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Abstract: Nitric oxide (NO) affects reproductive processes both at the level of the brain and reproductive tract and this review
is focused on its role as an essential regulator of the hypothalamic control of reproduction. The data gathered indicate that
glutamate stimulates noradrenergic neurons which subsequently activate NO-ergic cells via α1-adrenergic receptors. The
released NO diffuses into luteinizing hormone-releasing hormone (LHRH) terminals where it triggers LHRH secretion by
activation of guanylyl cyclase and cyclooxygenase. The NO released by estrogen-stimulated NO-ergic ventromedial neurons
plays a crucial role in the regulation of sexual behavior. Furthermore, an increased expression of inducible nitric oxide synthase
in the LHRH and oxytocin neurons underlies the destructive action of NO on the aging of the hypothalamic neuroendocrine
pathways. Within the hypothalamo-hypophyseal system, NO exerts an inhibitory effect in the control of oxytocin secretion.
This action seems to employ an indirect mechanism by which NO may modulate the release of GABA. This review provides
an overview of the role of NO in hypothalamic control of LHRH and oxytocin release, aging of the LHRH and oxytocin neurons
and sexual behavior. (www.cm-uj.krakow.pl/FHC)
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Introduction

Nitric oxide, an active radical synthesized by nitric oxide
synthase (NOS) [61], is known to play multiple physio-
logical roles [75-77, 123]. In female reproductive organs
nitric oxide has been recognized as an important regula-
tor of parturition, pregnancy, implantation, oviduct
function and steroidogenesis. Moreover, a correlation
between circulating NO and follicular development, im-
plicates luteinizing hormone-releasing hormone
(LHRH) in the regulation of NO synthesis and follicu-
logenesis, thereby functionally linking hypothalamic
structures with ovarian NO function [106].

In the nervous system, NO acts as a messenger of
interneuronal information but, unlike traditional neuro-
transmitters, it is not found in the synaptic vesicles [14,
36]. In nerve cells, NO is generated by Ca2+/calmodulin-
stimulated NOS which catalyzes the production of NO
and L-citruline from L-arginine, O2 and NADPH-

derived electrons [37] (Fig. 1). The NO is not released
into the synaptic space and does not act at the postsy-
naptic membrane, but diffuses through cell mem-
branes to reach its targets in neighboring neurons [41].
In the target cell, NO binds to the iron of the heme
moiety of hemoprotein soluble guanylyl cyclase and
cyclooxygenase, thus utilizing cyclic GMP and pros-
tanoids as second messengers [43]. Because of its
unique mechanism of action NO represents a com-
pletely new class of gaseous neurotransmitters [124,
132].

The NO releasing, NO-ergic neurons [11] express
three major isoforms of the NOS enzyme. Neuronal
NOS (nNOS) and endothelial (eNOS), referred to as
constitutive NOS, are responsible for the continuous
basal release of NO and both require calcium/calmo-
dulin for activation [42]. A third isoform is an inducible
calcium-independent subtype (iNOS) whose expression
is triggered by inflammatory signaling [85]. The three
isoforms of NOS are products of separate genes that
share 50-60% amino acid homology [81] and display
sequence similarity to the carboxy-terminal end of cy-
tochrome P-450 reductase [13]. All NOS isoforms re-
quire nicotinamide adenine dinucleotide phosphate
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(NADPH) as an electron donor, as well as flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN)
and tetrahydrobiopterin (THB) for efficient gener-
ation of NO [68]. All three isoforms of the enzyme
express enzymatic activity of NADPH-diaphorase
which is used as a histochemical marker for NOS [29,
51, 130].

