurons in the ischemic 
penumbra. We found that more degenerating neurons 
were observed in MCAO mice compared to sham-
-operated mice. Administration of agomir-192-5p 
significantly reduced the number of degenerating 
neurons, whereas antagomir-192-5p increased 
the number of degenerating neurons (Fig. 3a).  
TUNEL/NeuN double staining results showed that the 

number of apoptotic neurons in the ischemic penumbra 
was reduced by agomir-192-5p and increased by an-
tagomir-192-5p (Fig. 3b). Collectively, these findings 
suggested that intracerebroventricular administration 
of miRNA-192-5p significantly inhibited neuronal 
apoptosis after MCAO.

miRNA-192-5p inhibits MCAO-induced  
neuroinflammation
To investigate the role of miRNA-192-5p in neuro-
inflammation, we performed immunofluorescence 

Figure 3. Effects of miRNA-192-5p on neuronal apoptosis in the ischemic penumbra of MCAO mice. A. Representative micropho-
tographs of FJB stained brain sections and statistical analysis of the number of degenerating neurons. B. Representative micropho-
tographs of TUNEL staining and immunofluorescence staining for NeuN and statistical analysis of the percentage of co-positive 
cells among NeuN-positive cells. Samples were obtained from the ischemic penumbra 24 h after reperfusion. Magnification: 400×. 
Scale bar = 50 μm. Data are expressed as mean ± SD of six mice per group, **P < 0.01.
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for GFAP (astrocyte marker) and Iba1  (microglia 
marker) in the ischemic penumbra. As shown in Fig. 
4a–c, neuroinflammation was induced by MCAO, as 
evidenced by the increased fluorescence intensity of 
GFAP and Iba1. Pretreatment with agomir-192-5p 
significantly decreased the fluorescence intensity of 
GFAP and Iba1, whereas antagomir-192-5p showed its 
highest increase. Furthermore, agomir-192-5p reduced 

the contents of MCAO-induced pro-inflammatory 
cytokines (TNF-α, IL-1β, and IL-6), and antagomir-
-192-5p markedly increased the contents of these 
pro-inflammatory cytokines in the ischemic penumbra 
(Fig. 4d). These results indicated that pretreatment 
with miRNA-192-5p inhibited MCAO-induced neu-
roinflammation in the ischemic penumbra.

Figure 4. Effects of miRNA-192-5p on neuroinflammation in the ischemic penumbra of MCAO mice. A, B. Representative micro-
photographs of immunofluorescence staining for GFAP and Iba1. Magnification: 400×. Scale bar = 50 μm. C. Statistical analysis of 
the fluorescence intensity of GFAP and Iba1. D. The levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were determined 
in homogenates of ischemic penumbra using commercially available ELISA kits as described in Methods. Samples were obtained 
from the ischemic penumbra 24 h after reperfusion. Data are expressed as mean ± SD of six mice per group, **P < 0.01.
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miRNA-192-5p binds to Dyrk1a mRNA 3’UTR 
and downregulates Dyrk1a expression in the 
ischemic penumbra of MCAO mice
Next, we conducted the dual-luciferase reporter assay 
to verify the target binding relationship between miR-
NA-192-5p and the 3’UTR of Dyrk1a mRNA (Fig. 5a) 
as predicted by the miRDB database [18]. Luciferase 
activity was significantly reduced in BV-2 cells co-
-transfected with the wt-Dyrk1a luciferase reporter 
plasmid and miRNA-192-5p mimic, indicating that 
Dyrk1a is a target gene of miRNA-192-5p (Fig. 5b). 
Furthermore, RT-qPCR and Western blot analysis sho-
wed that the mRNA and protein abundance of Dyrk1a 

was significantly increased in the ischemic penumbra 
of MCAO mice compared with sham-operated mice, 
which was suppressed by agomir-192-5p and enhan-
ced by antagomir-192-5p (Fig. 5c–e). These results 
suggested that miRNA-192-5p targeted the 3’UTR of 
Dyrk1a mRNA and downregulated Dyrk1a expression 
in the ischemic penumbra of MCAO mice. Furthermo-
re, we investigated whether miRNA-192-5p regulates 
the expression of Egfr, a known downstream kinase 
of Dyrk1a [27]. As shown in Fig. 6a, Egfr expression 
was not affected by miRNA-192-5p, suggesting that 
miRNA-192-5p directly targets Dyrk1a itself rather 
than its downstream kinases.

