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Abstract
Introduction. Sonodynamic therapy (SDT), a promising non-invasive therapeutic modality, has attracted increasing 
attention in the treatment of pancreatic cancer (PC). At present, the role of autophagy in SDT of PC remains unclear. 
This study aims to explore the role of autophagy in SDT of PC and its effect on apoptosis of PC cells.
Material and methods. PC cells (Capan-1 and BxPC-3) underwent incubation with 5-aminolevulinic acid (5-ALA) 
or/and ultrasound (US) exposure (control, 5-ALA, US, and SDT groups), followed by measurement of cell apoptosis 
and autophagy. Specifically, cell viability, apoptosis, and the expression of apoptosis-related proteins (cleaved Caspa-
se-3, Bax, and Bcl-2) were measured using CCK-8 assay, flow cytometry, and western blot analysis, respectively. The 
mitochondrial morphology was observed with the transmission electron microscopy, accompanied by the detection of 
autophagosome marker (LC3) co-located with Mito and the protein expression of LC3II/I. Before SDT treatment, the 
autophagy inhibitor 3-MA and the apoptosis inhibitor z-VAD were respectively added to PC cell cultures to evaluate 
the effects of autophagy inhibition on apoptosis and apoptosis inhibition on autophagy in PC cells.
Results. Compared with the control group, cell viability was inhibited and cell apoptosis and autophagy were enhanced 
in the SDT group, while cell viability, autophagy, and apoptosis in the 5-ALA and US groups were not significantly 
changed. Moreover, 3-MA treatment inhibited autophagy and accelerated apoptosis, whereas z-VAD treatment reduced 
apoptosis but did not affect autophagy in PC cells.
Conclusions. Autophagy was activated in SDT-treated PC cells, and inhibition of autophagy promoted cell apoptosis 
in PC cells. (Folia Histochemica et Cytobiologica 2023, Vol. 61, No. 3, 172–182)
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Introduction

Pancreatic cancer (PC) is a highly lethal gastrointe-
stinal cancer with a 5-year survival rate of < 5% [1], 
and its morbidity and mortality are increasing year 
by year worldwide [2]. Obesity, smoking, diabetes, 
alcohol, diet, and infection are widely-recognized risk 
factors associated with PC [3]. Notably, PC often fails 

to be diagnosed at an early stage, and most patients 
already suffer from tumor micro-metastases at the time 
of initial diagnosis [4]. At present, the conventional 
therapies of PC are mainly surgery, chemotherapy, 
radiotherapy, and combination therapy, but these 
therapies have shortcomings such as low selectivity, 
systemic toxicity, and drug resistance [5–7]. Therefore, 
mounting efforts are needed to develop new treatments 
for PC.

Sonodynamic therapy (SDT) is a non-invasive 
therapeutic modality for malignant tumors using 
a combination of sonosensitizers and low-intensity 
ultrasound (US) [8], which is developed from photo-
dynamic therapy (PDT). Compared to PDT, SDT has 
many advantages, including deeper tissue penetration, 
high precision, less side effects, and favorable patient 
compliance [9]. In recent years, the role of SDT in 
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tumor therapy has attracted increasing attention. Exi-
sting evidence has confirmed that SDT can effectively 
act on a variety of tumor cells, such as breast cancer 
[10], non-small-cell lung cancer [11], hepatocellular 
carcinoma [12], ovarian cancer [13], glioblastoma 
[14], prostate cancer [15], and PC [16]. Reportedly, 
the anti-tumor mechanism of SDT mainly involves 
reactive oxygen species (ROS) generation, apoptosis, 
and autophagy [9, 17]. 