Previous histochemical and immunocytochemical
studies revealed populations of NO-ergic neurons in
various brain structures [12, 105, 132, 133]. Quantitative
biochemical analysis has indicated the hypothalamus,
after the cerebellum, as the second concentration site for
nNOS activity in the brain [35]. In direct support of this
notion are observations [15, 18, 105, 133, 139] showing
numerous populations of hypothalamic, NO-ergic neu-
rons particularly in supraoptic, paraventricular and cir-
cular nuclei, and also in the preoptic area, ventromedial

and arcuate nuclei. The staining techniques have re-
vealed NOS activity in the neuronal perikarya and
processes, indicating that NO produced in the neuron
may be released by the entire cell surface, including
the neurosecretory terminals of the hypothalamic
neurosecretory pathways [71]. Indeed, occurrence of
the NO synthesizing neurons throughout the hypotha-
lamic regions involved in neuroendocrine regulation
of gonadotropin secretion, sexual behavior and par-
turition coupled with its high permeability range up to
300 μm [37], enables NO-ergic cells to affect multiple
hypothalamic systems. This review will address the
significance of nitric oxide as a modulator of hypotha-
lamic reproductive functions, focusing mainly on its
effect upon LHRH and oxytocin release and sexual
behavior.

Effect of nitric oxide on LHRH release

Recent immunocytochemical studies identifying NOS,
as well as histochemical visualization of NADPH-d
have revealed numerous populations of NO-generating
neurons throughout the hypothalami of different species
including rat [15-17, 105, 133], mouse [84], guinea pig
[134], cat [74], monkey [110], pig [18] and human [31,
109]. Within the hypothalamus, prominent NOS stain-
ings were reported for neurons of the preoptic area which
is a well-documented production site for LHRH [24, 60,
62, 119, 120, 137, 138, 143]. Nuclei of the preoptic area
together with arcuate/median eminence (ARC/ME)
complex constitute the hormonal sex center [32]. Inter-
estingly, LHRH and both NOS mRNAs [44, 52] as well
as NOS proteins [18, 48] were shown to be expressed in
separate populations of preoptic neurons. The excep-
tionally high activity of NOS in the population of preop-
tic neurons localized in the direct vicinity of the LHRH
hypothalamic system (Figs. 2-5) indicates a capacity for
NO-ergic control over the LHRH production and release
[18, 44, 48]. Indeed, in vivo application of NOS inhibi-
tors resulted in the suppression of pulsatile and steroid-
induced LHRH release [9, 100]. These observations are
consistent with in vitro studies on dissected arcuate/me-
dian eminence complex and with immortalized GT-1
LHRH-producing cells, showing an inhibitory action of
the NOS inhibitors on LHRH secretion [8, 79, 103],
confirmed currently by study of Karanth et al. [56-58].
Moreover, sodium nitroprusside, a spontaneous NO
donor, has been shown to increase LHRH release from
the ARC/ME complex and from cultured GT-1 cell line
[79, 103] indicating a key function of NO in the modu-
lation of LHRH secretion.

Previous reports indicated that noradrenaline (Fig.
6), and to a lesser extent dopamine can stimulate hypo-
thalamic LHRH release [88, 89, 118]. In this context it
is interesting that preoptic noradrenergic neurons may
coexpress NOS (Figs. 7, 8). Recent studies have shown

Fig. 1. Schematic diagram of the role of NO in transcellular signal
transduction. NOS increases its activity in response to intracellular
Ca2+ influx, which stimulates, via calmodulin (CaM), the NOS
enzyme. NOS catalyses the conversion of O2 and L-arginine to NO
and L-citrulline. Activation of NOS requires nicotinamide adenine
dinucleotide phosphate (NADPH) as cofactor. NO diffuses to NO-
responsive target cell where it binds to a heme moiety of soluble
guanylyl cyclase (sGC) which, following activation, catalyses cyclic
GMP (cGMP) formation. Possible NO target may be heme moiety
of another hemoprotein, mainly, cyclooxygenase (COX) which,
following activation, converts arachidonic acid (AA) into prosta-
glandin E2 (PGE2). Thus, PGE2 activates adenylate cyclase causing
an increase in cAMP. Since both cGMP and cAMP are second
messengers, they can affect multiple enzymatic pathways in target
neurons. 
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that adrenergic stimulation of LHRH release involves
activation of the adrenergic receptor on NO-ergic neu-
rons [20, 100, 116]. Noradrenaline exerts its effect via
the α1-adrenergic receptor which stimulates the re-
lease of NO from NO-ergic neurons. The NO diffuses
to the adjacent LHRH neurons causing an increase in
the free intracellular calcium required for the activa-
tion of phospholipase A2. It is believed that phospholi-
pase A2 converts membrane phospholipids in the LHRH
terminals to arachidonate, which can then be processed
by activated cyclooxygenase into PGE2. The PGE2-de-
pendent activation of adenylate cyclase causes cAMP
release, which in turn activates the protein kinase-A
leading to exocytosis of LHRH secretory granules from
neurosecretory terminals [20, 69, 70, 100].

