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Cathepsin D (EC 3.4.23.5) is a lysosomal aspartyl
endopeptidase, localized in all cells and tissues, except
for mature erythrocytes [1-3]. Methods used to deter-
mine the activity, concentration and cellular distribu-
tion of cathepsin D, but not its inhibitors, have previ-
ously been the subject of literature reports [4-12].
However, since the time of their publication a number
of new substrates and analytical techniques have been
implemented. 

Structure, specificity, mechanism of action 
Cathepsin D is synthesized in the rough endoplasmic
reticulum as preprocathepsin D, built up of 412 amino
acid residues [13-15]. As a result of cleavage of the 20-
amino acid signal prepeptide, it is converted into pro-
cathepsin D which undergoes glycosylation and disul-
phide bridges are formed in its molecule. Procathepsin
D is transported from cisterns of the rough endoplas-
mic reticulum to the Golgi apparatus, from which, with
the involvement of mannoso-6-phosphate (M-P-6)
receptors,  it is transferred to primary lysosomes
[16,17]. As the M-6-P receptors are known to occur in

the primary lysosomes but not in the mature ones, they
can be used to distinguish between these two types of
lysosomes [18]. In the acidic environment of the lyso-
somes (pH 4.5-5.5), due to autocatalytic cleavage of
the 44-amino acid propeptide from the N-terminal
molecule, procathepsin D is converted into the active
one-chain form. The actions of cysteine proteinase,
aminopeptidases and carboxypeptidases lead to the
formation of an active two-chain form of cathepsin D
(Fig. 1). These chains are bound by hydrophobic
bonds. The molecular weight of the ultimate mature
form of cathepsin D is 48 (14+34) kDa. The proteolyt-
ic activities of the one-chain and two-chain forms are
very similar  [19,20]. Modification of the polypeptide
chain, different oligosaccharide composition types and
phosphorylation/dephosphorylation in the amino sac-
charide residues contribute to marked molecular het-
erogenicity of cathepsin D and cause differences in
isoelectric points of the respective isoenzymes
between pH  4.5 – 6.5 [21,22].

The use of peptides with the known primary struc-
ture allows identification of amino acid residues that
form peptide bonds cleaved by cathepsin D. For this
purpose, synthetic peptides [23] and chains A and B of
bovine insulin can be used (Fig. 2). Cathepsin D
cleaves the peptide bonds found within the polypep-
tide chain, formed by carboxyl groups of the
hydrophobic amino acid residues: aromatic – trypto-
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phan, tyrosine and phenylalanine, and long-chain
aliphatic amino acids – leucine and isoleucine (Fig. 3)
[23]. 

Two aspartic acid residues, i.e. Asp33 and Asp231
constitute the catalytic site of cathepsin D. Tyr205 and
to a lesser extent other amino acid residues evolve as
the third component of the catalytic triad. The course
of cathepsin D-catalyzed hydrolysis of the peptide
bond is presented in Fig. 4. The hydrolysis starts with
two simultaneous proton transfers (reaction a), one
between the water molecule and the carboxyl ion
Asp33, the other between the carboxyl group of

Asp231 and the oxygen atom of the carboxyl group in
the substrate. These transfers facilitate formation of
indirect tetraedric product. An analogous mechanism
of double transfer leads to decomposition of the indi-
rect product (reaction b), in which a proton of the
hydroxyl group is transferred onto the Asp33, whereas
the Asp231 is transported onto the nitrogen atom, and
thereby the peptide bond -CO-NH- is hydrolyzed in
the substrate. The first product of reaction with the free
carboxyl group (R1-COOH) and the second product of
reaction with the free amino group (R2-NH2) are gen-
erated, and cathepsin D is released (reaction c).
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Fig. 1. Proteolytic modification of pro-
cathepsin D. PS – signaling peptide, EP
– endopeptidase, AP – aminopeptydase,
EPc – cysteinyl   endopeptydase, CP –
carboxypeptidase, 

– hydrophobic bond.

Fig. 2. Specificity of porcine spleen cathepsin D. The specificity of the enzyme is shown in the sites of cleavage in four peptides; oxi-
dized A chain of bovine insulin , oxidized B chain of bovine insulin, peptide D, and acetylated peptide D. The vertical arrows below the
sequences indicate the relative preference of the hydrolyzed site. They are assigned either from the peptide yields or from the car-
boxypeptidase A digestions [24]. ↑ – high yield sites; ↑ – medium yield sites; ↑ – low yield sites.



Cathepsin D cleaves only certain peptide bonds in
proteins, and does it in a defined sequence. Rupture of
even one peptide bond in a native protein molecule
changes its spatial structure. The glomerular structure of
native protein is converted into the fibril-like one, thus
rendering peptide bonds accessible to cathepsin D and
leading to progressing degradation of protein molecule.
In this process, the mass concentration of the protein
remains stable, whereas the molar concentration
increases. Progressing fragmentation, spatial changes in
the protein and effects exerted on the peptide fragments
of aminopeptidases and carboxypeptidases prolong pro-
tein degradation until amino acids are formed. 

The optimum pH and range of cathepsin D
activity
Cathepsin D acts in an acidic pH range (3.0 – 4.5). The
optimum pH depends on the type of protein and syn-
thetic peptide [26,27], as well as whether cathepsin D
occurs free or in bonds. Cathepsin D binding to the
lysosomal membrane or a constant carrier increases
the pH optimum [28]. The optimum also depends on

the structure of protein molecule. Denaturated proteins
undergo cathepsin D hydrolysis at a higher pH as com-
pared to native proteins. Moreover, denaturation fre-
quently increases protein susceptibility to the action of
cathepsin D. 

Complexification of hemoglobin with haptoglobin
reduces the optimum pH from 3.5 to 2.8 for degrada-
tion and simultaneously causes a 50% decrease in
degradation rate 50% (Fig. 5) [29].

Material preparation, conditions and specifici-
ty of assays 
For diagnostics purposes, the activity and concentra-
tion of cathepsin D are determined in blood plasma,
secretions, body fluids, excretions, tissue homogenates
and in isolated lysosomes [31-34].

