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ABSTR AC T
Introduction. Atopic dermatitis (AD) is the most common allergic skin disease. The dysfunction 
of keratinocytes is closely associated with AD progression. Nevertheless, the specific functions of 
CC chemokine ligand 19 (CCL19) and its receptor CC chemokine receptor 7 (CCR7) in human 
HaCaT keratinocytes are still unclear. 
Material and methods. AD cell models in vitro were established by treating HaCaT cells with TNF-
-alpha (TNF-α, 10 ng/mL) and IFN-gamma (IFN-γ, 10 ng/mL). Cell viability was estimated by MTT 
assay. The protein levels of CCL19 and CCR7 were tested via Western blotting. The expression of 
CCL19 protein was knocked down by transfecting si-CCL19 into HaCaT cells. The contents of  in-
flammatory factors i.e. thymus and activation-regulated chemokine (TARC), interleukin 6 (IL-6), 
and prostaglandin E2 were measured by ELISA, and the nitric oxide content was detected by Griess 
reagent. The protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) 
were tested via Western blotting.
Results. TNF-α and IFN-γ induced cytotoxicity and upregulated the expression of CCL19 and CCR7 
in HaCaT cells. CCL19 knockdown alleviated cytokines-induced cytotoxicity and the release of TARC, 
IL-6, PGE2 and nitric oxide in TNF-α + IFN-γ-treated HaCaT cells. Furthermore, the protein levels 
of iNOS and COX-2 were also repressed by CCL19 knockdown. In addition, knockdown of CCL19 
decreased CCR7 protein content and inhibited the phosphorylation of IκBα and p65, implying that 
knockdown of CCL19 inactivated CCR7/NF-κB signalling in HaCaT cells. Rescue assays validated 
that  CCR7 overexpression reversed the effects of CCL19 silencing on the viability and levels of 
inflammatory factors in TNF-α + IFN-γ-induced HaCaT cells. 
Conclusions. This study proves that CCL19 can promote TNF-α + IFN-γ-induced skin inflammatory 
responses by targeting CCR7/NF-κB pathway in HaCaT cells.
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INTRODUCTION
Atopic dermatitis (AD) is the most common allergic skin 

disease [1]. The initial manifestations of AD usually appear 
early in life and often precede other allergic diseases such as 
asthma or allergic rhinitis [2]. In recent years, the incidence 
rate of AD has been increasing, and the recurrence of AD 

brings a psychological burden and economic pressure to 
bear on patients and their families [3]. AD is a chronic inflam-
matory disease caused by genetic predisposition, epidermal 
barrier disruption, and dysregulation of the immune sys-
tem [4]. At present, there are no treatments that are suitable 
for all AD patients [5]. Common drugs such as glucocorticoids 
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and tacrolimus may be effective in some patients, but they 
are accompanied by serious side effects [5]. 

Therefore, we aimed to conduct an in-depth study of the 
pathogenesis of AD and to explore more effective treatment 
methods, with the goal of improving the life quality of AD 
patients.

Keratinocytes are the major cell types in the epidermis 
and participate in the processes of assorted inflammatory 
skin diseases [6]. Epidermal barrier dysfunction induces 
keratinocytes to release inflammatory mediators such as 
proinflammatory cytokines and chemokines, resulting in 
T lymphocytes infiltration and inflammatory response acti-
vation [7, 8]. The inflammatory factors TNF-alpha (TNF-α) 
and IFN-gamma (IFN-γ) have been shown to activate kerati-
nocytes to induce the production of inflammatory cytokines 
and chemokines, including thymus and activation- 
-regulated chemokine (TARC), IL-6, and IL-8 [9, 10]. 