LHRH reaches gonadotrophs of the anterior pitui-
tary gland via hypophyseal portal vessels, thereby
mediating the LH release, which in turn stimulates
steroid secretion from the ovary and induces ovulation
[40]. Although there is no doubt that ovarian steroids
affect the secretory activity of the hypothalamic

LHRH neurons, paradoxically those neurons do not
contain estrogen receptor (ER) [50, 64, 118, 128, 136].
It has been shown that NO-ergic neurons embracing the
preoptic LHRH cells express estrogen receptor (Fig. 9)
[18, 87] and treatment with estradiol benzoate increased
NOS expression in these cells [87], indicating the role
of NO as a transducer of estrogenic information for
LHRH neurons. The separate cellular expression of
NOS/ER versus LHRH in preoptic neurons does not
seem to be crucial, since NO produced at a single point
source should be able to act within an area of 0.3 mm in
diameter [37]. It has been well documented that ER-ex-
pressing preoptic neurons may contain many active sub-
stances known to affect LHRH release such as neurotensin
[50], galanin [7], natriuretic peptide [135], GABA [34],
CGRP [49]. It remains to be elucidated whether the preop-
tic ER/NO-ergic neurons may produce parallel to NO
additional modulators controling the secretory function of
LHRH neurons or the activity of the NO-ergic system
itself. Such versatility in the histochemical signaling of
ER/NO-ergic neurons would strengthen the position of NO

Figs. 2, 3. Double labeling of LHRH/NADPH-d of the porcine medial preoptic nucleus. The analysis revealed two separate populations of
neighboring nerve cells expressing NADPH-d histochemical activity (blue) (small arrows) or LHRH-immunoreactivity (brown) (large arrow).
Bar = 30 μm. Fig. 4. Double labeling of LHRH/NADPH-d in the porcine medial preoptic nucleus. Arrow indicates point of possible contact
between differentially stained LHRH-immunoreactive cell (brown) and NADPH-d-positive fiber (blue). Bar = 30 μm. Fig. 5. Double labeling
of LHRH/NADPH-d in the porcine lateral preoptic nucleus. Arrow indicates point of the possible contact between the NADPH-d-positive
fiber (blue) and LHRH-IR neuron (brown). Bar = 30 μm.
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as a mediator of the steroidogenic control of LHRH
release.

The role of NO in modulating LHRH-induced gona-
dotropin secretion depends also on oxytocin. In human,
[26] the administration of oxytocin did not affect the
gonadotropin responses to LHRH. In contrast, NOS
inhibitor N,G-nitro-L-arginine methyl ester (L-NAME)
substantionally reduced both luteinizing hormone (LH)
and follicle stimulating hormone (FSH) release induced
by LHRH. When L-NAME was applied in the presence of
oxytocin, the LH and FSH responses to LHRH were
similar to those observed after the administration of LHRH
alone. These results indicate oxytocin capacity to abolish
L-NAME inhibitory action on LHRH-induced LH and
FSH release. The exact mechanism of this NO restoring
action of oxytocin in the control of gonadotropin secretion
induced by LHRH has to be confronted with the fact that
NO itself affects oxytocin release (see last chapter).

Glutamate is another possible candidate for NO-ergic
control of LHRH secretion. Stimulation of the NMDA
receptor increased LHRH release [10] whose action was

shown to be mediated by NO [66], probably due to
expression of the NMDA receptor in NOS-containing
hypothalamic cells [6]. Suppression of the glutamate-
stimulated LHRH release by phentolamine, an α1-adre-
noreceptor blocker, also suggests that glutamatergic
control of the LHRH release is mediated by adrenergic
neurons [55]. The available evidence suggests that NO
may exert a bidirectional action, in part mediating the
adrenergic stimulatory effects on LHRH release through
the PGE2 pathway [102]. On the other hand, NO released
as a consequence of adrenergic stimulation may sup-
press noradrenaline release, constituting an ultra-short
feedback loop restraining the LHRH release [115].