Plasma is obtained by centrifugation of blood col-
lected to 3.8% sodium citrate (9:1 v/v ratio). Blood
serum is not useful for cathepsin D activity determina-
tion. Plasma activity of cathepsin D is found to be
lower than its serum activity [35]. Higher serum activ-
ity of cathepsin D indicates its release from platelets
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Fig. 3. The Schecter and Berger
nomenclature for binding of peptide
substrate to cathepsin D. The cathep-
sin D is represent as the shaded area.
P1-P1' are side chains of six amino
acids, and S1-S1' are the correspon-
ding subsides on the cathepsin D.

Fig. 4. Hydrolysis of a peptide bond [25].



that occurs after blood collection [35]. The amount of
the released enzyme depends on platelet count and sus-
ceptibility of these cells to the release. Therefore, for
diagnostic purposes, cathepsin should be determined
in blood plasma. Cells from secretions, body fluids and
excretions are removed by centrifugation directly after
collection, prior to measurement of cathepsin D activ-
ity. Preparation of cell and tissue material for this
measurement consists in homogenization and fraction-
ation of homogenate by centrifugation/ultracentrifuga-
tion. In cells and tissues, cathepsin D activity is
assessed in the whole homogenate (total activity),
cytosole (free activity) and in lysosomes (bound activ-
ity). The activity of cathepsin D lysosomal fraction can
only be roughly estimated due to heterogeneity of
lysosomes and their partial sedimentation with other
organelles [36]. The whole homogenate is prepared in
0.15 mol/l KCl using a flow homogenizer, in which
tissue passes only once and at a definite time through
the working area of the cutting blade or knife homog-
enizer [37,38]. Other methods used to prepare the
whole homogenate include pulverization under liquid
nitrogen, using a hand or mechanical [39,40] pulveriz-
er. The homogenate, irrespective of the mode of prepa-
ration employed, is filtered through nylon cloth (pore
size 0.12-0.15 nm) [37,41]. The activity of cathepsin D
is determined in a noncentrifuged filtrate. Centrifuga-
tion causes sedimentation of approximately 20-30% of
cathepsin D activity with fragments of lysosomal and

cell organelle membranes [42,43]. In order to obtain
cytosole and lysosomes, homogenate is prepared in
0.25 mol/l saccharose, using a Potter-Elvehjem homog-
enizer with smooth walls of a glass cylinder and a teflon
piston, between which there is a 0.22 mm gap [44].
Cytosole is separated from lysosomes through
homogenate ultracentrifugation [45,46] or precipitation
of lysosomes at pH 5.0 [47]. The soluble cathepsin D
fraction found in the solution constitutes supra-sediment
after ultracentrifugation at 100000 x g, for one hour.
Noncovalent interactions (ionic, hydrophobic, Me2+

cation bridges) condition cathepsin binding to the mem-
branes. Due to substantial durability of lysosomes, after
a 48h storage in an isotonic environment  at a temp. of
0-2°C, only 5-10% of cathepsin D passes to the envi-
ronment. The material submitted for determination is
stored in 10% DMSO or 25% glycerol at a temp. of -
20°C or in a frozen state, in a freezer (temp. -75°C) or
in a liquid nitrogen (temp. -182°C) [48,49].

Procathepsin D, at an acidic pH, undergoes rapid
autoactivation. Its active form does not require activa-
tors and does not possess endogenous cell inhibitors.
As plasma α2-macroglobulin does not suppress the
action of cathepsin D at an acidic pH, total activity of
this proteinase in plasma is determined in vitro. The in
vivo activation and action of cathepsin D is condi-
tioned by the acidic environment of lysosomes (pH
4.5-5.5). Interlysosomal pH is measured using one of
the methods described  [50-52]. The propeptyde
cleaved in this process is reported to have a certain
regulatory role in procathepsin D activation [53,54]. 

The most common substrate used to determine
cathepsin D activity is a 6% HCL-denaturated globin
with urea [55] or the one obtained after treatment of
hemoglobin with HCL-acidified acetone [56]. Hemo-
globin digestion by cathepsin D takes place at 37°C.
Elevation of the reaction temperature to 40-45°C caus-
es only a slight increase in the reaction products. At
higher temperatures, the enzyme becomes inactivated
(Fig. 6). The incubation time determines the increase
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Fig. 5. pH profiles of proteolyses by cathepsins. The ordinate rep-
resents the hydrolytic activity in arbitrary units. o, free Hb; •, Hb-
Hp complex; Δ, pepstatin inhibitor for both [30]. 

Fig. 6. Activity ( ) and stability ( ) of cathepsin D as a function
of temperature [57].



in degradation products within the absorbance range of
0.2 to 0.6. In low-activity material, the sample volume
should be relatively large whereas the volume of
hemoglobin with a final concentration of 1-2% – rela-
tively small [11]. A cathepsin D sample of 200-500 ng
is sufficient for a single determination [49].  When the
activity is very low, the sample should be densified
using immunoprecipitaion technique [58] or by one of
the standard methods [59]. The pH optimum of cathep-
sin D activity depends on the type of substrate and the
composition and ionic strength of a buffer. The buffers
with the ionic strength ranging between 0.01 do 0.1
mol/l are used: glycin buffer (pH 2.2 – 3.0), formate
buffer (pH 2.6 – 4.8), acetate buffer (pH 3.6 – 5.6), and
universal Britton-Robinson buffer (pH 1.81 – 11.94)
[60]. The Britton-Robinson buffer with various pH val-
ues is supplemented with appropriate amounts of NaCl
to ensure the same ionic strength [60]. The correlation
between  cathepsin and pH, as well as stability of this
proteinase at various pH values are shown in Fig. 7.