Chemokines are crucial factors in the recruitment of 
inflammatory cells into positions of allergic inflamma-
tion  [11]. Some chemokines have been demonstrated to 
express at a high level on keratinocytes in the epidermis 
of AD patients, thereby developing local inflammation 
[12, 13]. For example, in infantile AD patients, the levels of 
CCL-17, CCL-20, and CCL-27 have been found to be upreg-
ulated, and these are closely correlated with AD progres-
sion  [14]. CC  chemokine ligand 19 (CCL19) is a member 
of the chemokine family, and it can function as a chemo-
tactic signal for assorted immune cells, such as dendritic 
cells, T cells, and macrophages [15]. CCL19 and its receptor 
CC chemokine receptor 7 (CCR7) regulate a series of migra-
tory events in adaptive immunity following antigen encoun-
ter by immunocytes [16]. It has been reported that CCR7 is 
overexpressed in T cells and dendritic cells in AD lesions [17] 
and may play a proinflammatory role in the development of 
atherosclerotic lesions [18]. CCL19 has also been shown to 
facilitate inflammation in HIV-infected patients with ongo-
ing viral replication [19]. Furthermore, it has been reported 
that CCL19 interacts with CCR7 to accelerate inflammation 
response in mice with asthma [20]. Importantly, studies have 
indicated that AD-related genes are markedly enriched in 
the components of the chemokine signalling pathway, and 
AD-relevant proteins widely interact with chemokines CCR7, 
CCL19, STAT1 and PIK3R1 [21, 22]. However, the specific 
role of CCL19 in AD is not yet known, nor is the interaction 
between CCL19 and CCR7 in AD. 

The main aim of this study was to investigate the specific 
function and underlying mechanism of CCL19 and CCR7 in 
HaCaT keratinocytes. We hypothesised that CCL19 may 
promote inflammatory responses by regulating CCR7 in 
HaCaT keratinocytes. Our results have enhanced a deeper 
understanding of the complex pathogenesis and intricate 
mechanisms underlying allergic dermatitis.

Materials and methods
Cell culture and treatment

Human immortalised keratinocytes (HaCaT) obtained 
from the Chinese Academy of Sciences (Kunming, China) 
were cultured in DMEM (Gibco, Grand Island, NY, USA) 
added to 10% foetal bovine serum (FBS) and 1% penicillin 
and streptomycin (Gibco) at 37°C with 5% CO

2
. To estab-

lish an in vitro AD cell model, different concentrations of 
TNF-α (1 ng/mL) + IFN-γ (1 ng/mL), TNF-α (5 ng/mL) + IFN-γ 
(5 ng/mL), TNF-α (10 ng/mL) + IFN-γ (10 ng/mL), and 
TNF-α (15 ng/mL) + IFN-γ (15 ng/mL) (R&D Systems, 
Minneapolis, MN, USA) were used to treat HaCaT cells for 
48 h. Cytokines and vectors were added into HaCaT cell 
medium (2 × 106 cells/ml in a 6-well plate) at 60–70% con-
fluence. The final cell volume was at 90% confluence.

RT-qPCR
Total RNAs were subjected to extraction from HaCaT cells 

with TRIzol (Invitrogen, Carlsbad, CA, USA) in line with the 
manufacturer’s instructions. Then, RNAs were subjected to 
reverse transcription to cDNA with a PrimeScript Reverse 
Transcriptase Kit (Takara, Shiga, Japan), and qPCR was con-
ducted using a SYBR Green PCR Master Mix (Invitrogen) on 
an ABI 7500 Real-time PCR System (Applied Biosystems, Foster 
City, CA, USA). The levels of CCL19 and CCR7 mRNAs were 
calculated by the 2−ΔΔCT method and normalised to GAPDH. 
PCR amplification was carried out as follows: denaturation at 
94°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C 
for 1 min. The sequences of primers used were as follows:
•	 CCL19 forward, 5’-GAAGACTGCTGCCTGTCTGT-3’
•	 CCL19 reverse, 5’-GCAGTCTCTGGATGATGCGT-3’
•	 CCR7 forward, 5’-GTCATGGACCTGGGGAAACC-3’
•	 CCR7 reverse, 5’-GCTGTAGGTGACGTCGTAGG-3’
•	 GAPDH forward, 5’-GGAGTCCCTGCCACACTCA-3’
•	 GAPDH reverse, 5’-GCCCCTCCCCTCTTCAAG-3’.