Role of nitric oxide in sexual behavior

The ventromedial nucleus regarded as a hypothalamic
center controlling sexual behavior [91,  92] contains both
nitric oxide synthase [15, 18, 133, 140] and estrogen
receptors [90]. In the ventrolateral aspect of the nucleus,
the estrogen receptors have been found to be expressed
in numerous NADPH-d-positive neurons (Fig. 10) [18,
97] indicating a potential role of NO in sexual behavior.
The biological significance of such colocalization is
demonstrated by an increased expression of NADPH-d
[88] as well as both nNOS mRNA and protein following
estrogen stimulation of ovariectomized rats [22] and by
increase in the number of NADPH-d cells following
estradiol treatment in the ovariectomized ewes [30].
This suggests that estrogen may directly regulate the
neuronal expression of NOS in the ventromedial nu-
cleus. Consequently, an increase in nNOS may result in
elevated NO production and is potentially relevant to the
facilitation of lordosis behavior [97].

To confirm the role of NO in female sexual behavior,
Mani et al. [67] applied an intracerebroventricular (ICV)
injection of NOS inhibitor in ovariectomized, estrogen
primed rats. NG-monomethyl-L-arginine prevented pro-
gesterone-facilitated lordosis, whereas the ICV micro-
injection of sodium nitroprusside, a spontaneous NO
donor, facilitated lordosis in estrogen-primed rats in the
absence of progesterone. Concurrently, the nitric oxide-
cGMP-protein kinase G pathway has been involved in
the facilitation of progesterone-induced lordosis and
proceptivity behavior in estrogen-primed rats [39]. The
NO-ergic neurons could affect sexual behavior through
their action on LHRH neurons [79, 100] since LHRH
facilitates the display of lordosis behavior in the es-
trogen-primed female rat [93]. In line with this conten-
tion,  NO mediates the  st imulatory action of
norepinephrine [100], glutamate [66], oxytocin [99] and
leptin [141] on LHRH secretion. Taken together, the
NO-cGMP physiological pathway, with NO as a key
intercellular messenger, is especially suited as a conver-
gent mechanism for control of reproductive functions by
various neurotransmitters and hormones [70].

Fig. 6. Schematic diagram showing the role of NO in the control of
LHRH release. NO stimulates the release of luteinizing hormone-re-
leasing hormone (LHRH) in response to norepinephrine (NE), es-
trogen (E) and glutamic acid (GLU). NO released from vicinal
NO-ergic neuron diffuses to NO-responsive LHRH neurosecretory
neuron causing sGC-catalyzed conversion of GTP into cGMP. The
increased cGMP accompanied by elevated Ca2+ activates phospholi-
pase A2 (PLA2) to provide arachidonic acid (AA) from hydrolysis of
membrane phospholipids. COX then causes the conversion of ara-
chidonate into PGE2. PGE2 activates adenylate cyclase leading to an
increase in cAMP and subsequent activation of protein kinase A,
which induces exocytosis of LHRH into the primary capillary plexus
(PCP) of the median eminence. NOn, NO-ergic neuron; LHRHn,
LHRH-ergic neuron; Ralfa, α1 adrenergic receptor; ER, estrogen
receptor; NMDA-R, N-methyl-D-aspartate receptor; sGC, soluble
guanylyl cyclase; ML, membrane phospholipids; COX, cyclooxyge-
nase; sAC, soluble adenylate cyclase.
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Nitric oxide and aging of LHRH and oxytocin
systems

While the involvement of NO in hypothalamic regula-
tion of LHRH and oxytocin release is becoming ac-
cepted, the putative role of NO as a potential
proapoptotic factor for LHRH and oxytocin neurons has
not been extensively studied until recently. Vernet et al.
[131] suggested that increased expression of iNOS may
lead to neurotoxicity, which can be involved in impaired
pulsatile LHRH secretion, as well as acts as a possible
inducer of age-associated neuronal loss. Recent findings
of aging-related iNOS induction in LHRH and oxyto-
cinergic neurons [33] support the view that iNOS ex-
pression is associated with the previously observed
decrease in the number of LHRH [45, 46] and oxytocin
[5] cells. This suggests an additional, possibly destruc-
tive action of NO on the hypothalamic neuroendocrine
pathways.