Determination of activity and concentration
The quantitative assessment of cathepsin D is based on
its catalytic properties (activity measurement) and
antigenic properties (concentration measurement). In
the activity measurement, the number of active mole-
cules is determined, whereas in the concentration
measurement the total number of all molecules, both
active and inactive, is estimated. Since procathepsin D
does not need activators and does not have endogenous
cell inhibitors, its total activity can be determined in
tissue material. The actions of other endopeptidases
and exopeptidases found in the non-fractionated mate-
rial are eradicated by their inhibitors (Table 1).  Pep-
statin, the inhibitor of cathepsin D and other aspartyl
proteinases, does not inhibit the activities of cystein

cathepsins, seryl cathepsins or metaloproteases, and
inhibitors of these cathepsins do not suppress cathep-
sin D action. A properly-selected set of inhibitors
allows differentiation of cathepsin D from cathepsin E,
pepsin and rennin, which are also aspartyl proteinases
(Table 2).

Cathepsin D cleaves only certain peptide bonds in
proteins and does it in a defined sequence. In this
process, mass concentration remains stable whereas
molar concentration of its fragments increases. The
activity of cathepsin D is most frequently manifested
by the amount of generated degradation products. More
seldom, its activity is shown as the number of microe-
quivalents of cleaved peptide bonds per time unit. 

Native, denaturated and labeled proteins
Protein susceptibility to the action of cathepsin D is
determined by the composition and sequence of amino
acid residues in the polypeptide chain and by its spa-
tial structure. Hence, different susceptibility of various
proteins to the action of this proteinase (Table 3). 

The α- and β-globins which build the hemoglobin
molecule are most prone to the action of cathepsin D.
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Fig. 7. pH dependance of cathepsin D conformation and activity
in solution. Enzyme activity (solid line) and enzyme stability (dash
line) of cathepsin D as a function of pH [61].

Table 1. Inhibitors of different proteinase classes.

E-64 – L-3-carboxy-2,3-trans-epoxy-propionyl-leucylamido/guanidyne/
buthane; 3,4-DCI – 3,4-Dichloroisocoumarin (3,4-Dichloro-2-benzopyran-
1-one).

Table 2. Vulnerability of human aspartyl proteases to inhibitors; +
inhibitory effect, - lack of inhibition [62].



The hemoglobin molecule contains two α- chains and
two β-globin chains forming dimers composed of one
chain α and one chain β. The α chain included in
bovine hemoglobin molecule is built up of 141 where-
as β chain contains 146 amino acid residues. Their
amino acid sequence and the cleavage site are present-
ed in Fig. 8. At the junctions of the homonymous sub-
units (α-α, β-β), polar amino acid residues are found
to predominate, whereas the heteronymous subunits
show the predominance of (α-β)  hydrophobic
residues. Hemoglobin tetramer is stabilized mainly
due to hydrophobic interactions between the heterony-
mous subunits. Each α- and β-globin chain contains
one hem and one ferrous ion (Fe2+). Hem accounts for
4% and iron for  0.34% of the hemoglobin molecule.
The polypeptide α- and β-globin chains are in 80%
constituted by the α-helis structure and in 20% by 
a disordered structure [63,64]. The fact that bovine 
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Table 3. Degradation of different proteins by cathepsin D in dif-
ferent pH [57].

Fig. 8. (A) Human cathepsin D  –
known cleavage sites in bovine
hemoglobin are shown alongsite
orthologous sites in human and
canine hemoglobin. (B) Schistoso-
ma japonicum cathepsin D – known
cleavage sites in human hemoglo-
bin are shown alongsite equivalent
sites in bovine and canine hemoglo-
bin [65].



α- and β-globin chains do not possess disulphide
bridges that would reduce the action of the proteinase
is their advantage.  

Mixtures of α-globin and β-globin obtained by
hemoglobin denaturation with hydrochloric acid,
hydrochloric acid and urea, sodium hydrogen, sodium
hydrogen and urea are most frequently used to deter-
mine cathepsin D activity [66]. Due to their action,
Hem is detached, bonds that join α- and β-globin
chains torn apart, their structure undergoes denatura-
tion and becomes more susceptible to cathepsin D
action (Fig. 9). The mixture of α- and β-globin,
obtained in that way is traditionally referred to as
'hemoglobin'. High solubility in a wide pH range (1.0-
12.0) is another advantage of α- and β-globins, allow-
ing them to be used for the determination of pH opti-
ma for cathepsin D activity. The globin concentration
used to determine the activity of cathepsin D ranges
from 0.5 to 5%. Denaturation with the involvement of
urea increases at the same time globin solubility in a
wide pH range and the number of non-precipitated
TCA products of its degradation [67,68]. 

Similarly, hemoglobin treatment with HCL-acidi-
fied acetone causes hem detachment, disruption of
connections between globins and their denaturation
[56,71-73]. Simultaneously, globin molecules undergo
precipitation and are separated from hem dissolved in
acetone by centrifugation. 

Globin hydrolysis termination is accomplished
using trichloroacetate acid (TCA) that precipitates
undecomposed globin. The final concentration of
TCA accounts for 0.1 – 0.8 mol/l (2.5 – 20.0%).
Depending on TCA concentration, products with vari-

ous molecular masses are precipitated. Application of
higher TCA concentrations facilitates separation of a
thick precipitate by filtration or centrifugation, but
reduces the number of products left in the solution.
Degradation products soluble in TCA are separated
from the precipitated protein by filtration or centrifuga-
tion. In a clear filtrate/suprasediment, the concentration
of hydrolysis products is determined by direct meas-
urement of absorbance at 280 nm [5] or fluorescence
[74,75], dependent on tyrosyl and tryptophanyl
residues. However, direct measurement of absorbance
at 280 nm in nonpurified material is loaded with error.
Nucleic acids contained in such a material are degrad-
ed by nucleases and released nucleotides increase the
measurement values [76,77]. Degradation products are
more frequently determined following addition of
staining reagent, via absorbance measurement at a suit-
able wavelength. The reagents used for staining of
degradation products include copper reagent (microbi-
uretic) and Folin and Ciocalteau's reagent applied sep-
arately or simultaneously, ninhydrin reagent, 2,4,6-
trinitrobenzenosulphic acid and o-ftalaldehyde [78-81]. 

Hemoglobin denaturation and assessment of
cathepsin D activity described below is recommended
for routine assays. 