Cell transfection
Double-stranded siRNAs for CCL19 (si-CCL19) and 

a negative control (si-NC) were synthesised by GenePharma 
(Shanghai, China). The full-length sequence of CCR7 was 
inserted into the pcDNA3.1 vector (Geenseed Biotech, 
Guangzhou, China) and the empty pcDNA3.1 vector 
served as NC. HaCaT cells were placed in a 6-well plate, 
and then transfected with plasmids by Lipofectamine 
3000 (Invitrogen) for 48 h according to the manufactu
rer’s instructions. The transfection efficiency was checked 
by RT-qPCR and Western blotting analyses. 

MTT assay 
On the basis of the manufacturer’s instructions, an MTT 

test (Sigma-Aldrich, St. Louis, MO, USA) was used to detect 
cell viability. HaCaT cells (2 × 104 cells/well) were put into 
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96-well plates and treated with different concentrations 
of TNF-α plus IFN-γ for 24 h as described above. After that, 
0.5 mg/mL MTT dye was supplemented for an incubation 
of 3 h. Then, the medium was removed, and the insoluble 
formazan was solubilised in DMSO (Sigma-Aldrich). The opti-
cal density at 560 nm was detected with a PowerWave™XS 
spectrophotometer (BioTek, Winooski, VT, USA). 

Detection of TARC, IL-6, PGE2 and nitric oxide 
HaCaT cells (1 × 105 cells/well) put in 6-well plates were 

cultured with TNF-α (10 ng/mL) + IFN-γ (10 ng/mL) for 24 h. 
Then, the cells were centrifuged (13,200 rpm, 10 min, 4°C) 
and supernatants were collected. The concentrations of 
PGE2 (R&D Systems), TARC (eBioscience, San Diego, CA, 
USA), and IL-6 (eBioscience) in the cell supernatants were 
tested using their corresponding ELISA kits, in line with the 
manufacturer’s instructions. 

Nitric oxide was detected by a Griess reagent (Molecular 
Probes, Eugene, OR, USA) in line with the manufacturer’s 
instructions. Griess reagent was used to mix with the cell’s 
supernatant for half an hour, and then the absorbance at 
540 nm was estimated by a spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA).

Western blotting 
Total protein was obtained from HaCaT cells by lysis with 

RIPA (Sigma-Aldrich, Shanghai, China), followed by deter-
mination of protein concentration with the BCA protein 
kit (Beyotime, Shanghai, China). Proteins were isolated by 
10% SDS-PAGE and then transferred to PVDF membranes 
(Millipore, Burlington, MA, USA). Next, 5% non-fat milk was 
used to blockade the membranes, which were then incubat-
ed with the following primary antibodies: anti-CCR7 (Abcam, 
Cambridge, UK, ab32527, 1:10,000), anti-CCL19 (Abcam, 
ab192877, 1:10,000), anti-iNOS (Abcam, ab178945, 1:1,000), 
anti-COX-2 (Abcam, ab179800, 1:1,000), anti-p-IκBα 

(Abcam, ab133462, 1:10,000), anti-p-p65 (Abcam, ab76302, 
1:1,000),  and anti-GAPDH (Abcam, ab8245, 1:1,000) at 
4°C overnight. GAPDH was used as the loading control. 
After that, membranes were rinsed with TBST and incubated 
with HRP-conjugated secondary antibody (Abcam, ab6789, 
1:2,000) for 2 h. Protein bands were detected with an ECL 
kit (Millipore) and analysed by an ImageJ (v1.8.0; National 
Institutes of Health, Bethesda, MD, USA).

Statistical analyses
Statistical analysis was performed using GraphPad 

Prism software (version 7.0, GraphPad Software, San Diego, 
CA,  USA). Data was displayed as the means ± SD from 
three individual repeats. Student’s t-test was applied for 
comparison between two groups. Comparisons among 
multiple groups were analysed by one-way ANOVA followed 
by Tukey’s post hoc analysis. P < 0.05 was considered to 
indicate statistical significance.