Figure 5. miRNA-192-5p binds to Dyrk1a mRNA 3’UTR and downregulates Dyrk1a expression in the ischemic penumbra of 
MCAO mice. A. Schematic presentation of the potential miRNA-192-5p binding site on Dyrk1a mRNA 3’UTR. B. Verification of 
the target binding relationship between miRNA-192-5p and Dyrk1a mRNA 3’UTR in BV-2 cells by dual-luciferase reporter assay. 
C–E. Expression levels of Dyrk1a mRNA and protein in MCAO mice. Samples were obtained from the ischemic penumbra 24 h 
after reperfusion. Data are expressed as mean ± SD of at least three independent cell experiments or six mice per group, *P < 0.05, 
and **P < 0.01.
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In addition, we tested whether another effector of miR-
NA-192-5p, semaphorin 3A (Sema3a) (28), functions 
similarly to Dyrk1a in MCAO. We found that Sema3a 
was targeted by miRNA-192-5p in BV-2 cells (Fig. 
6b, c), and its expression was downregulated by miR-
NA-192-5p in the ischemic penumbra of MCAO mice 
(Figure 6d–f), just like Dyrk1a. These results suggest 

that there may be more than one target mediating the 
functions of miRNA-192-5p in MCAO.

miRNA-192-5p regulates pro-inflammatory  
cytokine expression in OGD-treated BV-2 cells  
via Dyrk1a
To determine the role of Dyrk1a in the effects of 
miRNA-192-5p on MCAO mice, the OGD model was 

Figure 6. miRNA-192-5p binds to Sema3a mRNA 3’UTR and downregulates Sema3a expression in the ischemic penumbra of 
MCAO mice. A. BV-2 cells were transfected with miRNA-192-5p mimic or corresponding negative control. The expression level of 
Egfr mRNA was measured 48 h after transfection. B. Schematic presentation of the potential miRNA-192-5p binding site on Sema3a 
mRNA 3’UTR. C. Verification of the target binding relationship between miRNA-192-5p and Sema3a mRNA 3’UTR in BV-2 cells 
by dual-luciferase reporter assay. D–F. Expression levels of Sema3a mRNA and protein in the brain of MCAO mice. Samples were 
obtained from the ischemic penumbra 24 h after reperfusion. Data are expressed as mean ± SD of at least three independent cell 
experiments or six mice per group, *P < 0.05, and **P < 0.01.
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established in BV-2 cells, and co-transfection of miR-
NA-192-5p mimic and Dyrk1a-OE plasmid or their 
corresponding negative control was performed 24 h 
before OGD modeling. RT-qPCR confirmed Dyrk1a 
overexpression mediated by Dyrk1a-OE plasmid 48 h 
after cell transfection (Fig. 7a). In addition, a notice-
able increase in Dyrk1a mRNA level was observed 

in OGD-treated BV-2  cells. miRNA-192-5p mimic 
reversed the elevated expression of Dyrk1a, and Dyr-
k1a-OE plasmid transfection restored the high level 
of Dyrk1a (Fig. 7b). In parallel, we found that Dyrk1a 
overexpression markedly impaired the inhibitory 
effects of miRNA-192-5p on the expression of pro-
-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in 