A. Hemoglobin denaturation: hemoglobin (6g) is
suspended in 35 ml of distilled water, with addition of
15 ml 1 mol/l HCl and then incubation is carried out at
37°C for 30 minutes. The pH is elevated up to 3.5 by
means of 1 mol/l NaOH, next distilled water is added
to 90 ml and 10 ml of 2.0 mol/l acetate buffer (pH 3.5);
a 6% solution of globin in acetate buffer, pH 3.5, is
obtained in this way.
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Fig. 9. Denaturation of hemoglobin
by HCl and its influence on globin
degradation by cathepsin D. (A) –
naive hemoglobin; (B) – α and β
denaturated globin.



B. Assay: 0.1 ml of 6% globin (pH 3.5) is added to
0.4 ml sample (homogenate, plasma, the same pH) and
incubation is performed at 37°C for 1-6 hours (depend-
ing on activation). The reaction is discontinued by addi-
tion of 0.5 ml of 5% TCA acid containing 2.5 mol/l urea.
The sample in which TCA acid was added at time zero
is referred to as 'control'. All samples undergo centrifu-
gation (1500 x g,  2°C,  30 minut). The amount of 0.25
ml of suprasediment fluid is supplemented with 1.5 ml
of copper reagent (1 volume of 0.5% CuSO4 x H2O in
1% sodium citrate x 5 H2O and 30 volumes of 10%
sodium carbonate). After 10 minutes, 0.25 ml of Folin
and Ciocialteau's reagent diluted with distilled water
(2:1 v/v ratio) is added and after further 30 minutes,
absorbance is measured at 750 nm. Results are read

from a calibration curve designed according to standard
tyrosine solutions (10-200 nmol/ml).

The use of labeled hemoglobin/globin considerably
simplifies the methods applied to determine the activ-
ity of cathepsin D. As a result of fragmentation of a
globin molecule, the molecule bound marker after
addition of trichloroacetate acid remains in the solu-
tion, its concentration reflecting the molecule activity.
The globin labeled with chromophores, fluorophores
and radioelements are used [3,82]. The chromophore
consists of the nitric group (nitro-globin) and azo
group (azo-globin). Fluorophores include fluo-
rescamine, fluorescein isothiocyanate, rhodamine B
isothiocyanian, 1-amino-8-naphtalene sulfonic acid
[83-88]. Fig. 10 presents the reaction of amino acids
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Fig. 10. Scheme of reaction of fluo-
rescamine with proteins as the basis
for the development of a metod for
the measurment of proteolytic
degradation. The stripped area rep-
resents fluorescence and its relative
size stands for the relative fluores-
cence of the N-terminal and ?-
amino groups after reaction with
fluorescamine [89]. 

Fig. 11. Reaction of cathepsin D on methyl-
14C-glycinated hemoglobin (o–o) and acid-
denaturated hemoglobin (Δ–Δ) as a function
of (a) time, (b) protein concentration and (c)
pH [91].



with fluorescamine. The radioelements used for hemo-
globin labeling include 3H, 14C, 125I and 131I [90-92].
Addition of a pigment or a fluorizing compound caus-
es substantial changes in globin structure and is fre-
quently associated with reduced susceptibility to
cathepsin D action. Addition of a radioelement does
not reduce globin susceptibility to cathepsin D (Fig.
11). Moreover, the use of the radioelement-labeled glo-
bin requires considerably smaller amount of cathepsin
and ensures linear increment of reaction products even
at its high activity [5]. Whereas the application of A280
nm measurement requires 144 ng and Folina-Ciocal-
teau's reagents – 72 ng, the radiometric method needs
only 4.8 ng of cathepsin D (Table 4). 

β-endorphin has been lately recommended as a sub-
strate for cathepsin D activation measurement [93]. This
polypeptyde  is built up of 31 amino acid residues (Fig.
12). Products of β-endorphin digestion are separated
and assessed quantitatively by HPLC technique. Fig. 13
illustrates the differences between cathepsin D and
cathepsin E actions on β-endorphin and substance P. 

Myoglobin [94], casein [95-97] and albumin
[98,99], both labeled and non-labeled with chromo-
fore, fluorophor and radioelement are less frequently
used to determine cathepsin D. 

The effect of protein digestion by cathepsin D is
also assessed by measuring its loss, either without sep-
aration or after separation of degradation products.
The spectrophometric method [100], the viscosimetric
method [101-103], the nephelometric method
[104,105] and the plate method [106] are used to
assess protein loss without separation of the non-
degraded protein from degradation products. In the
spectrophometric method, reduction in the number of
peptide bonds is evaluated by measuring the
absorbance at 225 nm. The viscosimetric method
assesses a decrease in viscosity due to protein mole-
cule breakdown into smaller fragments and enables
measurement of the activity of endopeptidases con-
tained in a mixture together with exopeptidases which

have no effect on the stickiness of protein molecules.
The nephelometric method estimates the intensity of
light dispersed after addition of a protein precipitating
reagent. The tannin method is the most useful neph-
elometric method [104]. In the plate methods, such
cathepsin D substrates as globin, casein, gelatin or fib-
rin are placed in a nonsoluble carrier (agar, starch) in
Petri plates  [4]. A definite volume of the material is
placed on plates with a micropipette or filter paper disc
saturated with the solution studied. The plates are then
incubated at 37°C and after 1-96 hours, depending on
the activity of proteinases in the sample, the size of the
digested protein field is read directly or after sprin-
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Table 4. Comparison of assay methods for cathepsin D [65]. The
values given are approximate, and are expressed in terms of the
unit of assay I, which cerresponds to about 1,2 ?g human cathep-
sin D. The estimate of enzyme required per assay assumes that and
unincubated blank is required for each chemical method, but is
unnecesary in the radiochemical method.

Fig. 12. Amino acid sequence of bovine β-endorphin [93]. Arrow
indicates atacks by cathepsin D (-Leu17-Phe18-).

