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Abstract
Introduction. Glaucoma is the leading cause of irreversible blindness worldwide, and conjunctival bleb scarring 
remains the most frequent reason for the failure of glaucoma filtration surgery. Excessive proliferation of fibroblasts 
from Tenon’s capsule and excessive deposition of collagen contribute to the scarification of the conjunctival bleb. 
Heat shock protein 47 (HSP47) is assumed to act as a collagen-specific molecular chaperone, and thereby involved in 
the pathogenesis of fibrotic diseases. Therefore, we investigated the effect of HSP47 knockout against collagen type I  
(COLI) production in rat Tenon’s fibroblasts. 
Material and methods. Newborn rat Tenon’s fibroblasts were cultured and verified by anti-vimentin antibody. Transfec-
tion efficiency of small interference RNA targeted against HSP47 was confirmed by quantitative real-time polymerase 
chain reaction (RT-qPCR) at 48 h after siRNA transfection and by western blot at 72 h after transfection. The mRNA 
and protein expression of HSP 47 and COLI were detected by RT-qPCR and western blot. The proliferation of cells 
was measured by cell counting kit-8 assay. 
Results. HSP47 siRNA down-regulated the mRNA and protein levels of HSP47 in rat Tenon’s fibroblasts, and sup-
pressed the mRNA and protein expression of COLI. Moreover, HSP47 siRNA had no significant effect on proliferation 
of rat Tenon’s fibroblasts.
Conclusions. HSP47  siRNA inhibits the production of COLI in rat Tenon’s fibroblasts, and may be the potential 
therapeutic method in bleb scarring after glaucoma filtration surgery. (Folia Histochemica et Cytobiologica 2023,  
Vol. 61, No. 3, 153–159)
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Introduction

Glaucoma is the most frequent cause of irreversible 
blindness worldwide characterized by elevation of 
intraocular pressure (IOP) and visual field defects. 
Glaucoma filtration surgery is suggested as one of 
the most effective and economical surgeries to reduce 
IOP for glaucoma patients who fail medical treatment 
[1, 2]. Nevertheless, conjunctival bleb scarification 
often leads to the failure of this surgical procedure. 
Excessive proliferation of fibroblasts from Tenon’s 
capsule and excessive accumulation and deposition of 

extracellular matrix components represented by colla-
gen contribute to the scarring of the conjunctival bleb 
and uncontrolled IOP [3]. Although antimetabolites 
such as 5-fluorouracil and mitomycin C are clinically 
effective in preventing bleb failure, the accompanied 
complications such as bleb leaks, corneal toxicity as 
well as endophthalmitis limit its extensive use [4,5]. 
Therefore, alternative agents are needed for anti-scar-
ring and to improve the success rate of glaucoma 
filtration surgery. 

Various researchers have demonstrated that 
heat shock protein 47  (HSP47), a collagen-specific 
molecular chaperone, plays a profound role in the 
pathogenesis of numerous fibrotic diseases [6–10]. 
Furthermore, we reported previously that increased 
expression of HSP47  is in close proximity to the 
growing accumulation of collagen type I (COLI) in 
a rat conjunctival bleb model after filtration surgery 
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[11], and HSP47 is upregulated in the aqueous humor 
of patients with acute primary angle closure [12], 
suggesting that HSP47 may have an important effect 
on scarring after glaucoma filtration surgery. Recent 
evidence showed that HSP47 may be a therapeutic 
target for anti-fibrotic treatment and against breast 
cancer metastasis [7, 13, 14]. Moreover, recent clinical 
trials revealed that it also exhibits therapeutic effects in 
patients with advanced hepatic fibrosis [15]. However, 
whether inhibiting HSP47 could suppress conjunctival 
bleb scarring remains unknown. Hence, we designed 
this study to investigate the effect of HSP47 knockout 
against conjunctival bleb scarification in rat Tenon’s 
fibroblast (RTF).

Material and methods

Isolation and culture of rat Tenon’s fibroblast (RTF). This 
research was approved by the Ethics Committee of Xi’an Jia-
otong University (No. 2015-107). Newborn Sprague–Dawley 
rats were purchased from Beijing Vital River Laboratory Animal 
Technology Co., Ltd. All animal care and experimental proce-
dures were conducted in accordance with the ARVO Statement 
for the Use of Animals.