Autophagy is a self-digestion process of the cell, in 
which damaged or senescent proteins and organelles 
in cells are wrapped in autophagosomes with a bilayer 
membrane structure and then transported to lysosomes 
for degradation [18]. Autophagy is involved in nume-
rous functions including cell growth, survival, and de-
ath both in normal and cancer cells [19]. Mitochondria 
are important sites for energy metabolism and ade-
nosine triphosphate production [20]. Autophagy can 
have both positive and negative effects, and selective 
autophagy is an evolutionarily conserved mechanism 
that removes excess protein aggregates and damaged 
intracellular components [21]. During SDT, autophagy 
may protect against or cause cell death [22]. SDT can 
decrease the survival rate of PC cells while inducing 
cell apoptosis, necrosis, and cytotoxicity [23]. Howe-
ver, little is known regarding the role of autophagy in 
SDT-induced PC cells. Herein, this study investigates 
the mechanism underlying the anti-cancer effects of 
SDT in two PC cell lines and the crosstalk of apoptosis 
and autophagy in SDT-induced PC cells.

Material and methods

Cell culture. Human PC cells, Capan-1 (Laboratory of Medical 
Genetics, Department of Biology, Harbin Medical Universi-
ty, China) and BxPC-3 [American Type Culture Collection 
(ATCC), Manassas, VA, USA], were incubated in Roswell 
Park Memorial Institute-1640 (RPMI) medium (ATCC) with 
10% fetal bovine serum (FBS) at 37°C and in the atmosphere 
of 5% CO2. The culture method was suspension culture, and 
the medium was refreshed 2~3 times a week.

Ultrasonic device. As described in our previous study [23], 
the US transducer, ultrasonic generator, and power amplifier 
used in our study were assembled by the Harbin Institute of 
Technology (Harbin, China). A petri dish with a lid containing 
target cells was placed above the US transducer and partially 
soaked in water (Fig. 1). For sonication, water was adopted as an 
ultrasonic coupling medium and also assisted in diminishing the 
thermal impact of ultrasonic irradiation. The temperature of the 
medium was monitored by a temperature measuring instrument 
in the US and SDT cell line groups, and no obvious temperature 
change was observed during the experiment (± 1°C).

Cell grouping and treatment. The concentration of 5-amino-
levulinic acid (5-ALA; Sigma-Aldrich, St. Louis, MO, USA) 

and the intensity and exposure time to US were referred to our 
previous study [23] combined with another reference [24]. 
Capan-1 and BxPC-3 cells were allocated into six groups: 
control [6-h incubation with phosphate-buffered saline (PBS)], 
5-ALA group [6-h incubation with 1 mmol/L 5-ALA (dissolved 
in PBS)], US group [6-h incubation with PBS and 5-min 
exposure to US (resonance frequency = 1.0 MHz, duty factor 
= 60%, intensity = 2 W/cm2)], SDT group (6-h incubation with 
1 mmol/L 5-ALA and 5-min exposure to US under the same 
conditions as the US group), SDT + 3-Methyladenine (3-MA) 
group [incubation with 1 mM 3-MA dissolved in DMSO (Merck 
Millipore, Billerica, MA, USA) for 1 h [22] and with 1 mmol/L 
5-ALA for 6 h, followed by US treatment], and SDT+ z-VAD-
-fmk (z-VAD) group [incubation with 10 μM z-VAD dissolved 
in DMSO (Merck Millipore) for 1 h [22] and with 1 mmol/L 
5-ALA for 6 h, followed by the US treatment].

Cell counting kit 8 (CCK-8). The cells were seeded onto a 96-
well plate with 100 μL diluted cell suspensions (5 × 105 cells/mL)  
per well. Three replicate wells were set for each sample. 
Subsequent to 24 h of cell incubation, 10 μL CCK-8 reagents 
(Sigma-Aldrich) was added to each well for further 2 h. The 
absorbance was measured at 450 nm using SpectraMax iD5 
multi-mode microplate reader (Molecular Devices, Downing-
town, PA, USA) and analyzed using SoftMax Pro software.