Fig. 13. Dependance on pH of the hydrolysis of β-endorphin (A)
and substance P (B) by cathepsins D (•) and E (o) [93].



kling the plate with a sublimate or sulfosalicylic acid.
The plate method is used to detect traces of proteolyt-
ic activity, which requires a long incubation time. This
method allows a continuous observation of the diges-
tion process. Also other methods can be used to assess
the increase in protein degradation products without
separation of the non-degraded protein. During protein
digestion, the number of amino and carboxyl groups
that appear in the non-buffered environment is the
measure of enzyme activity [107]. Addition of formol
[98] or ethanol reverses dissociation of amino groups,
whereas the number of carboxyl groups is determined
by titration with titrated NaOH solution, in the pres-
ence of phenoloftalein. Acetone causes a decrease in
dissociation of carboxyl groups and free amino groups
are titrated in this solvent solution using the titrated
HCl solution, in the presence of phenol red. Another
possibility is precipitation of non-degraded protein by
means of copper hydroxide, which at the same time
forms soluble complexes with protein digestion prod-
ucts [4]. After filtration, the concentration of color
complexes is assessed colorimetrically. Protein loss is
also measured after precipitation with TCA acid,
washing out of acid, drying and assessing by the
weight-based method or after dissolving the sediment
in sodium carbonate solution by a chosen method of
quantitative protein determination. 

The most recommended methods for cathepsin D
activity determination using proteins and polypeptides
are listed in Table 5.

Synthetic peptides
Identification of amino acid residues forming peptide
bonds cleaved by cathepsin D in natural peptides
helped generate synthetic peptides. Proteins as macro-
molecular substrates bind to numerous cathepsin D-
binding sites  (Fig. 14), whereas peptides bind to only
one cathepsin D-binding site. Due to this, partly denat-

urated cathepsin D bound to α2-macroglobulin or to
cathepsin D antibodies hydrolyzes peptides but not
proteins (Fig. 15).

Cathepsin D hydrolyzes internal peptide bonds in
the peptides with at least five amino acid residues in
the molecule [108]. These peptides are built up of L-
amino acids and contain hydrophobic amino acid
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Table 5. Methods for cathepsin D activity measurements using dif-
ferent polypeptides [7,23].

Fig. 14. Binding and hydrolysis of protein (p) and synthetic pep-
tide (sp) by naive cathepsin D (n-CD)  and denaturated cathepsin
D,  bound by α2-M or an antibody (d-CD). S1, S1' – substrate bind-
ing sites; CS – cathepsin D catalytic site. 

Fig. 15. Products of protein and sythetic peptide degradation by
cathepsin D. • – hydrophibic aminoacid rests,  – cleaved pep-
tide bond. 



residues at the site susceptible to cathepsin D action.
With peptide chain elongation, the number of grafted
peptide bonds increases. The N-terminal amino group
and C-terminal carboxyl group of these peptides can
be either free or blocked, and may contain prolil
residue or D-amino acid residue. In non-fractioned
material, the terminal blockage protects these sub-
strates against the action of amino peptidases and car-
boxyl peptidases. 

Spectrophometric or fluorimetric methods are used
to determine the products of peptide hydrolysis. Func-
tional groups conditioning the peptide usefulness in
spectrophometric and fluorimetric measurements are

presented in Fig. 16. Direct and indirect spectrophom-
etry can be distinguished. 

In direct spectrophotometry, chromogenic peptide
substrates, listed in Table 6, are used. The chro-
mogenic substrates containing the amino acid residue
corresponding to cathepsin D specificity, with an
attached chromogenic group, allow direct measure-
ment of the amount of the generated product. In the
chromogenic substrates, the nitrophenyloalanylic
residue is most frequently at the position P1 or P1'.
For instance, the course of Phe-Ala-Ala-Phe(NO2)-
Phe-Val-Leu-OM4P hydrolysis leads to generation of
Phe-Ala-Ala-Phe(NO2), which is determined by
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Fig. 16. Function groups used in
spectrophotometry and fluoryme-
try [109].



absorbance measurement at 310 nm and the results are
read from a calibration graph prepared using standard
Phe(NO2) solutions.

The peptides used to determine cathepsin D activi-
ty with indirect spectrophometry are listed in Table 7.
The reaction products are stained with ninhydrin or
by diazotization method. In peptides with blocked N-
terminal amino group, the number of amino groups
generated via peptide bond hydrolysis is estimated by
the ninhydrin method. The course of the reaction is
illustrated in Fig. 17.  In peptides with the p-
aminobenzoic acid residue attached to the C-terminal
amino acid, e.g. H-D-Phe-Ser-Phe-Phe-Ala-Ala-p-
aminobenzoate, cathepsin D cleaves the Phe-Phe
bond. The originating Phe-Ala-Ala-p-aminobenzoate
is affected by aminopeptidase M (Fig. 18). The dia-
zotization reaction is performed with released p-
aminobenzoate (Fig. 19).

The fluorogenic residue is found in fluorogenic
substrates at the position P1 or P1' (Table 8). The
released fluorophor exhibits optic properties that differ
in the emission wavelength compared to the initial
compound and can be used for quantitative assess-
ment.   As shown in Fig. 20, the fluorescence intensity
of Lys-Pro-Leu-Leu-Tyr-Phe(NO2)-Leu-Leu is very
low. The maximum intensity of fluorescence of
Phe(NO2)-Leu-Leu is observed at 303 nm (excitation
at 260 nm). In a 12-peptide AMCA-Glu-Glu-Lys-Pro-
Ile-Ser-Phe-Phe-Arg-Leu-Gly-Lys(biotinyl)-NH2,
cathepsin D cleaves the Phe-Phe bond. The N-frag-
ment containing AMCA-fluorophor and the C-termi-
nal fragment containing Lys-(biotinyl)-NH2-fluorofor
are formed.

Incorporation of the D-amino acid residue in the
peptide structure reduces its susceptibility to the action
of cathepsin D. In the hexapeptide Gly-Phe-Leu-Gly-
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Table 6. Chromogenic peptide substrates for cathepsin D used in
direct spectrophotometry. 

Table 7. Peptide substrates for cathepsin D in indirect spectrophotometry. 