Figure 7. miRNA-192-5p regulates pro-inflammatory cytokine expression in OGD-treated BV-2 cells via Dyrk1a. BV-2 cells were 
co-transfected with miRNA-192-5p mimic and Dyrk1a overexpressing (OE) plasmid or corresponding negative control 24 h before 
OGD modeling. A. The expression level of Dyrk1a mRNA 48 h after Dyrk1a-OE plasmid transfection. B. The expression level of 
Dyrk1a mRNA in OGD-treated BV-2 cells. C. The levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were determined 
using commercially available ELISA kits in OGD-treated BV-2 cells as described in Methods. BV-2 cells were co-transfected with 
miRNA-192-5p inhibitor and Dyrk1a siRNA (si-Dyrk1a) or corresponding negative control 24 h before OGD modeling. D. The 
expression level of Dyrk1a mRNA 48 h after si-Dyrk1a transfection. E. The expression level of Dyrk1a mRNA in OGD-treated 
BV-2 cells. F. The levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were determined using commercially available 
ELISA kits in OGD-treated BV-2 cells as described in Methods. Data are expressed as mean ± SD of at least three independent cell 
experiments, *P < 0.05, and **P < 0.01.
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OGD-treated BV-2 cells (Fig. 7c). To further confirm 
these findings, we next co-transfected miRNA-192-5p 
inhibitor and Dyrk1a siRNA or their corresponding 
negative control into BV-2 cells. The efficiency of Dyr-
k1a knockdown was verified by RT-qPCR (Fig. 7d). 
We found that miRNA-192-5p inhibitor aggravated 
OGD-induced Dyrk1a upregulation and inflammation, 
whereas Dyrk1a knockdown reversed the effect of 
miRNA-192-5p inhibitor (Fig. 7e, f). Taken together, 
these results suggested that miRNA-192-5p might 
regulate OGD-mediated activation of BV-2 cells via 
suppressing Dyrk1a expression.

Discussion

The ischemic penumbra is the area adjacent to the 
infarct core, which can comprise a region of the brain 
up to approximately half of the total infarct volume. 
After cerebral ischemia, brain injury and cell death 
occur rapidly. Although the ischemic penumbra is less 
affected, it would expand over time, and cells within 
the ischemic penumbra would eventually die from 
excitotoxicity, inflammation, and/or apoptosis. Thus, 
rescuing the ischemic penumbra is critical for tissue 
recovery after ischemic stroke [29, 30].

Previous studies revealed the dysregulation of va-
rious miRNAs in the blood samples of ischemic stroke 
patients, including miRNA-192-5p [7]. In the present 
study, we mainly focused on the expression and role of 
miRNA-192-5p in the ischemic penumbra. We found 
that miRNA-192-5p was significantly downregulated 
in the ischemic penumbra of the cerebral cortex of 
MCAO mice. Intracerebroventricular administration 
of exogenous miRNA-192-5p 2 hours before MCAO 
attenuated cerebral injury and inhibited neuronal 
apoptosis and neuroinflammation in the ischemic pe-
numbra. We further determined that miRNA-192-5p 
targeted Dyrk1a to inhibit OGD-induced activation of 
BV-2 cells. These results suggest that miRNA-192-5p 
may be a potential therapeutic target for the treatment 
of ischemic stroke.

Dyrk1a could phosphorylate various transcription 
factors, thereby regulating the transcription of down-
stream genes [31]. Dyrk1a was found to be elevated in 
the ischemic penumbra in the rat cerebral cortex after 
ischemic stroke, and its overexpression led to neuro-
degeneration [32, 33]. Consistently, epigallocatechin 
3-gallate, a specific inhibitor of Dyrk1a [34], displayed 
protective effects in MCAO rats by inhibiting neu-
ronal apoptosis and oxidative stress damage [35. In 
agreement with these reports, elevated Dyrk1a was 
also observed after cerebral ischemia in this study. 
In addition, we confirmed that miRNA-192-5p could 
target and negatively regulate Dyrk1a in the ischemic 

penumbra of MCAO mice and that overexpression of 
Dyrk1a in BV-2 cell cultures impaired the effects of 
miRNA-192-5p, suggesting that the neuroprotective 
role of miRNA-192-5p in MCAO mice might be me-
diated by Dyrk1a inhibition.