Flow cytometry. Cell apoptosis was determined by an Annexin 
V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apo-
ptosis detection kit (40302ES20, Yeasen, China). Briefly, cells 
were collected after trypsin digestion and centrifugation (1500 r/ 
/min, 5 min), followed by resuspension in PBS. Afterward, cell 
suspension (5 × 105 cells) was harvested and then centrifuged 
for 5 min at 1500 r/min, with the supernatant discarded. Next, 
the obtained cells were suspended in a binding buffer and then 
incubated with 5 μL of Annexin V-FITC for 15 min (4°C) and 
then 10 μL of PI for 5 min (at room temperature, in dark). 
Finally, a flow cytometer BD LSRFortessaTM flow cytometer 
(BD Biosciences, Franklin Lakes, NJ, USA) was utilized to 
measure cell apoptosis and BD AccuriTM C6 program was used 
for data analysis. The maximum excitation wavelength of FITC 
is 488 nm and the maximum emission wavelength is 525 nm. 
The PI-DNA complex has a maximum excitation wavelength 
of 535 nm and a maximum emission wavelength of 615 nm. 
Each sample included 10000 events. 

Transmission electron microscopy (TEM). After twice wa-
shes with 1 × PBS, the cells were digested with 1 mL 0.25% 
trypsin for 2 min. After that, cell suspension of each group was 
collected into a 1.5 mL Eppendorf centrifuge tube, fixed in 4.2% 
glutaraldehyde for 2 h and then 30% osmium tetroxide solution 
for 1 h, followed by dehydration in gradient alcohol (100–24%) 
and epoxypropane. Later, the cells underwent embedding in 
Epon 812 and sectioning (80 nm) with an ultra-microtome (LKB 
Produkter, Bromma, Sweden). Following uranyl acetate and lead 
citrate staining, the ultrastructure of mitochondria was observed 
under the JEM-1400 electron microscope (Jeol, Tokyo, Japan). 
Damaged mitochondria are characterized by rupture of inner 
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and outer membranes, mitochondrial swelling, loss or rupture 
of cristae, and presence of autophagosomes.

Immunofluorescence of light chain 3 (LC3). The slide with the 
cells in the petri dish was soaked in PBS 3 times. After the slide 
was fixed in 4% formaldehyde, the cells underwent overnight 
(4°C) incubation with primary antibody anti-LC3 (ab192890, 
1 µg/mL, Abcam, Cambridge, UK). After PBS washing, the 
sections were treated by the fluorescence-labeled secondary 
antibody IgG H&L (Alexa Fluor® 488) (ab150077, 1 µg/mL, 
Abcam) for 2 h in dark. After 4’,6-diamidino-2-phenylindole 
(DAPI) staining, the sections were observed under TCSSP2 la-
ser confocal fluorescence microscope (magnification: 400×) 
(Leica, TCSSP2, Germany) and analyzed using Leica LAS 
AF software. Excitation (Ex) and emission (Em) filters (from 
Semrock, Lake Forest, IL, USA) were as follows: DAPI (Ex/ 
/Em = 350/470 nm), LC3 (Ex/Em = 495/519 nm). LC3/DAPI 
fluorescence intensity ratio was used for quantitative analysis, 
and the fluorescence intensity was normalized to the LC3/DAPI 
intensity of the control group.

Western blot analysis. The cells were subjected to three washes 
with pre-cooled PBS and treatment with radio-immunoprecipi-
tation assay cell lysis (Beyotime, Shanghai, China), followed 
by protein concentration estimation with a bicinchoninic acid 
protein assay kit (Beyotime). Proteins were mixed with the 
loading buffer (Beyotime), denatured in a boiling-water bath 
for 3 min, and separated by electrophoresis (80 V for 30 min 
and 120 V for 1–2 h). Next, the proteins were electro-blotted 
for 60 min to membranes in an ice bath at 300 mA. Afterward, 
the membranes were rinsed in washing solution for 1–2 min 
and sealed in blocking solution at room temperature for 
60 min or at 4°C overnight. Next, the membranes received 

1-h probing with primary antibodies from Abcam against cle-
aved Caspase-3 (ab32042, 1:500), B-cell lymphoma-2 (Bcl-2; 
ab182858, 1:2000), Bcl-2 associated X (Bax; ab32503, 1:1000), 
LC3 (ab128025, 1:1000), and GAPDH (ab9485, 1:2500). After 
washing (3 × 10 min), the membranes were subjected to 1-h 
re-probing with immunoglobulin G (IgG; 1:1000, Abcam) 
antibodies and washed three times (3 × 10 min). Lastly, a che-
miluminescent imaging system (Bio-rad, Hercules, CA, USA) 
was used for detection after color development. The assays 
were performed thrice.