To isolate RTF, we accompanied the set-up protocols with 
minor adjustments [16, 17]. Briefly, the Tenon’s tissue removed 
from the newborn rat eye was cut into small, round pinhead size 
pieces of approximately 1 × 1 mm, treated with high glucose 
Dulbecco’s Modified Eagle Medium (DMEM) (Hyclone, Logan, 
UT, USA) supplemented with 10% fetal bovine serum (Gibco,  
New York, NY, USA) and 1% penicillin–streptomycin (Gibco) 
in an incubator at 37°C with 5% carbon dioxide. The medium 
was changed every 2 days. When the RTF cells  reached about 
70% to 80% confluence, they were passaged with a 1:3 split 
using 0.25% trypsin and 1 mM EDTA (Gibco). RTF at passages 
3 to 6 were used for this study.

Immunohistochemical staining for vimentin. The purity of 
the cultured RTF cells was verified by anti-vimentin antibody 
(Bioss, China). Fibroblasts at passage 3 were used for immu-
nostaining. Briefly, cells were fixed with 4% paraformaldehyde 
for 2 h at room temperature, then permeated with 0.4% Triton 
X-100 for 15 min, and blocked by 10% bovine serum albumin 
for 1 h at 37°C. After that, the cells were incubated with vimentin 
rabbit anti-rat antibody (1:100, bs-0756R, Bioss, China) at 4°C 
overnight, washed in phosphate-buffered saline (PBS), and then 
were incubated with goat secondary antibody to rabbit (Abcam, 
Cambridge, UK) for 1 h at 37°C. Immunoreactivity was detected 
via a diaminobenzidine method and counterstained with hema-
toxylin. The incubation of slides without primary antibody was 
used as a negative control.

Transfection with small interference (si)RNA targeted 
against HSP47. Proliferating RTF cells were incubated with 
HSP47  siRNA (General Biosystems, Chuzhou, China) in 
complete DMEM containing lipofectamine 3000 (Invitrogen) 

following the manufacturer’s protocols. Negative control 
siRNA was used as siRNA control. The transfection efficiency 
was confirmed by real‑time quantitative PCR (RT-qPCR) at 
48 h after siRNA transfection and by western blot at 72 h after 
transfection. The siRNA sequences are listed in Table 1.

Cell counting kit-8 assay. The RTF cell viability was detected 
through cell counting kit-8 (CCK8) assay (Dojindo, Japan). The 
samples of RTF were seeded into 96-well plates. CCK8 was then 
added to each well at 0, 24, 48, 72, and 96 h after transfection. 
Absorbance was measured at 450 nm when incubated in the 
dark at 37°C for 1 h. 

Real‑time quantitative PCR (RT‑qPCR). RNA extraction 
from the RTF was conducted using an RNA-Isolation Kit (Ta-
kara, Kusatsu, Japan). A Prime Script RT Reagent Kit (Takara) 
was utilized for reverse transcription, followed by amplification 
with an ExTaq Kit (Takara). Cycling conditions were initial 
denaturation at 95°C for 2 min, followed by 36 cycles consisting 
of denaturation at 95°C for 10 s, annealing at 55°C for 30 s 
and elongation at 60°C for 30 s. Primer sequences are listed in 
Table 2. Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) 
was used as a control housekeeping gene. The results were 
normalized to GAPDH expression. The quantity of mRNA was 
calculated by normalizing the cycle threshold (Ct) of HSP47 and 
collagen type I to the Ct of the housekeeping gene Gapdh of 
the same RNA sample, according to the following formula: the 
average GAPDH Ct was subtracted from the average HSP47 and 
collagen I Ct. This result represents the ΔCt, which is specific 
and can be compared with the ΔCt of a calibration sample (ne-
gative control). The subtraction of control ΔCt from the ΔCt 
of the RTF was referred to as ΔΔCt. The relative expression of 
HSP47 and collagen I (in comparison to the control) in the RTF 
was determined by 2–ΔΔCt.