Results
TNF-α plus IFN-γ induce cytotoxicity  

and upregulate expression  
of CCL19 and CCR7 in HaCaT cells

To establish the in vitro AD cell model, HaCaT cells were 
stimulated with different concentrations of TNF-α + IFN-γ (for 
both cytokines 1 ng/mL, 5 ng/mL, 10 ng/mL, or 15 ng/mL). 
As shown by MTT assay, cell viability was suppressed by 
the addition of TNF-α + IFN-γ at 5 ng/mL, 10 ng/mL, and 
15 ng/mL concentrations (Fig. 1A). Then CCL19 and CCR7 lev-
els were tested in HaCaT cells with different concentrations 
of TNF-α + IFN-γ (for both cytokines 1 ng/mL, 5 ng/mL, 
10 ng/mL, or 15 ng/mL) via Western blotting. We found that 
the protein levels of CCL19 and CCR7 in the HaCaT cells were 
elevated at TNF-α + IFN-γ 5-15 ng/mLconcentrations (Fig. 
1B, C). Overall, CCL19 and CCR7 were highly expressed in 
the TNF-α + IFN-γ-treated HaCaT cells. 

Figure 1. TNF-α + IFN-γ induces cytotoxicity and upregulates expression of CCL19 and CCR7 in HaCaT cells. A. HaCaT cell viability under 
treatment of TNF-α + IFN-γ (for both cytokines 1 ng/mL, 5 ng/mL, 10 ng/mL, and 15 ng/mL) measured by MTT assay. B, C. Western blots 
of protein levels of CCR7 and CCL19 in HaCaT cells stimulated with different concentrations of TNF-α + IFN-γ. *P < 0.05, **P < 0.01. Data displayed 
as means ± SD. Abbreviations: GAPDH — glyceraldehyde-3-phosphate dehydrogenase; HaCaT — human immortalised keratinocytes;  
SD — standard deviation.
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CCL19 knockdown alleviates cytotoxicity  
and inflammatory response  

in TNF-α + IFN-γ-treated HaCaT cells
The release of proinflammatory mediators plays 

an important role in skin inflammatory response  [23].  
Thus, we explored the role of CCL19 in TNF-α + IFN-γ-treated  
HaCaT cells. Firstly, CCL19 was silenced in HaCaT cells,  

and the transfection efficiency in different groups 
(the control + si-NC group, the control + si-CCL19 group,  
the 10 ng/mL of TNF-α + IFN-γ + si-NC group, and the 
10 ng/mL of TNF-α + IFN-γ + si-CCL19 group) was tested. 
We discovered that the protein level and the mRNA level 
of CCL19 were markedly reduced in the two si-CCL19 trans-
fection groups (Fig. 2A). 

Figure 2. CCL19 knockdown alleviates cytotoxicity and inflammatory response in control (con) and TNF-α + IFN-γ-treated HaCaT cells. 
A. CCL19 protein level determined by Western blotting in following cell groups: control + si-NC group, control + si-CCL19 group, TNF-α (10 ng/mL) 
with IFN-γ (10 ng/mL) and si-NC group, and TNF-α (10 ng/mL) + IFN-γ (10 ng/mL) and si-CCL19 group. B. MTT assay used to detect HaCaT cell 
viability in four abovementioned cell groups. C–F. Content of nitric oxide (C), PGE2 (D), TARC (E) and IL-6 (F) levels in supernatants of HaCaT 
cells detected by ELISA. G. Protein levels of iNOS and COX-2 in HaCaT cells measured by Western blotting. **P < 0.01, ***P < 0.001. Data are 
displayed as means ± SD. Abbreviations: COX-2 — cyclooxygenase 2; GAPDH — glyceraldehyde-3-phosphate dehydrogenase; HaCaT — human 
immortalised keratinocytes; iNOS — induced nitric oxide synthase; SD — standard deviation; TARC — thymus and activation-regulated chemokine.
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By using the MTT assay, we documented that there 
was no obvious change of cell viability between the 
control + si-NC group and the control + si-CCL19 group. 
However, the transfection of si-CCL19 significantly promot-
ed cell viability which was repressed by the treatment with 
TNF-α (10 ng/mL) + IFN-γ (10 ng/mL) in HaCaT cells (Fig. 2B). 
Then, we measured the effects of CCL19 knockdown on the 
content of proinflammatory mediators (nitric oxide and 
PGE2). We found that the concentrations of nitric oxide 
and PGE2 were elevated by treatment with 10 ng/mL of 
TNF-α + IFN-γ, while CCL19 knockdown decreased their con-
centrations, suggesting the inhibitory effect of CCL19 silenc-
ing on inflammatory mediators secretion by TNF-α + IFN-
-γ-stimulated HaCaT cells (Figs. 2C, D). Furthermore, ELISA 
illustrated that the increased concentrations of inflammato-
ry factors (TARC and IL-6) caused by TNF-α + IFN-γ treatment 
were recovered by CCL19 silencing (Figs. 2E, F). Moreover, 
we estimated the inflammation-related proteins (iNOS and 
COX-2) in TNF-α + IFN-γ-stimulated HaCaT cells. Moreover, 
by using Western blotting we found that TNF-α plus IFN-γ 
treatment markedly increased the cellular levels of iNOS and 
COX-2, while CCL19 silencing reversed levels of these 
proinflammatory factors (Fig. 2G). 