The endogenous factors that induce iNOS expression
in aging LHRH and oxytocinergic hypothalamic neu-
rons are unknown. Nevertheless, indirect observations
seem to indicate cytokines as potential regulators of the
age-related iNOS induction. Earlier studies revealed that
TNF-γ in the cerebrospinal fluid and peripheral circula-
tion and IL-1β and interferon-γ were increased in mono-
cytes by aging [19, 80, 122]. Cytokines were found to
be synthesized in the hypothalamus [125]. Accordingly,
observation that the exogenous administration of inter-
leukin 1-α can block the nitrergic control of LHRH
release both in vivo and in vitro [101] through iNOS
induction, additionally implicates cytokines in aging-re-
lated control of iNOS expression in the hypothalamic
neurons.

Mechanism of action of nitric oxide on the
hypothalamic oxytocin release

A number of studies have reported expression of NOS
in magnocellular neurons of the hypothalamic neurose-
cretory system including supraoptic and paraventricular
nuclei as well as neurohypophysis [12, 18, 29, 105, 112,
133]. It was also noted that, in addition to NOS, the
hypothalamic magnocellular neurons coexpress oxy-
tocin [73] implying a role for NO in parturition and
lactation.

Indeed, there is a growing evidence that NO func-
tions as a local modulator of magnocellular neuronal
activity, since late pregnancy and parturition causes
down-regulation of the endogenous NOS in magnocel-
lular neurons and hypophysis [89].

Additional evidence substantiating the modulatory
role which NO plays in hypothalamic magnocellular
neurons comes from functional studies. Application of
the NOS inhibitor L-NAME, revealed that NO exerted
an inhibitory role in the control of oxytocin secretion in

the rat [54] and human [25]. This effect correlates with
data from electrophysiological studies where sodium
nitroprusside (NO donor) and L-arginine (NO precur-
sor) inhibited supraoptic neurons in vivo [126], whereas
L-NAME and hemoglobin (NO scavenger) stimulated
them in vitro [65]. An inhibitory action of NO upon
magnocellular neurons seems to employ an indirect
mechanism by which NO may modulate the release of
other neurotransmitters in the brain [96]. The import-
ance of NO-dependent neurotransmitter release in the
brain has been especially well established with regard to
GABA [21, 47, 86, 114]. A detailed morphological study
revealed that GABA-ergic synapses constitute nearly
40% of the total synaptic connections of the supraoptic
neurons [129], thus providing morphological evidence
for a key position of GABA as a modulator of oxyto-
cinergic neurons [78, 98]. Stern and Ludwig [127] re-
cently showed that sodium nitroprusside and L-arginine
increased the frequency and amplitude of GABAA mini-
ature inhibitory postsynaptic currents (mIPSCs) in oxy-
tocin cells. This supports the notion that NO-ergic
inhibition of neuronal excitability in the oxytocin neu-
rons relies on the pre- and postsynaptic potentiation of
GABA-ergic synaptic activity in the supraoptic neurons.
Alternatively, the stimulatory effect of NO on GABA-
ergic, supraoptic and paraventricular [142] neurons,
may reflect one of its regulatory actions, since in the
hippocampus GABA release is biphasically dependent
on NO concentration. Low concentration range around
basal NO levels inhibits GABA outflow, while on the
contrary, high concentrations of NO enhance GABA
release [38].

Glutamate may be another neurotransmitter that is
possibly interrelated with NO-ergic regulation of the
supraoptic oxytocinergic neurons. Synaptic terminals
expressing glutamate immunoreactivity account for ap-
proximately one-third of all synaptic terminals contact-
ing supraoptic magnocellular neurons [72]. It is known
that NO synthesis in neurons is stimulated by glutamate
[59, 63]. NO can also regulate the release of glutamate
depending on NO concentration in local tissues. Low
NO levels decrease the release of glutamate, whereas
higher concentration enhance neuronal glutamate [113,
117]. Binding of glutamate to the ionotropic NMDA
glutamatergic receptor initiates opening of the Ca2+

channel. Augmentation of intracellular Ca2+ concentra-
tion leads to its binding to calmodulin, a cofactor for
nitric oxide synthase and phospholipase A2. A sub-
sequent synthesis of NO and arachidonic acid may acti-
vate an intracellular messenger [94]. Once synthesized,
NO can affect neuronal pathways in two ways [104].