Statistical analysis. Statistical analysis of the collected original 
data was conducted with GraphPad Prism (version 8.0) software 
(GraphPad Inc, San Diego, CA, USA) and presented as mean 
± standard deviation. For the samples conforming to normal 
distribution, the Student’s t-test was employed for two-group 
comparisons, and the one-way analysis of variance for compa-
risons among multiple groups. The Tukey’s test was used for 
post hoc multiple comparison. A P value < 0.05 was considered 
statistically significant.

Results

SDT induced cell apoptosis in PC cells
In our previous study, incubation with 5-ALA 
(1 mmol/L, 6 h) combined with US exposure (2 W/ 
/cm2, 5 min) could induce cytotoxicity and apoptosis 
of PC Capcan-1 cells [23]. However, the time change 
of cytotoxicity and apoptosis after SDT treatment has 
not been clarified in Capan-1 and BxPC-3 cell lines. 
Therefore, CCK-8 assay was performed at different 
time points (0, 2, 4, and 12 h) after treatment with 

Figure 1. Schematic diagram of the ultrasonic device
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5-ALA, and the results showed that compared with the 
control group (cell viability: 100%), cell viability did 
not markedly change in the 5-ALA and US groups at 
different time points but substantially declined in the 
SDT group at 4 h (Capan-1 cells: 76.45%; BxPC-3 
cells: 77.09%) and 12 h (Capan-1: 65.39%; BxPC-3: 
68.33%) after treatment (Fig. 2A). Next, flow cyto-
metry was carried out to detect cell apoptosis in the 
cells of SDT group incubated for 2, 4, and 12 h with 
5-ALA and the other three groups at 4 h after treat-
ment. As manifested in Fig. 2B (vs. the control group), 
cell apoptosis was not markedly altered in the 5-ALA 
group, insignificantly augmented in the US group, and 
substantially elevated in the SDT group at 4 h and 12 h. 
These results suggested that the apoptotic rate of PC 
cells increased markedly after 4 h of SDT treatment 
and increased with time, but the increase was slow after 
4 h. Therefore, PC cells at 4 h after treatment were 

used for subsequent experiments. Furthermore, data 
from western blot analysis manifested that versus the 
control group, cleaved Caspase-3 and Bax expression 
strikingly increased but Bcl-2 expression decreased in 
the SDT group, while the levels of these proteins did 
not significantly change in the 5-ALA and US groups 
(Fig. 2C). These results indicated that SDT treatment 
induced PC cell apoptosis.

SDT induced autophagy of PC cells
Next, the effect of SDT on autophagy in PC cells was 
probed. TEM results revealed that there was no obvio-
us change in the autophagy level of cells in the control 
and 5-ALA groups, a small number of autophagosomes 
appeared in the US group, and the number of auto-
phagosomes in the SDT group increased significantly  
(Fig. 3A). Immunofluorescence staining results sho-
wed that the expression of autophagosome marker 