We concluded that CCL19 knockdown alleviates cyto-
toxicity and the inflammatory response in TNF-α + IFN-γ- 
-treated HaCaT cells. 

CCL19 activates CCR7/NF-κB signalling  
in TNF-α + IFN-γ-treated HaCaT cells 

CCL19 is a well-characterised ligand of CCR7. It has 
been reported that CCR7 can activate NF-κB signalling 

in oesophageal squamous carcinoma cells [24]. Thus, we 
suspected that CCL19 may activate CCR7/NF-κB signalling 
in TNF-α + IFN-γ-treated HaCaT cells. Then we detected 
the levels of important proteins of the NF-κB signalling 
pathway in different groups (Fig. 3A; the control + si-NC 
group, the control + si-CCL19 group, the 10 ng/mL 
of TNF-α + IFN-γ + si-NC group, and the 10 ng/mL of 
TNF-α + IFN-γ + si-CCL19 group). 

Western blots manifested that CCR7, p-IκBα, and 
p-p65 levels were almost unchanged in the control + si-NC 
group and the control + si-CCL19 group, while TNF-α + IFN-γ 
treatment markedly upregulated CCR7, p-IκBα, and 
p-p65 proteins, and co-transfection of si-CCL19 reversed 
this promotive effect (Fig. 3A). These results confirm that 
CCL19 activates CCR7/NF-κB signalling in TNF-α + IFN-γ-
treated HaCaT cells. 

CCL19 promotes inflammatory response  
in TNF-α + IFN-γ-induced HaCaT cells  

by upregulating CCR7
Finally, we performed rescue assays to verify the influ-

ence of CCL19 and CCR7 on the inflammatory response 
in TNF-α + IFN-γ-stimulated HaCaT cells. Firstly, we over-
expressed CCR7 by transfecting the pcDNA3.1-CCR7 vec-
tor in cells. Western blots and RT-qPCR showed that the 
protein level and mRNA level of CCR7 were elevated in 
the pcDNA3.1-CCR7 transfection group (Fig. 4A). MTT 
assay illustrated that the viability of TNF-α + IFN-γ-induced 
HaCaT cells was promoted by CCL19 depletion, while it was 
reversed by co-transfection with pcDNA3.1-CCR7 (Fig. 4B). 
Furthermore, we observed that the concentrations of nitric 

Figure 3. CCL19 activates CCR7/NF-κB signalling in TNF-α + IFN-γ-treated HaCaT cells. A. CCR7, p-IkBα and p-p65 levels in con + 
si-NC group, con + si-CCL19 group, TNF-α (10 ng/mL) + IFN-γ (10 ng/mL) + si-NC group, and TNF-α (10 ng/mL) + IFN-γ (10 ng/mL) 
+ si-CCL19 group detected by Western blotting. *P < 0.05, **P < 0.01, ***P < 0.001. Data displayed as means ± SD. Abbreviations: GAPDH — 
glyceraldehyde-3-phosphate dehydrogenase; SD — standard deviation.
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Similarly, Western blotting indicated that CCL19 silencing 
inhibited iNOS and COX-2 proteins, while  CCR7 overex-
pression enhanced these proteins (Fig. 4G). Overall, we 
showed that CCL19 promotes the inflammatory response 
in TNF-α + IFN-γ-induced HaCaT cells by upregulating CCR7.

oxide and PGE2 were significantly decreased by CCL19 knock-
down, while CCR7 overexpression reversed that effect 
(Figs. 4C, D). Moreover, CCR7 overexpression offset the effect 
of CCL19 downregulation on the concentrations of TARC 
and IL-6 in TNF-α + IFN-γ-stimulated HaCaT cells (Figs. 4E, F). 

