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Contribution of stem cells to skeletal muscle regeneration
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Abstract: Stem cells for skeletal muscle originate from dermomyotome of the embryo. The early marker of these cells is
expression of both transcription factors Pax3 and Pax7 (Pax3+/Pax7+ cells). The skeletal muscles in the adult organism have
a remarkable ability to regenerate. Skeletal muscle damage induces degenerative phase, followed by activation of inflammatory
and satellite cells. The satellite cells are quiescent myogenic precursor cells located between the basal membrane and the
sarcolemma of myofiber and they are characterized by Pax7 expression. Activation of the satellite cells is regulated by muscle
growth and chemokines. Apart from the satellite cells, a population of adult stem cells (muscle side population - mSP) exists
in the skeletal muscles. Moreover, the cells trafficking from different tissues may be involved in the regeneration of damaged muscle.
Trafficking of cells in the process of damaged muscle regeneration may be traced in the SCID mice. (www.cm-uj.krakow.pl/FHC)
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Origin of stem cells for skeletal muscle

Problems concerning the origin of skeletal muscle pro-
genitor cells were recently presented by Gros et al. [25]
and Relaix et al. [47]. During early embryonic develop-
ment, mesodermal cells of somite undergo specializa-
tion to sclerotome and dermomyotome for skeletal
muscle and skin, respectively. The authors used cell
labeling with green fluorescent protein (GFP) and graft-
ing experiments to follow trafficking of muscle progeni-
tor cells during embryogenesis. The skeletal muscle
progenitor cells move from central dermomyotome re-
gion and undergo differentiation to mesenchymal cells.
At this early embryonic stage skeletal muscle-specific
markers cannot be detected. Later, most of the skeletal
muscle progenitors express molecular markers Pax7 and
Pax3 (Pax3+/Pax7+ cells). The Pax genes encode evol-
utionarily conserved transcription factors that play criti-
cal roles in the development [46]. These molecular
markers characterize satellite cells (Pax7)  and
myoblasts (Pax3), respectively. The Pax3+/Pax7+ cells

are maintained as a proliferating population in em-
bryonic and fetal muscles and constitute muscle pro-
genitor cells in the embryo and fetus. At the end of fetal
period, Pax7-positive cells appear at satellite cell posi-
tion in the muscles, while myoblasts represent a distinct
cell population [18, 51, 57]. 

As mentioned, Pax7+ cells are the satellite cells. The
proliferation and differentiation of these precursor cells
is observed during growth and repair of the muscles.
Moreover, the population of adult stem cells (muscle
side population - mSP) is committed to myogenic dif-
ferentiation in vivo and in vitro when cocultured with
myoblasts [11]. Recently it has also been demonstrated
that different circulating progenitors can participate in
muscle regeneration (bone marrow-derived cells: c-kit+
myelomonocytic precursors, CD45-/Sca- cells,
CD45+/Sca+ cells (reviewed in [40]). 

The damage and repair of skeletal muscle

The adult skeletal muscle turnover is slow, as estimated
by BrDU, no more than 1-2% of myonuclei are replaced
every week in the rat [49]. However, this stable state of
the skeletal muscle rapidly changes after mechanical
damage. The muscle regeneration is characterized by
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two phases: degeneration (necrosis) and reconstruction.
Whether the muscle injury is induced by direct trauma,
extensive physical activity or innate genetic defects, the
degeneration process is characterized by the damage of
the myofiber sarcolemma resulting in increased
myofiber permeability. This may be observed directly
by uptake of low-molecular weight dyes such as Evans
Blue by myofibers [27]. It has been hypothesized that
the change in sarcolemma permeability and calcium
influx into the damaged myofibers activates calcium-de-
pendent, non-lysosomal muscle proteases like calpain
[3]. The activated calpains may further damage the
sarcolemmal and cytoplasmic proteins of the myofibers,
and their fragments may then be released from the cell
[55, 56]. It is well known that the degenerative phase in
the skeletal muscle may be traced by observation of
increased serum levels of muscle proteins such as cre-
atine kinase and myosin heavy chain, the proteins
usually restricted to the myofiber cytoplasm [54]. 

Another process in the degenerative phase of the
skeletal muscle damage is the accompanying infiltration
of this region by leukocytes [38]. The earliest infiltrating
inflammatory cells are polymorphonuclear leukocytes
followed by monocytes and macrophages. Significant
numbers of neutrophils were observed already during
the first hours after muscle damage and it was suggested
that they play a critical role in phagocytosis and elimi-
nation of bacteria and damaged cells [60]. They may also
release hydrolytic enzymes stored in their granules and
can promote the recruitment and activation of further
monocytes/macrophages. The myeloid cell populations
recruited may influence the muscle cell death, as ob-
served in vitro. Neutrophils can also lyse muscle cells
via superoxide-dependent mechanisms [43]. 