In addition, we tested whether other known ef-
fectors of miRNA-192-3p might be involved in the 
functions of miRNA-192-5p in MCAO. Sema3a has 
been identified as a direct target of miRNA-192-5p 
in hepatocellular carcinoma [28]. In this study, we 
found that Sema3a, like Dyrk1a, was targeted and 
regulated by miRNA-192-5p. In line with our findin-
gs, Sema3a was found to be upregulated in the brain 
tissue of MCAO mice; overexpression of Sema3a 
regulated OGD-induced N2a cell injury and enhanced 
lipopolysaccharide-induced nitric oxide production in 
BV-2 cells [36, 37], suggesting that Sema3a may be 
involved in the pathomechanisms of cerebral injury 
and neuroinflammation after MCAO. Based on these 
results, we speculated that there may be more than one 
target mediating the functions of miRNA-192-5p in 
the MCAO model. For example, fibulin 2 (FBLN2) 
is an extracellular matrix protein involved in neural 
stem cell differentiation [38, 39]. miRNA-192-5p was 
found to target FBLN2 to rescue cognitive impairment 
and improve neural function in mice with depression 
[40], but to date, the role of FBLN2 in ischemic stroke 
remains unclear and requires further research.

In addition to brain injury and cell death, inflam-
mation initiated during the acute phase of ischemic 
stroke plays a vital role in the pathophysiology of 
ischemic stroke. In general, brain-resident microglia 
are the first immune cells responding to danger-asso-
ciated molecular patterns (DAMPs) released by cells 
damaged by cerebral ischemia [41]. Subsequently, 
pro-inflammatory intracellular signaling cascades 
and transcription factors are triggered, leading to the 
release of pro-inflammatory cytokines, including 
TNF-α, IL-1β, IL-6, IL-17, and IL-18 [41, 42]. These 
pro-inflammatory molecules would then contribute 
to the activation of astrocytes. Additionally, activated 
microglia could damage the blood-brain barrier and 
contribute to the infiltration of immune cells, thereby 
exacerbating inflammation [43].

Therefore, neuroinflammation is considered an 
important target for the development of new stroke the-
rapies, and the effects of anti-inflammatory treatment 
have been elucidated in several studies. For instance, 
it has been reported that microglia-derived TNF-α 
mediates endothelial necroptosis and exacerbates 
blood-brain barrier disruption after ischemic stroke. In 
contrast, the anti-TNF-α drug significantly alleviated 
blood-brain barrier destruction and improved stroke 
outcomes [44]. Moreover, post-ischemic treatment 
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with the IL-1β antibody canakinumab markedly re-
duced infarct size and cerebral edema and improved 
neurological performance in MCAO mice [45].

Interestingly, a recent study revealed the dysre-
gulation of miRNA-192-5p in patients with acute 
pancreatitis, and the upregulation of miRNA-192-5p 
suppressed the release of IL-1β, IL-6, and TNF-α in 
pancreatic acinar cells [46]. Consistently, in the pre-
sent study, overexpression of miRNA-192-5p reduced 
the levels of these pro-inflammatory cytokines and 
inhibited the expression of astrocyte and microglia 
markers. In addition, TNF-α and IL-1β were also 
found to induce neuronal injury through neuronal 
toxicity or neuronal degeneration [47–49]. Hence, 
the downregulation of pro-inflammatory cytokines’ 
levels induced by miRNA-192-5p may also contri-
bute to neuronal survival in the ischemic penumbra 
after ischemic stroke. Furthermore, pharmacological 
inhibition or siRNA-mediated interference of Dyrk1a 
attenuated neuronal damage and microglial activation 
in lipopolysaccharide-injected mice and reduced the li-
popolysaccharide-stimulated pro-inflammatory factors 
in BV-2 cells [50], which supports our results indica-
ting that miRNA-192-5p alleviated neuroinflammation 
by downregulating Dyrk1a expression in microglia.

Overall, we demonstrated that intracerebroventri-
cular pre-administration of miRNA-192-5p attenuated 
cerebral injury in MCAO mice and that Dyrk1a me-
diated the inhibitory effect of miRNA-192-5p in the 
cellular model of neuroinflammation. Though further 
validation is needed, these findings could help identify 
novel therapeutic targets for ischemic stroke.
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