Figure 4. CCL19 promotes inflammatory response in TNF-α+IFN-γ-induced HaCaT cells by upregulating CCR7. A. Western blotting  
and RT-qPCR were used to estimate protein and mRNA levels of CCR7, respectively, in TNF-α + IFN-γ-induced HaCaT cells transfected with 
empty vector denoted as ‘vector’ or pcDNA3.1-CCR7 vector (denoted as ‘CCR7’). B. HaCaT cells’ viability assessed by MTT assay in transfected 
cells: con + si-NC group, con + si-CCL19 group, and si-CCL19 + CCR7 group. C, D. Content of nitric oxide and PGE2 in HaCaT cells were 
detected by ELISA. E, F. Concentrations of TARC and IL-6 in cell supernatants of cells treated as described in B and C were measured by ELISA. 
G. Protein level of iNOS and COX-2 in cells described in B and C were determinated by Western blotting. *P < 0.05, **P < 0.01, ***P < 0.001.  
Data are displayed as means ± SD. Abbreviations: COX-2 — cyclooxygenase 2; GAPDH — glyceraldehyde-3-phosphate dehydrogenase; 
HaCaT — human immortalised keratinocytes; iNOS — induced nitric oxide synthase; SD — standard deviation; TARC — thymus and 
activation-regulated chemokine.
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Interaction between CCL19, CCR7  
and NF-κB signalling

Our results can be summarised in the following way: in 
the TNF-α + IFN-γ-induced HaCaT cells, CCL19 interacted 
with CCR7 to activate I-kappaB kinases (IKKs). IKKs phos-
phorylated IκBα in the IκBα-NF-κB complex in cells, so that 
IκBα was ubiquitinated and degraded. Then, NF-κB entered 
the nucleus, thereby promoting DNA-binding capacity and 
gene expression (Fig. 5).

Discussion
Atopic dermatitis is a chronic pruritus and inflamma-

tory skin disease related to heredity [25]. Like asthma and 
allergic rhinitis, it belongs to the category of allergic dis-
eases [25, 26]. Skin inflammation is caused by skin barrier 
injury, anomalous cells, and the infiltration of T cells into the 
dermis [27]. A growing number of reports have indicated 
that IFN-γ and TNF-α can stimulate keratinocytes, so as to 

activate different signalling pathways and participate in 
promoting inflammation [28]. Thus, IFN-γ/TNF-α treatment 
is  frequently used as the inducing method for studying 
in vitro models of skin inflammatory responses [28, 29]. 
When the skin barrier is injured, stimulated keratinocytes 
promote the production of abundant cytokines and 
chemokines [30]. In our study, we stimulated human immor-
talised keratinocytes using TNF-α together with IFN-γ. The 
results proved that the treatment of TNF-α + IFN-γ markedly 
induced cytotoxicity and repressed cell viability of HaCaT 
cells, suggesting that an in vitro AD cell model was effec-
tively established. 

Chemokines are small proteins which stimulate the 
recruitment of leukocytes [31]. Many chemokines have been 
suggested to be maladjusted in AD and have the poten-
tial to be biomarkers of AD [11]. For example, CCL17 has 
been shown to function as a key chemokine in the progres-
sion of AD and can serve as a dependable biomarker [32]. 