Phe-Leu, the Phe-Leu bond is cleaved by cathepsin D
[108]. Hydrolysis of hexapeptides having an analo-
gous structure but containing D-amino acids is sub-
stantially hindered; besides, they inhibit breakdown of
the hexapeptide composed exclusively of L-amino
acids. Susceptibility to hydrolysis and degree of inhi-
bition of cathepsin D by these analogues depend on
distribution and number of D-amino acids in the mol-
ecule (Table 9). The analogues having only one D-
amino acid in the molecule, localized at the maximum
distance from the site sensitive to the proteinase
action, show major susceptibility and poorest inhibito-
ry effect. However, the analogues containing D-amino
acid found within the peptide bond that is being
cleaved, as well as two amino acids and cyclic hexa-
peptide are neither hydrolyzed nor exhibit an inhibito-
ry effect [147].

Glycosylation of peptides reduces their susceptibil-
ity to the action of cathepsin D. As shown in Table 10,
glycosylation of the asparaginian acid residue at the
position P4 reduces over fourfold and at the position
P4' twofold the susceptibility of the nonapeptide Abz-

F-H-L-V-I-H-N-E-EDDnp to the action of cathepsin
D. Simultaneous glycosylation at the positions P4 and
P4' – makes this peptide resistant to this proteinase. 

The synthetic peptides used as cathepsin D sub-
strates are dissolved in dimethylosulfoxide (DMSO),
dimethylformamide (DMF) or methanol (Me)  [8].
The 1-2% concentration of these solvents does not
affect cathepsin D activity. The initial solutions of the
substrates have a concentration ranging between 50
and 250 mmol/l. Prior to use, they are dissolved to
obtain a concentration of 5 – 25 mmol/l, using a
buffer. 
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Fig. 17. The course of the ninhydrin
reaction with aminoacids is as fol-
lows: 1. ninhydrin (2,2-dihydroxy-
1,3-indandione) reacted with amino
acid; 2. the intermediate formed as
the first reaction product; 3. interme-
diate gives rise to dipolar ion by
decarboxylation and dehydration; 4.
the dipolar ion hydrolyzes, produc-
ing the amine; 5. the amine condens-
es with a second molecule of ninhy-
drin to give Ruhemann's Purple.

Fig. 18. Degradation catalyzed by cathepsin D and aminopepti-
daze M [87]. 

Fig. 20. Fluorescence emission spectra of Lys-Pro-Leu-Leu-Tyr-
Phe(NO2)-Leu-Leu and Lys-Pro-Leu-Leu-Phe-(NO2)-Tyr-Leu-
Leu [146].

Fig. 19. Diazotization of β-naphtylamine. 1 – β-naphthylamine; 
2 – sodium nitrate; 4 – ammonium sulphamate; 6 – ethylene-

                                                diamine; 
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Table 8. Fluorogenic peptide substrates for cathepsin D.

Table 9. Cleavage of hexapeptide Gly-Phe-Leu-Gly-Phe-Leu and
its diastereomers and inhibition of release of the dipeptyde Gly-
Phe from the substrate Gly-Phe-Leu-Gly-Phe-Leu in the presence
of its D-isomers by cathepsin D [108].

Table 10. Kinetic constants for hydrolysis of internally quenched
fluorescent peptides by human cathepsin D [148]. Arrows indicate
the cleavage site, NDH – no detected hydrolysis.

* – arrow indicates cleaved peptide bond



Determination of concentration 
The concentration and content of active cathepsin D
molecules in blood plasma and tissue homogenates are
determined based on the results of its activity meas-
urement and the calibration graph presenting the cor-
relation between the activity and concentration (Fig.
21). Titration of a catalytic site using pepstatin [149] or
dansyl-pepstatin [150], and placing the results on the
graph to help read the concentration value is another
way used to determine active cathepsin D molecule
concentration (Fig. 22). 

Total concentration and content of both inactive
and active cathepsin D are determined using specific
antibodies by the immunoenzymatic method ELISA
[151,152] and by radioimmunoenzymatic methods
[153,154] (Table 11). 

Cathepsin D possesses a few sequential and con-
formational antigen determinants, against which anti-
bodies are produced.  Antibodies contained in anti-

serum, isolated antibodies and monovalent Fab (frag-
ment antigen binding) fragments of immunoglobulins
bind to  cathepsin D [155-158]. Formation of bonds
between cathepsin D and antibodies is most intense at
pH above 3.0-5.0. Antigen determinants and a catalyt-
ic site of cathepsin D are located at distant sites of the
molecule. This, however, does not hinder access of the
substrate to the catalytic site. Only removal of the
cathepsin D-antibody complex from the solution by
centrifugation leads to the loss of activity in the super-
natant (Fig. 23). Fig. 24 illustrates the principle of the
immunoenzymatic method, whereas Fig. 25 shows the
principle of the radioimmunoenzymatic method of
cathepsin D assay. 

Determination of tissue and cell location
of cathepsin D
Tissues and organs differ in cathepsin D content
[2,93]. Table 12 shows the content and activity of this
enzyme in the rat organs. Cell composition differs
between organs as well as between healthy and patho-
logical tissues. The liver is characterized by high
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Fig. 21. Hydrolysis of hemoglobin by cathepsin D as function of
enzyme concentration.

Fig. 22. Inhibition curve obtained by addition of increasing
amounts of pepstatin to the cathepsin D; substrate – hemoglobin;
titration curve: a – ideal, b – real [149].

Fig. 23. Effect of antiserum ratio on cathepsin D activity in
pH=3.2 [159,160]. o – before centrifuging; • – in supernatant; –
in precipitate. 

Table 11. Immunoenzymatic methods for estimation of cathepsin
D concentration.



diversity of cell composition. The respective types of
cells in this organ show varied cathepsin D activity
(Table 13). Among the cells that build up the liver,
Kupfer cells exhibit the highest cathepsin D activity.
Cathepsin D is localized in hepatic lysosomes (Table
14) that account for 1% of total hepatocyte volume,
their number ranging from 300 to 400.

