Cannabinoids enhance gastric X/A - like cells activity

Robert Łukasz Zbucki¹, Bogusław Sawicki², Anna Hryniewicz¹, Maria Małgorzata Winnicka¹

¹Department of General and Experimental Pathology, ²Department of Histology and Embryology, Medical University of Białystok, Poland

Abstract: It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1) have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin - a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid - anandamide, R-(+)-methanandamide (2.5 mg/kg) and CP 55,940 (0.25 mg/kg), an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determine plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+)-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.

Key words: Cannabinoids - Ghrelin - X/A-like cells - Rats

Introduction

Marijuana is a well-known recreational drug that has for centuries been prescribed therapeutically in herbal medicine for the treatment of many disorders, including loss of appetite [1]. The identification of the major active constituent of marijuana, Δ⁹-THC [2], followed by the biochemical and pharmacological characterization of the cannabinoid receptors [3,4], provided a solid foundation and opened a new perspectives for the study of this neurochemical system [5]. Moreover, the isolation of an endogenous ligand of cannabinoid receptors - anandamide, description of its synthesis and metabolic pathways indicated for the existence of an endocannabinergic system [4,6]. Two cannabinoid receptor types CB1 and CB2 have been cloned [3]. The latter appears to be expressed mainly by immune cells, whereas CB1 receptor is expressed by many central and peripheral nerve cells, including vagal afferent neurons [4,7].

There is support for the notion that plant-derived cannabinoids, as well as endogenous and exogenous cannabinoiods increase food intake [8,9]. Both central and peripheral sites of action may be involved [10]. Recently it has been indicated that the effect of endogenous cannabinoids on appetite is mediated by vagal afferent neurons, suggesting a role in modulating gut - brain signaling [11,12]. The cannabinoid system interacts with several peptides involved in the complex regulation of energy homeostasis such as leptin [13], orexin [14] and ghrelin [15]. Some authors support the hypothesis that an increase of ghrelin release in the peripheral serum is a hunger signal devoted to prevent energy deficit and to activate meal initiation [16,17].

Ghrelin is a hormone recognized as a main endogenous ligand for growth hormone secretagogue receptors (GHS-R), that plays an important role in growth
hormone release and control of feeding behavior [16,17,18]. GHS-R1a is highly expressed in the hypothalamus and pituitary gland, consistent with the actions of ghrelin on the anterior pituitary, as well as with its influence on the control of appetite, food intake and energy balance [16,18]. Moreover, recently the expression of GHS-R1a was described in rat and human vagal afferent neurons of nodose ganglia [19].

The stomach is the main source of circulating ghrelin levels. Ghrelin expression has been localized in X/A-like cells that account for 20-25% of all endocrine cells in the mucosa [18]. Ghrelin has also been detected in many other organs such as the pancreas, bowel, kidney, placenta, gonads, thyroid, adrenal, lung, pituitary and hypothalamus [20,21,22] and also in many neoplastic tissues [23]. The potential physiological role of ghrelin as an autocrine and paracrine factor in these tissues is still under investigation. The orexigenic action of ghrelin is independent of its GH-releasing activity and is mediated by a specific central network of neurons that is also modulated by leptin [24]. According to this hypothesis ghrelin and leptin might be complementary players of one regulatory system that has developed to inform the central nervous system about the status of energy balance [24,25]. Nevertheless, other data do not support a role for the regulation of circulating ghrelin by leptin levels independently of changes in adiposity, and suggest that the leptin and ghrelin systems for energy homeostasis function independently in healthy human subjects [26].

From the gastrointestinal tract, ghrelin could regulate food intake and energy homeostasis reaching GHS-R in the hypothalamus through the general circulation [16,18]. Within the hypothalamus, ghrelin binds mostly on presynaptic terminals of NPY neurones; it stimulates the activity of arcuate NPY neurones and mimicks the effect of NPY in the paraventricular nucleus of the hypothalamus [27]. Thus ghrelin could represent a novel regulatory circuit controlling appetite and energy homeostasis by stimulating the release of orexigenic peptides and neurotransmitters [25].