In the first system, NO stimulates cGMP via guany-
late cyclase in target cells [3] such as neurons and glia.
The second pathway acts as a negative feedback regula-
tor of NMDA receptor activity constituting a self-pro-
tection mechanism for NO-ergic neurons against
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overexcitation by glutamatergic stimulation. This modu-
latory function is based on the presence of a redox,
vicinal sulfhydryl group-containing site located on
NMDA receptors. The thiol groups in reduced state
allow Ca2+ influx, whereas they inhibit intracellular Ca2+

current while being oxidized to disulfides [1, 121]. Via
NO release, the NO-ergic magnocellular neurons in
addition to affecting hypothalamic glutamatergic neu-
rons may also directly control the redox modulatory site
of its NMDA receptors and thereby down-regulate Ca2+

influx and their own NOS catalytic activity. Cui et al.
[28] further supports this notion, showing that in the supra-
optic nucleus the NO reduces NMDA-induced depolariz-
ation in a cGMP-independent manner. An alternative
regulatory mechanism emerges, in which neuronal excita-
bility could be modulated by NO-dependent synaptic ac-
tivity. This regulation of neuronal excitation could proceed
via an ultra-short feedback mechanism based on auto
control of the intracellular Ca2+ influx in supraoptic
NO-ergic/oxytocinergic neurons. A feedback NO in-
hibition of NOS has already been reported elsewhere [4].

Hypothalamic supraoptic magnocellular neurons
coexpress both nitric oxide synthase and oxytocin [73].
It has been demonstrated that estrogens up-regulate oxy-
tocin production in the rat [23, 27, 53]. By the end of
pregnancy, oxytocin accumulation increases by 50% of
its total pituitary content and it is released during par-
turition to promote uterine contraction [107]. On the
other hand, estradiol has been shown to increase neuro-
nal expression of NOS in paraventricular [108], preoptic
and ventromedial nuclei [87, 88] following ovariectomy
and estradiol replacement. The number of cells stained
for NADPH-d in both supraoptic and paraventricular
nuclei increased in late pregnancy and lactation, during
steroid treatment that mimicked late pregnancy and after
chronic central oxytocin infusion in estrogen primed rats
[95]. Although one has to keep in mind that Okere and
Higuchi [89] reported contrasting results, the prevailing
evidence indicates that estrogenic regulation of hypotha-
lamic magnocellular neurons results in up-regulation of
oxytocin production and release [23, 27, 53]. This effect
occurs in oxytocin-producing neurons that also express

Fig. 7. The location of double labeled brown DBH-containing/blue NADPH-d-positive neurons (arrows) in the medial preoptic nucleus of
the pig. Bar = 30 μm. Fig. 8. The lateral preoptic nucleus of the pig contains double labeled brown DBH-containing and blue NADPH-d-
positive neurons (arrow) accompanied by NADPH-d-positive cells (arrowheads). Bar = 30 μm. Fig. 9. The NADPH-d-positive neurons
(blue) of the porcine medial preoptic nucleus  expressing nuclear estrogen receptors (ER) (brown) (large arrows), devoid of the receptor
(small arrows) and ER-positive but NADPH-d-negative neuron (arrowhead). Bar = 30 μm. Fig. 10. Double labeled brown ER-expressing/blue
NADPH-d-positive neurons (large arrows) adjacent to the NADPH-d-positive ER-negative cells (small arrows) in the ventro-medial nucleus
of the pig. Bar = 30 μm. All micrographs are reproduced from [18], with permission of the publisher.
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NOS, inducible by ovarian steroids [73]. In this context,
expression of ER in preoptic and ventromedial NO-ergic
neurons of the rat and pig, implicating NO as a mediator
of estrogenic regulation of gonadotropin release, sug-
gests NO as a candidate for estrogen-dependent regula-
tor of the oxytocin release. Although this hypothesis
requires additional verification, Alves et al. [2] have
already revealed oxytocin neurons expressing ERβ in
the supraoptic nucleus. This further suggests that estro-
gens can directly modulate a specific oxytocin system
through an ERβ-mediated mechanism.
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