In cytomechanical and histochemical techniques, it
is postulated that the morphological structures should
be maintained unchanged so that they could be recog-
nized microscopically. To do this, the cell and tissue
materials need to be properly prepared. Therefore, the
classical fixation methods are replaced by the cryostat
sectioning technique. This procedure is the method of
choice, especially in histoenzymology, for the per-
formance of enzymatic reaction. The final product of
the reaction is perceptible under optical or electron
microscopes. 

Cathepsin D can be localized in cells and tissues
using cyto/histochemical and immunocyto/histochem-
ical techniques [163-170]. The former employ methyl-
mercury pepstatin derivative, biotin-labeled pepstatin
and biman-labeled pepstatin [171-174], as well as
chemical compounds shown in Fig. 26. In the latter
techniques, tissue sections are fixed using a set of
reagents AMeX (acetone, methyl benzoate, xylene)

[175,176]. Polyclonal antibodies (DAKO A/S
Glostrup, Denmark) bind to cathepsin D epitopes.
Cathepsin D is visualized by means of avidin-biotin
peroxidase complex (ABC) kit [177,178]. 3-amino-9-
ethylcarbazole (AEC) is used as chromogene, yielding
a red color reaction product.

Determination of activity and concentration
of cathepsin D inhibitors
Cathepsin D has neither endogenous lysosomal nor
cytosolic inhibitors. When lysosomes become dam-
aged and cathepsin D passes to the intracellular fluid
and blood plasma, it is neutral pH and α2-macroglob-
ulin (α2-M) that prevent uncontrolled proteolysis
[179,180]. 

α2-M is synthesized in fibroblasts and then passes
to the intracellular fluid, lymph and blood. In plasma,
α2-M occurs in a concentration of 260.0 mg/100 ml
(3.3 μmol/l). Approximately 20% of plasma cathepsin
D is bound to α2-M [181,182]. The remaining 80%
occurs in a free state as procathepsin D, the inactive
precursor not bound to α2-macroglobulin. The cathep-
sin D binding to pepstatin hinders interaction with α2-
macroglobulin, due to which the amount of cathepsin
D bound to this inhibitor decreases to approximately
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Fig. 24. Schema for performing the immunoassay of cathepsin D
[161].

Fig. 25. Schema for performing the immuno-radiometric assay of
cathepsin D [161].
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Table 12. Levels of cathepsin D in rat and mokey tissues. 

Table 13. Activity of cathepsin D in perenchymal, sinusoidal,
endothelial and Kupffer cells isolated from the rat liver [162].

Table 14. Intracellular distribution of cathepsin D in rat liver [36].
Ex – cytoplasmic extract, N – nuclear fraction, M – mitochondrial
fraction, L – lysosomal fraction, Mic – microsomal fraction, S –
soluble fraction (final supernatant).



8%. The concentration of α2-M is determined with anti-
bodies by the nephelometric method, laser nephelome-
try and radial immunodiffusion. The activity of α2-
macroglobulin is assessed by the enzymatic method by
measuring the reduction in proteolytic activity in a stan-
dard testing system [183]. Cell and tissue α2-M is also
localized. Binding to α2-macroglobulin inhibits the
action of cathepsin D on macromolecular substrates and
only slightly on micromolecular substrates. The
inhibitory activity of α2-macroglobulin towards cathep-
sin D occurs at pH 5.5-6.0, but not at a lower pH
because of structural instability [185]. α2-macroglobu-
lin is inactivated with methylamine [186,187]. This pro-
teinase inhibitor prevents uncontrolled proteolysis [180]
via binding, inhibition and removal of proteinases from
plasma and intracellular fluid. The α2-M-proteinase
complexes are captured by specific macrophage recep-
tors [188], undergo endocytosis and are transported into
lysosomes. Then, the complexes undergo digestion and
the receptors return to the cell surface. 

The α2-M differs from typical proteinase inhibitors
in binding mode and low specificity. The catalytic site
of cathepsin D bound to α2-M is free. The micromol-
ecular substrates and inhibitors, but not the macromol-
ecular ones, have access to this site. Cathepsin D and
α2-M show a two-stage interaction: in the first stage,
cathepsin D cleaves the specific peptide bonds situat-
ed within the polypeptide chain of the inhibitor, thus
causing conformatory changes within the inhibitor; in
the second stage – the enzyme is surrounded and
access of macromolecular substrates is blocked.
Exopeptidases cannot cleave the peptide bonds situat-
ed within the α2-M polypeptide chain and thus their
activity is not blocked by this inhibitor. 

Exogenous cathepsin D inhibitors include such syn-
thetic compounds as 1,2-epoxy-3-(p-nitrophenoxy)-
propan, diazoacetyl-dl-norleucin methyl ester, pepstatin
and its derivative [116,189] and peptide inhibitors found
in spare organs of many plant species [116,190,191]. The
activity of exogenous cathepsin D inhibitors is deter-
mined in a test in which: 1/ cathepsin releases the reac-
tion product in the amount corresponding to the
absorbance of 0.50; 2/ the inhibitor blocks 50% of
enzyme activity. The inhibitor activity is calculated from
the formula: inhibitor, U/ml/min = (d x r) : t, in which: d
means difference in the quantity of the reaction products
in a test without and with inhibitor, r – inhibitor dilution,
t – incubation time. The inhibitor sample is diluted when
activity suppression exceeds 50%. The septopeptide Pro-
Thr-Glu-Phe-Phe(NO2)-Arg-Leu [116] or globin [191] is
used to determine the inhibitor activity.  

The enzyme- inhibitor molar ratio is determined
from the plot presenting the correlation between cathep-
sin D activity and inhibitor concentration [192,193].
The inhibitor concentration causing a 50% reduction in
the enzyme activity, referred to as the inhibitory dose 50
(ID50), is taken into consideration in the assessment and
expressed in μmol/l [189]. The numerical value of ID50
is used to compare the strength of the inhibitory effect
of various inhibitors. The therapeutic application of the
inhibitor is preceded by determination of its toxicity
expressed as the lethal dose 50 (LD50), as established for
experimental animals [194]. 