In an attempt to evaluate whether orexigenic activity of cannabinoids is connected with ghrelin release, the influence of a single ip injection of a stable analogue of anandamide - R-(+)-methanandamide (2.5 mg/kg) and CP 55,940 (0.25 mg/kg) and a control group injected with vehicle under the same experimental conditions.

Four hours after a single injection of both cannabinoids or a vehicle, the animals were anaesthetized with pentobarbital sodium (50 mg/kg b.wt), their abdomen was opened by midline incision and the blood was taken from the abdominal aorta of each rat for the measurement of ghrelin serum concentration by radioimmunoassay (RIA). Subsequently, all rats underwent resection of distal part of stomach. The tissues were fixed in Bouin’s fluid and were prepared to immunohistochemical investigation.

Materials and methods

Animals. The study was performed on thirty, male Wistar rats weighing 160 - 170 g. All animals had free access to standard granulated diet and drinking water. The animals were housed in plastic cages at 22±1°C and constant humidity, with a 12/12 light/dark cycle, beginning at 7 am. The rats were randomly divided into 3 groups with 10 animals in each group: rats injected with R-(+)-methanandamide (2.5 mg/kg) or CP 55,940 (0.25 mg/kg) and a control group injected with vehicle under the same experimental conditions.

Determination of ghrelin plasma concentration. The blood, taken from abdominal aorta of each rat, was collected into polypropylene tubes without anticoagulant and was incubated in room temperature until the clot was formed and then centrifuged (2500 × g for 15 min). The supernatant (serum) was removed and stored at -20°C until a consecutive analysis. Ghrelin level was determined by the double-antibody radioimmunoassay technique. The protocol for radioimmunoassay kit is accessible on the web site: www.phoenixpeptide.com.

Image analysis. To quantify immunoreactivity of the examined marker, computerized image analysis was performed. Images were captured via video link to an Olympus BX50 microscope at 20 objective magnification, so the tissue fully occupied each field, and was scanned by the computer. Pictures were adjusted for optimal contrast, fixed at the same brightness levels, and saved in a buffer system. Staining was analyzed using Olympus Cell D image analysis computer system as described in details by Postek et al. [29]. The average optical density was analyzed for cells expressing ghrelin in both, experimental and control rats. The average optical density is this method measured values range from 0 to 255 where 0 means black and 255 white color.

Ethical issues. All procedures were performed in compliance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) and were approved by the Local Ethics Committee in Bialystok.

Statistics. All values were given as mean ± SD. The Mann-Whitney test was used for testing the differences between both groups in the intensity of immunocytochemical reactions. The Student-t test was used for the evaluation of the differences between groups in ghrelin plasma concentrations. The value p<0.05 was considered to be significant.
Results

Radioimmunoassay

Four hours after a single ip injection of R-(+)-methanandamide (2.5 mg/kg) and CP 55,940 (0.25 mg/kg) significant increase of ghrelin plasma concentration (mean values 72.04±11.69 pg/100 µL and 83.7±23.07 pg/100 µL, respectively) as compared to the mean value in the control rats (46.0±15.04 pg/100 µL) was observed (Fig. 1).

Results of histological study

Ghrelin immunoreactive (Ghr-IR) cells were distributed predominantly as single cells, locally in varying number in the deep zone of the gastric mucosa. Ghr-IR cells were most abundant in lower parts of gastric proper glands, while in the neck zone of the glands they were observed sporadically, both in the control (Fig. 3) and in the experimental groups of rats (Fig. 4 and 5). These cells were usually round or oval, sometimes spindle-shaped, seldom irregular with short processes. Their nuclei were usually large, round structures that occupy the central portions of cells. While in the X/A like cells of control rats GH-immunoreactivity appeared as a very strong reaction (Fig. 3), after a single injection of R-(+)-methanandamide (Fig. 4) and CP 55.940 (Fig. 5), GH-immunoreactivity in gastric mucosa was much weaker. The average optical density of immunocytochemical reaction for ghrelin, evaluated by Olympus Soft program, was significantly increased in cannabinoids injected groups of rats in comparison to the control gastric mucosa (Fig. 2).

Discussion

The main finding of the present study is the stimulatory effect of a single ip injection of R-(+)-methanandamide, a stable analogue of endogenous cannabinoid - anandamide, and CP 55,940, a potent, exogenous agonist of CB1 receptors, on ghrelin secretion from stomach X/A-like cells. The increase of ghrelin plasma concentration after application of R-(+)-methanandamid...
damide and CP 55,940 may partially explain the orexigenic action of cannabinoids.