Western blot analysis. Total protein was extracted from the 
RTF cells by a lysis buffer and a bicinchoninic acid (BCA) 
protein assay (Applygen, Beijing, China) was used for total 
protein concentration quantification. Subsequently, the total 
protein was transferred onto a polyvinylidene difluoride (PVDF) 
membrane (Millipore, Bedford, MA, USA), and blocked using 
5% non-fat milk in Tris-buffered saline with Tween-20 for 1 h 
at room temperature. The membrane was incubated at 4°C 
overnight with the primary antibodies: monoclonal mouse  
anti-HSP47  (1:1000; Enzo, ADI-SPA-470, New York, 
NY, USA), polyclonal rabbit anti-collagen 1  (1:5000; 
Abcam, ab34710), and polyclonal rabbit anti-GAPDH  

Table 1. Sequences of heat shock protein 47 siRNA

Primer Name Sequence (5′ to 3′)

siHSP47-1 GCGCAAUGUGACCUGGAAATT

siHSP47-2 GCAACUAAAGACCUGGAUGTT

siHSP47-3 CCAUGACCUGCAGAAACAUTT

siNCC1 UUCUCCGAACGUGUCACGUTT
1 negative control
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(1:2000; GoodHere, AB-P-R001, Hangzhou, China). GAPDH 
was used as the internal control and the protein bands were 
visualized using chemiluminescence. The relative intensities 
were calculated as the densitometric proportion between the 
protein band and GAPDH using Image J. 

Statistical analysis. GraphPad Prism software version 9 (Graph 
Pad Software, San Diego, CA, USA) was used to conduct 
Student’s t-test and one-way analysis of variance (ANOVA) 
between control and experimental groups. All data are expressed 
as the means ± standard deviation (SD) of at least three indepen-
dent trials. The P < 0.05 was considered statistically significant.

Results

Immunostaining of cultured RTFs
To identify RTF, immunocytochemical staining of 
vimentin which is a unique cell marker of RTF was 
utilized [18]. All the fibroblasts derived from Tenon’s 
capsule expressed vimentin in the cytoplasm (Fig. 1).

Inhibition of HSP47 by siRNA in RTFs
The transfection efficiency of siHSP47-1, siHSP47-2, 
and siHSP47-3  in RTF cells was determined via  

Table 2. Sequences of PCR primers

Primer name Reverse sequence (5′ to 3′) Forward sequence (5′ to 3′)

HSP47 GCAGCTTCTC CTTCTCGTCGTC GATGGTAGACAACCGTGGCTTC

Collagen 1 CGGGCAGGGTTCTTTCTA TGACCAGCCTCGCTCACA

GAPDH GCCTTGGCAGCACCAGTGGATGC GTCAGCAATGCATCCTGCACCACC

GAPDH — Glyceraldehyde-3-phosphate dehydrogenase

Figure 1. Immunostaining of cultured fibroblasts cells isolated from rat Tenon’s capsule. A. The cytoplasm of rat Tenon’s fibroblasts 
(RTFs) stains positively to vimentin. B. Negative control to vimentin Scale bar: 20 μm.
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RT‑qPCR at 48  h after siRNA transfection and by 
western blot at 72  h after transfection. The mRNA 
and protein levels of HSP47 were significantly down- 
-regulated in RTFs by all used siRNAs (Fig. 2).

Downregulation of COLI by HSP47 siRNA  
in RTF
Collagen is recognized to play an essential role in con-
junctival bleb scarring postoperatively via excessive 
deposition within the filtration region. To determine 
HSP47’s potential effect on bleb scarification, we 
explored the expression of COLI in RTFs at the mRNA 
and protein levels. The RT‑qPCR data showed that 
siHSP47-1 and siHSP47-2 downregulated the mRNA 
levels of COLI, although to a different degree (Fig. 3a),  
while only siHSP47-1  significantly suppressed the 
expression of COLI protein as shown by the Western 
blot analysis (Fig. 3b).

Effects of HSP47 siRNA on RTFs’ viability
The results shown in Fig. 4 revealed that HSP47 si-
lencing had no effect on the proliferation of RTFs.

Discussion

In the present study, we found that HSP47 knockout 
suppressed the protein and mRNA expression of 
COLI in RTFs. To the best of our knowledge, this study 
provides the first evidence that HSP47 siRNA reduces 
the levels of collagen I in RTF cells. These in vitro 
results indicate the possibility of using HSP47 siR-
NA for the therapy of conjunctival bleb scarring after 
glaucoma filtration surgery.