Determination of the effect of preincubation time
with inhibitor on the measurement shows its immedi-
ate or progressive action. The measurement of
inhibitor activity can also be affected by the sequence in
which reagents are added: inhibitor – enzyme – sub-
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Fig, 26. Diagram representing the three
chemistries for the cytochemical staining of
proteases that liberate 4-metoxy-β-naphthy-
lamine. 



strate or inhibitor – substrate – enzyme [196,197].
Determination of the activity of cathepsin D inhibitors
in non-fractionated extracts from cells of microorgan-
isms and plant tissues can be burdened with error, as
these samples may also contain, apart from these
inhibitors, proteinases that function in an acidic pH
[180]. Prior to homogenization, the inhibitor and pro-
teinase are found in different cell compartments and
come into contact only after homogenization. These
proteinases can be both sensitive and insensitive to the
inhibitors and in both cases reduce the measurement,
either suppressing the inhibitor activity or leading to its
proteolytic inactivation, respectively. These proteinases
can also degrade and inactivate cathepsin D. In the case
of stable micromolecular inhibitors (plant extract,
homogenate, plasma, urine), proteases are inactivated
thermally or with trichloroacetate acid or perchloric
acid. The precipitated proteins are eliminated via cen-
trifugation. Trichloroacetate acid is removed from the
supernantant by ether extraction, whereas perchloric
acid is precipitated using potassium hydroxide. The
inhibitor concentration is determined based on the
antiproteolytic activity. The calibration graph is drawn
to show the correlation between cathepsin D activity
and inhibitor concentration. Determination of cathepsin
D activity after addition of a deproteinized sample
allows reading the concentration of the inhibitor. 

In studies on cathepsin D inhibitors, especially in
plant samples, the presence of nonspecific cathepsin D
inactivators, including polyphenol compounds, should
be excluded [198].

Diagnostic significance of cathepsin D
In physiological conditions, only small amounts of
cathepsin D pass to the intercellular environment, to
blood and body fluids via exocytosis of procathepsin
and cathepsin D, excretion of residue bodies and dis-
integration of physiologically exhausted cells [199-
201]. The pathological conditions, occurring with
hypoxia, acidemia and especially necrosis, are charac-
terized by damage to lysosomal and cellular mem-
branes, and release of increased amounts of cathepsin
D [202]. Enhanced synthesis of cathepsin D and insuf-
ficiency of the intercellular apparatus transporting pro-
cathepsin may contribute to the increased escape of
cathepsin D out of cell [203-205]. The activity of
cathepsin D in plasma depends also on its uptake by
monocytes/macrophages in the liver and spleen [202-
206]. An impaired uptake or saturation of these cells
with phagocytized material may cause a rise in plasma
cathepsin D activity. The half-life of cathepsin D in
blood amounts to 60-90 minutes [207-208].

For diagnostic purposes, the activity and level of
cathepsin D are assessed in homogenate (total activi-
ty), in the cytoplasmic fraction, in the lysosomal frac-

tion, in blood plasma, in secretions (saliva, gastric
juice), excretions (urine, feces), and body fluids (peri-
toneal fluid, pleural fluid, cerebrospinal fluid). 

The activity/level of cathepsin D and its inhibitors
in plasma and body fluids are calculated per cell count
in solid tissues per 1g of wet or dry tissue or 1 μg of
DNA [209-211]. Determination of cathepsin D activi-
ty in homogenate per ml of protein for diagnostic pur-
poses or in toxicological investigations is not justified
and may lead to interpretation errors. With the same
activity of cathepsin D in homogenate – the activity is
high when the protein content is low, and the activity
is low when the protein content is high. Measurement
of cathepsin D activity per ml of protein is useful only
for preparatory tasks and when purification degree of
this proteinase is calculated. 

Also other endopetidases involved in protein diges-
tion at an acidic pH can be found in plasma and tissue
homogenates, namely cathepsin B and cathepsin L (pH
5.5), cathepsin E (pH 2.5) and pepsin (pH 2.0) [212-
214]. The pH ranges in which these enzymes function
are found to overlap. The specificity of cathepsin D
determination increases following addition of the
cathepsin B and L inhibitor, i.e. L-trans-epoxysuccinyl-
Leu-4-guanidinobutylamide (E-64), and the cathepsin
E and pepsin inhibitor isolated from Ascaris lumbri-
coides (AlI) to the incubation mixture. The activity of
cathepsin D is lower in plasma than in serum [247].
Hemolysis does not affect the measurement. When an
immunological method is used, other cathepsins have
no effect on the determination of cathespin D concen-
tration/content. The lower limit of cathepsin D measur-
ability is 0.012 nmol/l. Plasma cathepsin D level should
range from 9.9 nmol/l (healthy women) to 10.6 nmol/l
(healthy men) [218,219]. 

The activity and concentration/level of cathepsin D
are frequently found to overlap. However, sometimes
the opposite situation may occur. The activity may be
higher than the concentration when conformation mask-
ing or sequential epitopes condition the reactions with
antibody, or lower when the molecule undergoes inacti-
vation (denaturation) without impairment of its epitope. 

The histochemically and immunohistochemically
determined distribution of cathepsin D and its
inhibitors (mainly α2-M) in cells and tissues are pre-
sented on color microphotographs. The reaction inten-
sity is assessed semiquantitatively using the following
scale: lack of reaction (-), weakly positive reaction (±),
positive reaction (+), strongly positive reaction (++).

Conclusion
Determination of the activity/concentration and

cell/tissue distribution of cathepsin D and its inhibitors
plays a major role in biochemistry, pathobiochemistry
and diagnostics. Development of analytical methods
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involves a search for specific and sensitive substrates
(beta-endorphin, synthetic fluorogenic peptides) and
new analytical techniques: HPLC [145,220],  capillary
electrophoresis [221-223], fluorimetry in the near
infrared region [224], flow cytofluorimetry [225-229],
western blot [230-232], immunohistochemical tech-
niques [168,169],  fluorescence microscopy [233,234]
and electron microscopy [235,236].
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