Our observations are in agreement with an attenuation of ghrelin level after administration of SR141716, a selective CB1 receptors antagonist, reported by Cani et al [15]. They indicated that short-term action of a single injection of SR141716 on appetite is in accordance with the control of ghrelin secretion, a gastrointestinal orexigenic peptide, mainly expressed in the upper part of gastrointestinal tract [15].

The appetite stimulating effect of the Marijuana has long been known [8]. Plant-derived cannabinoid, Δ9-THC has been shown to stimulate feeding in a variety of animal models [8,30]. Δ9-THC-induced feeding was reversed by the pretreatment with CB1 receptors selective antagonist, SR141716, that provide a good evidence that this effect is CB1 receptors mediated [15,31]. The hyperphagic action was observed also following administration of endocannabinoids: anandamide and 2-AG [32,33,34]. The increase of food intake was observed after systemic and central injection of endocannabinoids and their action was also reversed by CB1 receptors antagonist [10,15,33]. The involvement of CB1 receptors in the regulation of feeding behavior was confirmed by the administration of the selective CB1 receptor antagonist, SR141716 [15,31]. It has been reported that an acute peripheral and central administration of SR141716 produced an inhibition of food intake in laboratory animals [15].

There is support for the notion that in cannabinoids action regulating feeding behavior central and peripheral mechanisms should be considered. The hypothalamus and its discrete subregions have long been considered to play a key role in integrating the multiple biochemical and behavioral components of feeding and weight regulation [6]. The involvement of the central mechanism in cannabinoids action was confirmed by the observation that cannabinoid activity in the hypothalamus varied according to nutritional status and the expression of feeding behavior [33,35] and also by the finding that cannabinoids administration into hypothalamic nuclei induce eating [32,33].

However, according to Gomez et al. [12] cannabinoids effect on food intake involves predominantly CB1 receptors localized on capsaicin-sensitive sensory terminals present in gut. This hypothesis is based on a lack of effect of central administration of cannabinoid antagonist, SR141617A on feeding behavior, and on the ability of capsaicin-induced deafferentation to prevent changes in feeding elicited by peripheral administration of cannabinoid drugs [12]. The involve-

Fig. 3. Light micrograph of gastric mucosa of a control rat. Positive immunohistochemical reaction for ghrelin is observed in X/A-like cells (magnification ×400).

Fig. 4. Light micrograph of gastric mucosa of rat 4 hours after a single i.p injection of R+(+)-methanandamide (2.5 mg/kg). The attenuation of immunohistochemical reaction for ghrelin is observed in most of X/A-like cells (magnification ×400).

Fig. 5. Light micrograph of gastric mucosa of rat 4 hours after a single i.p injection of CP 55,940 (0.25 mg/kg). The attenuation of immunohistochemical reaction for ghrelin is observed in majority of X/A-like cells (magnification ×400).
Cannabinoids enhance gastric X/A - like cells activity

The authors suggest that the actions of CCK and ghrelin are mediated by a common population of vagal afferent neurons.

Although, there is an increasing evidence for a peripheral role of the cannabinoid system in food-consumption behavior, the molecular mechanism of different cannabinoid-related molecules action on food intake through their influence on gastrointestinal tract remains to be fully elucidated.

The present study suggests that the modulation of the secretion of gastrointestinal orexigenic peptides such as ghrelin, by the peripheral cannabinoid system, mainly expressed in the upper part of the gastrointestinal tract, may participate in food regulation.

In conclusion, our study indicates that stimulation of appetite exerted by cannabinoids might be connected with an increase of ghrelin secretion from gastric X/A-like cells.

Acknowledgements: This study was supported by grant of Medical University of Bialystok no 324644L.

References

[26] Chan JL, Bullen J, Lee JH, Yiannakouris N, Mantzoros CS. Ghrelin levels are not regulated by recombinant leptin administration and/or three days of fasting in healthy subjects. J Clin Endocrinol Metab. 2004;89:335-343.

Submitted: 15 December, 2007
Accepted after reviews: 15 January, 2008