Figure 5. Schematic diagram of interactions between CCL19, CCR7 and NF-κB signalling. In human immortalised keratinocytes (HaCaT 
cells) induced with TNF-α and IFN-γ, CCL19 interacted with CCR7 to activate I-kappaB kinases (IKKs). IKKs phosphorylated IκBα in IκBα-NF-κB 
complex in cells, and as a result IκBα was ubiquitinated and degraded. Thereafter, NF-κB complex made of two subunits entered nucleus, 
thereby promoting DNA-binding capacity and gene expression.
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CCR4 can facilitate AD development by promoting Th2 cell 
infiltration [33]. Although previous studies have confirmed 
that CCL19 and CCR7 can interact with AD-relevant pro-
teins [21, 22], their specific roles in AD have not yet been elu-
cidated. We detected the levels of CCL19 and CCR7 in HaCaT 
cells. The results showed that treatment with both TNF-α 
and IFN-γ significantly upregulated levels of CCL19 and 
CCR7 in HaCaT cells. Some chemokines are considered 
to play a pro-inflammatory role, and their release can be 
induced during an immune response at a site of infec-
tion [34]. Thus, we further estimated the effect of CCL19 on 
inflammation response. 

We found that CCL19 knockdown repressed the protein 
levels of the proinflammatory enzymes, iNOS and COX-2, and 
the levels of their products (nitric oxide and PGE2), and the 
release of proinflammatory factors (TARC and IL-6) caused 
by TNF-α + IFN-γ stimulation of HaCaT cells. Moreover, cyto-
toxicity induced by TNF-α + IFN-γ was also repressed by 
CCL19 knockdown. Therefore, we showed that CCL19 accel-
erated TNF-α + IFN-γ-induced inflammatory responses in 
HaCaT cells. CCR7 is mainly expressed on the surface of 
dendritic cells, T-lymphocytes and B-lymphocytes and it 
can regulate cell survival and migration [35]. It has been 
reported that CCR7 can be considered as a potential ther-
apeutic target in allergies [20].

In this study, we found that overexpression of CCR7  
offset the inhibitory effects of CCL19 knockdown on nitric 
oxide, PGE2, iNOS, COX-2, TARC and IL-6 levels in TNF-α + IFN- 
-γ-induced HaCaT cells. Our findings suggest that CCL19  
exerts a proinflammatory effect in TNF-α + IFN-γ-induced 
HaCaT cells by upregulating CCR7. The  interaction 
of  CCL19 and CCR7 has been confirmed in a colorectal 
cancer model [36]. For example, CCL17 combined with 
CCL19 as a nasal adjuvant enhances the immunogenicity 
of an anti-caries DNA vaccine in rodents [37]. CCL19 has 
been shown to inhibit gastric cancer cell proliferation via 
the CCL19/CCR7/AIM2 pathway [38]. We have demonstrat-
ed an interaction between CCL19 and CCR7 in an in vitro 
model of AD for the first time.

NF-κB is a crucial transcription factor in immune and 
inflammatory reactions, and it participates in skin diseases 
by regulating the transcription of different proinflamma-
tory factors in AD [39, 40]. For example, diisononyl phthal-
ate expedites AD development in mice by activating 
NF-κB [40]. Paeoniflorin facilitates the progression of AD 
by repressing the NF-κB/IκBα signalling pathway in T lym-
phocytes [41]. A previous study revealed that CCR7 pro-
moter includes the potential binding site for NF-κB, which 
plays a key role in various inflammatory diseases [42]. 
For example, SIRT1 can suppress atherosclerosis formation 
in a U937 cell model regulating the CCR7/NF-κB 
pathway [43]. The IKKs, p65/p50 complex, and IκB, are key 
factors controlling the NF-κB pathway [44]. In our study, 

we discovered that CCL19 depletion repressed p-IkBα and 
p-p65 levels in TNF-α + IFN-γ-induced HaCaT cells via reg-
ulating CCR7, suggesting that the  NF-κB signalling pathway 
was activated by CCL19.

Overall, our study has shown that CCL19 promotes 
TNF-α + IFN-γ-induced inflammatory responses by targeting 
CCR7/NF-κB signalling in cultured keratinocytes. This new 
finding provides a robust theoretical and experimental 
foundation for the investigation of CCL19’s role in animal 
models of atopic dermatitis. The main limitation of our study 
is the lack of an in vivo animal assay, and this will become 
the focus of our future research.
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