Figure 2. SDT increased the apoptotic rate of Capan-1 and BxPC-3 pancreatic cancer (PC) cells. A. CCK-8 assay was used to me-
asure cell viability of PC cells at different time points (0, 2, 4, and 12 h) after treatment in each group. B. Flow cytometry was used 
to test cell apoptosis of PC cells in the SDT group at 2, 4, 12 h, and the other three groups at 4 h after treatment. C. The expression 
of apoptosis-related proteins (cleaved Caspase-3, Bax, and Bcl-2) in each group was assessed through western blot analysis. *P < 
0.05, compared with the control group. Abbreviations: 5-ALA — 5-aminolevulinic acid; Bax — Bcl-2 associated X; Bcl-2 — B-cell 
lymphoma-2; CCK-8 — cell counting kit 8; SDT — sonodynamic therapy; US — ultrasound.
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(LC3) was conspicuously increased in the cells of 
the SDT group but did not substantially change in the 
5-ALA and US groups (vs. the control group, Fig. 3B). 
As for the results of western blot analysis, the protein 
expression of LC3II/I was elevated in the SDT group 
but did not significantly change in the 5-ALA and US 
groups (vs. the control group, Fig. 3C). Taken together, 
SDT treatment triggered autophagy in PC cells.

Inhibition of SDT-induced autophagy promoted 
PC cell apoptosis
Subsequently, we dissected the effect of autophagy 
inhibition on PC cell apoptosis. First, the CCK-8 as-
say revealed that cell viability in the SDT group was 
clearly repressed compared with that in the control 
group. Moreover, cell viability was substantially redu-
ced in the SDT + 3-MA group versus the SDT group 
(Fig. 4A). Meanwhile, the SDT group exhibited an 
elevation in cell apoptosis as compared to the control 
group. In addition, further increase in cell apoptosis 
was observed in the SDT + 3-MA group (vs. the SDT 
group) and decreased cell apoptosis was found in the 
SDT + z-VAD group (vs. the SDT group) (Fig. 4B). 
As reflected by western blot analysis, the SDT group 
had increased expression of cleaved Caspase-3 and 
Bax but decreased expression of Bcl-2 (vs. the control 
group), and the same trend was observed in the SDT + 
3-MA group versus the SDT group. However, cleaved 
Caspase-3 expression substantially declined, and Bcl-2 
and Bax expression did not significantly change in 
the SDT + z-VAD group (vs. the SDT group) (Fig. 
4C). These findings demonstrated that the autophagy 
inhibitor 3-MA could accelerate PC cell apoptosis 
induced by SDT.

Inhibition of SDT-induced cell apoptosis did not 
affect autophagy in PC cells
Finally, we further investigated the effect of apopto-
sis inhibition on autophagy of PC cells. From TEM 
observation, the autophagy level in the SDT group 
was significantly increased compared with the con-
trol group. In comparison with the SDT group, the 
autophagy level in the SDT + z-VAD group did not 
change significantly but markedly decreased in the 
SDT + 3-MA group (Fig. 5A). Immunofluorescence 
staining indicated that LC3 expression was markedly 
elevated in the SDT and SDT + z-VAD groups (vs. the 
control group), but there was no significant difference 
between these two groups; compared with the SDT 
group, the SDT + 3-MA group had reduced expression 
of LC3 (Fig. 5B). Western blot analysis exhibited that 
the SDT and SDT + z-VAD groups had increased 
LC3II/I content (vs. the control group), while the 
SDT + 3-MA group had reduced LC3II/I expression 

as compared to the SDT group. No marked difference 
was found in LC3II/I expression between the SDT and 
SDT + z-VAD groups (Fig. 5C). In summary, the auto-
phagy inhibitor could inhibit SDT-induced autophagy 
in PC cells, but the apoptosis inhibitor did not affect 
SDT-induced autophagy.

Discussion

PC is a severe disease that threatens human health, 
with limited treatment options [25]. Nowadays, SDT 
has a wide board development space for treatment 
of PC [26]. Theoretically, SDT combines US with 
sonosensitizers, in which US is used to penetrate deep 
tissues to focus on specific areas, thus activating the 
sonosensitizers that are enriched in the tumor tissues 
and finally promoting the production of ROS to induce 
cell apoptosis [27]. Moreover, SDT has been verified 
to trigger autophagy and apoptosis [28]. In the present 
study, we evaluated the effect of SDT intervention on 
PC cell apoptosis and autophagy and found that SDT 
induced PC cell apoptosis and autophagy. Further 
experiments illustrated that autophagy inhibition fa-
cilitated SDT-induced apoptosis, but apoptosis cannot 
affect SDT-induced autophagy in PC cells (Fig. 6). 