The satellite cells in muscle repair 

The cells active in muscle regeneration process are
satellite cells [9, 14, 28, 42]. They are self-sufficient as
a source for regeneration [11, 13]. Moreover, the satel-
lite cells self-renew, expanding in number and repopu-
lating the muscle with new satellite cells [62]. Neonatal
skeletal muscle contains abundant satellite cells as com-
pared with older muscles. Young animal muscle con-
tains more than 30% of satellite cells while about 5% of
satellite cells may be found in older animal muscle [23].
Besides the changes of satellite cell number, it has been
suggested that increasing age of animal is associated
with a reduced proliferative capacity of satellite cells. 

The satellite cells become activated upon mechanical
damage of the muscle or in response to exercise [30].
They enter the cell cycle and proliferate, contributing to
myofiber rebuilding and to new satellite cell formation
as mentioned above. Parallel revascularization of the
damaged region is observed. The satellite cell markers
allow their localization in the muscle and in vitro after

isolation [15, 28] (Table 1). The cells express myocyte
nuclear factor MNF, as well as c-met tyrosine kinase
receptor (HGF receptor) [22]. The MyoD and Myf5
markers - transcriptional activators of the myogenic
regulatory factor (MRF) family - were found in activated
and proliferating cells, while at the same time expression
of angiogenesis genes may be observed in the endothe-
lial cells (Table 2).

The growth factors such as basic fibroblast growth
factor (bFGF), platelet-derived growth factor (PDGF),
and hepatocyte growth factor (HGF) have been shown
to increase myogenic cell chemotaxis, proliferation and
differentiation in vitro [1, 39]. Some of them may be
produced by macrophages or by non-muscle cells [4].
Their role in muscle repair has been demonstrated in vivo
by immune neutralization of bFGF, insulin-like growth
factor-1 (IGF-1) or transforming growth factor beta1
(TGFbeta1) [37]. These factors on day 4 after injury are
acting both on inflammatory cells in the muscle damage
area and on endothelial cells that are involved in revas-

Table 1. Expression of molecular markers in quiescent and activated
satellite cells in adult skeletal muscle (after [28], modified)

Molecular marker Expression in Reference

MNF Q, Ac [22]

Pax7 Q, Ac [51]

c-Met Q, Ac [6, 15, 41, 58]

N-CAM Q, Ac [16]

Syndecan-4 Q, Ac [15]

Myf5 Ac [14]

MyoD Ac [14]

Q - quiescent, Ac - activated satellite cells; MNF - myocyte nuclear
factor; N-CAM - neural cell adhesion molecule; c-Met - hepatocyte
growth factor receptor; Pax7, Myf5, MyoD - transcription factors

Table 2. Gene expression sequence in satellite cells during activation
and during angiogenesis in muscle regeneration

State of satellite cells
(SC) or endothelial

cells (EC)

Transcription
factor

expression 
in SC [14]

Gene expression in EC
[50]

Quiescence 
(M-kadherin+;
CD34+ cells)

Myf5+; 
MyoD low

CD34, VE-kadherin, 
von Willebrand factor

Activation
Myf5+;
MyoD+;
Myf5MyoD+

Hypoxia-inducible 
factor-1 (HIF-1)

Proliferation
Myf5+;
MyoD+;
Myf5MyoD+

Hypoxia-responsive
genes e.g.: VEGF;
iNOS

Differentiation; 
fusion to myotubes

Myf5MyoD+;
MyoD+

Final result - 
angiogenesis genes
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cularization. Anti-bFGF antibody significantly reduced
the number of capillaries in the zone of damaged muscle.
However, the reverse effect was observed after the in-
jection of anti-IGF1 or anti-TGFbeta1, that promoted the
regenerating muscle revascularization. The IGF I and II
are known to regulate satellite cell proliferation and
differentiation [10]. Another important growth factor
regulating satellite cell activation and differentiation in
regenerating skeletal muscle is HGF [41]. HGF receptor,
c-Met is localized to satellite cells and adjacent myofi-
bres.

Immunodeficient mice as a model 
to study involvement of stem cells 
in muscle regeneration 

The trafficking of stem cells during regeneration of the
damaged tissue may be traced in vivo, e.g. after implan-
tation of exogenous human stem cells in the SCID mouse
[19, 24]. The scid mutation was first described in 1983
in BALB/c C .B-17 strain mice [7, 17]. The SCID mice
(Severe Combined ImmunoDeficiency) have normal in-
ternal microenvironment for hemopoiesis, and develop
mature monocytes, polymorphonuclear leukocytes,
megakaryocytes, erythrocytes and NK cells; they also
show elevated level of hemolytic complement. How-
ever, the mice lack both humoral and cell-mediated
immunity due to the absence of mature and functional B
and T lymphocytes [17]. Since the specific immunity of
SCID mice is damaged, the mice may be used as a
convenient small animal model for implantation of
human normal or pathological cells/organs. However, in
xenotransplant experiments, the mouse NK cells may
attack the implanted cells. Convenient method for pro-
longation of the transplant survival in SCID mouse is
treatment of the host animal with chemotherapeutic
agents (cyclophosphamide, busulfan) or by irradiation
before xenotransplant transfer [2]. The treatment with
cytostatics or irradiation, however, damages not only
NK-cells, but also cells of several other tissues and
organs that may influence the result of experiment. To
avoid partly the NK cell activity in the SCID mice a
treatment with specific anti-mouse NK-cells antibody
(anti-NK1.1) was proposed [33, 34]. Another possibility
is the use of the NOD-SCID mice. The NOD mouse is
an animal of spontaneous autoimmune T-cell mediated
insulin-dependent diabetes [31]. The mice are deficient
in NK cells, display defects of myeloid development and
function, some animals lack C5 complement protein and
cannot generate the hemolytic complement activation.
The new mouse strain, NOD/LtSz-scid mice was gener-
ated by crossing the scid mutation from C.B.-17-scid
mice onto the NOD background. The NOD/LtSz-scid
mice lack an adaptive immune system, and do not de-
velop diabetes [52]. Their macrophages have reduced