HSP47 is a molecular chaperone and is involved 
in the processing, assembly, folding, and secretion of 
collagens [6, 7]. Various studies have demonstrated 
that HSP47 plays a crucial role in regulating collagen 
in numerous fibrotic diseases. What is more, in our 
previous study, we found that increased expression 

Figure 2. siRNA inhibited HSP47 expression. A. As in Fig. 1. RTFs were treated with siHSP47-1, or siHSP47-2, or siHSP47-3, 
or negative control (siNC) for 48 h, and the levels of HSP47 mRNA were analyzed by RT‑qPCR. B. RTFs were treated with the 
studied siRNAs or siNC for 72 h, and the expression of HSP47 protein was detected by western blot. ***P < 0.001 vs. siNC group. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a control housekeeping gene and internal control protein.

Figure 3. HSP47 siRNA downregulated collagen I expression. A. RTFs were treated with siHSP47-1, or siHSP47-2, or siHSP47-3, 
or negative control (siNC) for 48 h, and the expression of collagen I mRNA was analyzed by RT‑qPCR. B. RTF cells were cultured 
with different siRNA or siNC for 72 h, and the levels of collagen I were determined by western blot. *P < 0.05, **P < 0.01 and ***P 
< 0.001 vs. siNC group.
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of HSP47 correlates with the growing deposition of 
COLI in a rat conjunctival bleb model [11], suggesting 
the importance of HSP47  in the pathologic tissue 
remodeling progression of conjunctival bleb scari-
fication. Thus, we hypothesize that HSP47 may be 
a potential target to prevent conjunctival bleb scarring 
postoperatively. 

Collagen accumulation in the extracellular matrix 
is a hallmark of fibrogenesis. Previous studies have 
shown that COLI is one of the core factors in the 
process of conjunctival bleb scarification postopera-
tively which is actually an abnormal wound healing 
procedure in response to tissue injury [3, 11, 19–22]. 
It is well known that fibroblasts from Tenon’s capsule 
have a key effect on the pathology of conjunctival bleb 
scarification [3, 20, 22]. 

Small interfering RNAs (siRNAs) can effectively 
inhibit the expression of a specific gene. Preclinical 
studies revealed that down-regulation of HSP47 thro-
ugh siRNAs leads to decreased collagen deposition 
[23–26]. The safety, tolerability, and pharmacokinetics 
of lipid nanoparticle encapsulating HSP47  siRNA 
have been evaluated in clinical trials [15]. There-
fore, we conducted the in vitro study aimed to de-
termine the role of HSP47 siRNA in the regulation 
of COLI expression in RTFs, which could provide 
valuable information about its potential application 
against bleb scarring after glaucoma filtration surgery. 

We found that the down-regulation of HSP47 by 
siRNAs resulted in a decreased expression of COLI in 
RTFs, which is in accord with the results of earlier 
studies. Guo et al. [10] showed that down-regulating 
HSP47 significantly reduced the mRNA and protein 
expression of COLI in guinea pig scleral fibroblasts. 
Tang et al. [27] demonstrated that microRNA-29 si-
gnificantly inhibited HSP47 and COLI expression in 
human fetal scleral fibroblasts. Our data suggest that 
HSP47 siRNA has potential application in postopera-
tive anti-scarring therapy. In contrast to the suppres-

sive effects of three siRNAs on the HSP47 mRNA 
and protein expression, only one of the tested siRNA 
decreased COLI protein levels. Thus, it is plausible 
to draw a conclusion that collagen 1 down-regulation 
may not entirely depend on HSP47 silencing only. It 
is obvious that HSP47  is only one of many factors 
affecting COLI protein expression.

The limitations of our study should be mentioned. 
Various profibrotic factors have the potential to me-
diate fibrogenesis postoperatively, and further studies 
are required to investigate the interactions among 
HSP47  and other agents including fibrogenic cyto-
kines such as transforming growth factor-beta1  [8], 
connective tissue growth factor [20], and to explore the 
exact mechanisms of HSP47 siRNA down-regulation 
of COLI after glaucoma filtration surgery.

In conclusion, we found that one type of the desi-
gned HSP47 siRNAs down-regulates COLI expression 
in rat Tenon’s fibroblast RTF cells. Therefore, our data 
may provide information on the potential therapeutic 
targets of HSP47  in bleb scarring after glaucoma 
filtration surgery. Further basic and clinical studies 
should be crucial to explore precise mechanisms of 
HSP47 siRNA to suppress bleb scarification. 
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