5-ALA is often utilized as porphyrin-based so-
nosensitizers in in vivo and in vitro models for SDT 
[29, 30]. We previously found that incubation with 
5-ALA followed by US exposure could trigger cell 
cytotoxicity and apoptosis [23]. In this study, we used 
5-ALA or/and US to treat PC cells and found that 
SDT treatment significantly increase the apoptotic 
rate of PC cells, accompanied by enhanced expression  
of cleaved Caspase-3 and Bax, pro-apoptotic factors, 
and reduced expression of Bcl-2, a major anti-apop-
totic factor [31, 32]. Consistently, Yang et al. demon-
strated that ALA loaded lipid/poly (lactic-co-glycolic 
acid) microbubble-mediated SDT increased the 
apoptotic rate and enhanced ROS levels in PC cells, 
suggesting the anti-tumor effect of 5-ALA-mediated 
SDT on PC cells [33]. Mitochondrial and nuclear DNA 
mutations caused by oxidative damage can result in 
mitochondrial ROS production, forming a ‘vicious 
cycle’ between mitochondria, ROS, and cancer deve-
lopment [34]. The mitochondrial pathway of apoptosis 
is activated following cellular stress [35]. Increasing 
evidence revealed that ROS generated within mito-
chondria can drive oxidative damage, inflammatory 
signaling, and cell apoptosis [36, 37]. Specifically, 
damaged mitochondria may induce overproduction of 
ROS, trigger the release of cytochrome C, or activate 
the levels of some pro-apoptotic factors, and finally 
induce cell apoptosis [35, 38]. Also, Suehiro S et al. 
illustrated that 5-ALA-SDT inhibited cell growth and 



www.journals.viamedica.pl/folia_histochemica_cytobiologica
©Polish Society for Histochemistry and Cytochemistry
Folia Histochem Cytobiol. 2023
10.5603/fhc.95262
ISSN 0239-8508, e-ISSN 1897-5631

177Inhibition of autophagy induces PC cell apoptosis

induced cell apoptosis and death in glioma cell models, 
serving as a less invasive and tumor-specific therapy 
in malignant gliomas [39].

In addition to apoptosis, we also investigated the 
effect of SDT on autophagy of PC cells. As expected, 
SDT treatment contributed to autophagy of PC cells, 
shown by the appearance of autophagosomes and the 
significant increase of LC3II/I expression. LC3II is 
a well-known marker of autophagy [40]. In a previo-

us study of glioma therapy, SDT treatment induced 
apoptosis and MAPK/p38-PINK1-PRKN-dependent 
autophagy, and moreover, angiopep-2-modified lipo-
somes loaded with Ce6 and hydroxychloroquine-SDT 
treatment could inhibit the xenograft-tumor growth 
and prolong the survival time of tumor-bearing mice 
[41]. Feng et al. observed that SDT triggered autopha-
gy at low dosage, serving as a survival pathway for 
breast cancer and exhibiting resistance to SDT-media-

Figure 3. SDT increased autophagy in pancreatic cancer (PC) cells. A. Transmission electron microscopy was used to study the 
ultrastructure of PC cell treated by 5-ALA, US and SDT. Mitochondria are marked by red arrows and the autophagosomes by green 
arrows. B. Immunofluorescence staining was used to measure the expression of autophagosome marker LC3 protein. C. The protein 
expression of LC3II/I was measured by western blot analysis. *P < 0.05, compared with the control group. Abbreviations: 5-ALA 
— 5-aminolevulinic acid; LC3 — light chain 3; SDT — sonodynamic therapy; US — ultrasound.
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Figure 4. Repression of SDT-induced autophagy accelerated apoptosis in pancreatic cancer (PC) cells. A. Cell viability was evaluated 
using CCK-8 assay. B. Cell apoptosis was measured via flow cytometry. C. The expression of apoptosis-related proteins (cleaved 
Caspase-3, Bax, and Bcl-2) in each group was detected using western blot analysis. *P < 0.05, compared with the control or SDT 
group. Abbreviations: 3-MA — 3-Methyladenine; 5-ALA — 5-aminolevulinic acid; Bcl-2 — B-cell lymphoma-2; Bax — Bcl-2 
associated X; CCK-8 — cell counting kit 8; SDT — sonodynamic therapy; US — ultrasound; z-VAD — z-VAD-fmk.
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ted apoptosis [42]. Consequently, it can be concluded 
that SDT treatment induces apoptosis and autophagy 
of PC cells simultaneously. Moreover, an earlier stu-
dy indicated that autophagy blockade enhanced the 
anti-tumor effect of SDT via apoptosis and necrosis 
induction, while caspase inhibition did not affect the 
formation of autophagosomes or protect against SDT- 
-triggered cytotoxicity, providing important insight 