ability to secrete IL-1 in response to LPS, and the animal
lack hemolytic complement. The mice have the mean
life span of only about 8 months due to high incidence
of thymic lymphomas. The above described NOD/scid
mice in vivo system may be used to test the possible
participation of human stem cells in repair of damaged
mouse tissues.

Stem cell trafficking in mice as possible source
of cells in muscle regeneration

The stem cells derived from bone marrow have been
considered as candidates for transplantation therapy of
muscle degenerative disorders [20]. Furthermore, the
stem cells isolated from adult bone marrow, the neuronal
compartment and mesenchymal tissues are able to dif-
ferentiate into the myogenic lineage in vivo and in vitro
[5, 8, 12, 35]. In response to chemokine signals, stem
cells become crowded at some sites of the organism, e.g.
in the bone marrow, and also in skeletal muscles [44].
The migration of muscle progenitor cells is a complex
process and requires signals that allow the cells to re-
main motile and find their target [40]. In the striated
muscle, there are at least two systems regulating the cell
migration, present during embryonic development and
muscle regeneration in the adult organism: HGF ligand
and c-Met receptor [6, 29, 41, 53, 58] as well as SDF-1
ligand and CXCR4 receptor [29, 44, 45]. The expression
of both ligands: HGF and SDF-1 is predominantly re-
stricted to fibroblasts and stromal cells [53]. 

The myogenic precursor cells derived from bone
marrow may take part in muscle regeneration [20]. The
unfractionated mouse bone marrow cells genetically
labeled with gene encoding nuclear beta-galactosidase
(beta-Gal), were implanted intramuscularly into the
damaged muscle of the scid/bg mice. The authors ob-
served regenerating myofibers containing beta-Gal nu-
clei 2 and 3 weeks after the injury. In another
experiment, normal, wild-type mouse bone marrow was
transplanted into the mdx mouse [26]. The mdx mouse
is a model of Duchenne�s muscular dystrophy in hu-
mans, and their muscles are devoid of dystrophin ex-
pression. In the mdx mice muscles with the implanted
wild-type bone marrow stem cells, dystrophin express-
ion was observed suggesting that bone marrow stem
cells participate in muscle reparation. 

The regeneration of tissues after implantation of non-
embryonic stem cells creates the possibility of therapy.
It has been shown that human umbilical cord blood
(HUCB) contains a significant number of stem cells [36,
48]. The HUCB cells are competent in the process of
myogenic differentiation in vitro [21].These cells in-
jected retro-ocularly were capable of myogenic differen-
tiation in the host muscle and participated in the
myofiber reconstruction in sjl dystrophic mice [32]. 
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We demonstrated the involvement of HUCB cells
implanted directly into the damaged muscle in the SCID
mouse muscle regeneration (manuscript submitted). The
cells were trafficking into the regenerated SCID mouse
skeletal muscle and participated in the regeneration. The
presence of myofibers showing the expression of human
β2-microglobulin was observed, suggesting fusion of
human and mouse cells. Moreover, the implanted
HUCB cells form human muscle precursor cells residing
in the mouse repaired muscle and they are able to trans-
locate and home to the bone marrow, spleen and contra-
lateral muscle.

In the mouse, stromal cells of the bone marrow
produce SDF-1 ligand [61] enabling engraftment of
human cord blood stem cells in the SCID mouse [59,
61]. The human cord blood stem cells express CXCR4
receptor and when implanted into the mouse they are
directed into regions of SDF-1 secretion. Mouse and
human SDF-1 differ of only in one aminoacid in the
sequence, and functionally they are similar [44]. Human
cells in the mouse may be recognized as human-MHC
expressing cells, thus the cord stem cells may be used as
an indicator of SDF-1 production regions in the host
mouse organism. 

Conclusions

Skeletal muscle progenitor cells express Pax7 and Pax3,
evolutionarily conserved transcription factors. The
myoblasts express Pax3, while satellite cells Pax7. The
muscle damaged mechanically, chemically or by exten-
sive activity regenerates with active participation of
satellite cells or stem cells from different sources. The
regeneration in vivo may be traced in mouse models. The
use of xenotransplants provides an insight into the
general processes involved in regeneration of the muscle
and opens the perspectives of novel therapies.
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