into the combination of autophagy inhibitors and SDT 
for cancer treatment [43].

In cancer treatment, autophagy is like a double-
-edged sword, which can induce apoptosis to repress 
tumor progression and inhibit apoptosis to promote 
tumor cell growth [44, 45]. Chen et al. found that ke-
toconazole downregulated cyclooxygenase-2 expres-
sion and activated autophagy to induce apoptosis in 
hepatocellular carcinoma (HCC) cells [46]. Wang  

Figure 5. Suppression of SDT-induced cell apoptosis had no effect on autophagy in pancreatic cancer (PC) cells. A. Transmission 
electron microscopy was used to detect autophagosomes with the mitochondria marked by red arrows and the autophagosomes by 
green arrows. B. Immunofluorescence staining was used to demonstrate the expression of the autophagosome marker LC3. C. The 
relative content of LC3II/I was tested by western blot analysis. *P < 0.05, compared with the control group. Abbreviations: 3-MA 
— 3-Methyladenine; 5-ALA — 5-aminolevulinic acid; LC3 — light chain 3; SDT — sonodynamic therapy; US — ultrasound; 
z-VAD — z-VAD-fmk.
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et al. observed that blocking autophagy significantly 
reduced mitochondrial potential and increased caspa-
se-3 activity and cell apoptosis, finally enhanced 
the ability of SDT to induce cell death [47]. More 
importantly, a previous study revealed that suppres-
sion of autophagy could aggravate apoptosis and 
cell death induced by 5-ALA-SDT in human breast 
adenocarcinoma cells [24]. In our study, we used 
autophagy inhibitor 3-MA and apoptosis inhibitor 
z-VAD to probe the role of autophagy and apoptosis 
in SDT-treated PC cells. As expected, 3-MA treatment 
obviously promoted but z-VAD treatment repressed 
cell apoptosis induced by SDT. Similarly, in human 
leukemia K562 cells, SDT treatment induced ROS 
accumulation, cell apoptosis, and autophagy, while the 
presence of 3-MA or Ba A1 enhanced SDT-induced 
cell apoptosis [22]. However, our data unraveled that 
SDT-induced autophagy could be inhibited by the 
treatment with 3-MA but not be affected by z-VAD 
treatment. These data demonstrated that inhibition of 
SDT-induced autophagy promoted cell apoptosis, but 
inhibition of SDT-induced apoptosis did not affect 
autophagy in PC cells. 

In this study, the obtained data demonstrated that 
treatment of 5-ALA-mediated SDT triggered PC cell 
apoptosis and autophagy, and inhibition of SDT-indu-
ced autophagy promoted PC cell apoptosis, suggesting 
that inhibition of autophagy may function as a potential 
therapeutic strategy to improve the efficiency of SDT. 

These findings may apply to SDT mediated by other 
sonosensitizers. Furthermore, since our research has 
only carried out at the cell level, the feasibility of the 
existing parametric mechanism of US in cell models 
needs to be further studied in animal models. There-
fore, more animal and clinical trials are needed in the 
future, thereby providing experimental basis for the 
design of the novel therapies for PC.
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