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Nootkatone mitigates periodontal inflammation 
and reduces alveolar bone loss via Nrf2/HO-1 
and NF-κB pathways in rat model of periodontitis
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destruction of periodontal tissues, including the alveo-
lar bone  [2, 3]. Effective management of periodontitis 
remains a significant clinical challenge, highlighting the 
need for new therapeutic agents that can reduce inflam-
mation, promote tissue regeneration, and restore perio-
dontal health  [4].

INTRODUCTION
Periodontitis (PD) is a chronic inflammatory disease 

affecting the supporting structures of teeth, leading 
to alveolar bone resorption and even tooth loss [1, 2]. 
This condition is primarily caused by microbial biofilms, 
which trigger an inflammatory response resulting in the 
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ABSTR AC T
Introduction. Periodontitis (PD) is a chronic inflammatory disease leading to alveolar bone loss. 
This study investigated the effect of nootkatone and regulatory mechanism in reducing periodontal 
inflammation and alveolar bone loss in a rat model. 
Material and methods. Twenty male Sprague-Dawley rats were divided into control, periodonti-
tis, and nootkatone-treated groups (45 or 90 mg/kg). Ligature induction method was adopted to 
establish the PD model. After 21 days, rats received daily gavage of either saline or nootkatone for 
10 days. Alveolar bone loss was assessed using micro-CT. Histological analyses included hematoxylin 
and eosin (H&E), tartrate-resistant acid phosphatase (TRAP), and Masson’s trichrome stainings. Immu-
nohistochemistry for heme oxygenase 1 (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2) 
were performed in periodontal tissues. Content of inflammatory cytokines IL-1β, IL-6, and TNF-α 
in gingival tissues around ligature were assessed using ELISA kits. Malondialdehyde (MDA) level 
and superoxide dismutase (SOD) activity were analyzed and Western blot for NF-κB expression in 
gingival tissues were performed. 
Results. Nootkatone significantly reduced the distance from cementoenamel junction to alveolar 
bone crest (CEJ-ABC), enhanced bone mineral density (BMD), bone volume (BV), and BV/total vo-
lume (TV) ratio in ligature-induced rats. Higher dose of nootkatone (90 mg/kg) did not show more 
significant therapeutic effect than lower dose (45 mg/kg). Histological staining showed decreased 
osteoclasts’ number and improved bone architecture in the nootkatone group. Content of IL-1β, 
IL-6, and TNF-α and inflammatory cell infiltration level in gingival tissues around the ligature were 
decreased in the nootkatone-treatment rats. Nootkatone increased Nrf2 and HO-1 protein expression 
and decreased NF-κB protein level, suppressing MDA levels and enhancing SOD activity.
Conclusions. In a rat model, nootkatone effectively mitigates periodontal inflammation and alveolar 
bone loss through the Nrf2/HO-1 and NF-κB pathways. These findings suggest nootkatone as a pro-
mising therapeutic agent for the treatment of periodontitis.
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The pathogenesis of periodontitis involves mediators 
like tumor necrosis factor-alpha (TNF-α), interleukins (IL-1β 
and IL-6), and nuclear factor kappa B (NF-κB), which are 
crucial in driving the inflammatory response and subse-
quent tissue destruction  [5–9]. Natural compounds have 
shown promise in modulating inflammatory pathways 
and promoting tissue regeneration in periodontal disease 
models [10]. Studies have shown that curcumin can reduce 
in experimental periodontitis the production of pro-in-
flammatory cytokines IL-1β and TNF-α through the inhi-
bition of the NF-κB pathway and decrease the infiltration 
of inflammatory cells  [11, 12]. Additionally, curcumin has 
shown potential bone-protective effects by inhibiting the 
expression of TNF-α and IL-6 in pulp exposure-induced 
apical periodontitis in rat, making it a promising candidate 
for periodontal therapy  [13]. Another natural compound, 
resveratrol, found in grapes and berries, could attenuate 
periodontal tissue destruction by reducing oxidative stress 
and modulating inflammatory responses in periodonti-
tis  [14]. Epigallocatechin-3-gallate could protect against 
periodontitis in rat model by inhibiting inflammation, oxi-
dative stress and thus reducing the alveolar bone loss  [15].

Similar to resveratrol, nootkatone, a sesquiterpenoid 
present in grapefruit and Alaskan yellow cedar [12], has also 
been studied in model diseases due to its anti-inflammatory 
and antioxidant properties  [16–18]. Previously, nootka-
tone showed anti-inflammatory and neuroprotective effect 
in murine model of Parkinson’s disease  [19]. Nootkatone 
was discovered to alleviate liver injury and neurotoxicity 
induced by melamine in rats and inhibit oxidative stress and 
inflammation acting via NF-kβ pathway [17, 20]. Nootkatone 
also showed its anti-inflammation and protective effect 
against cartilage degeneration in mouse by inhibiting NF-kβ 
signaling pathway  [21]. 

Given the anti-inflammatory and antioxidant effects 
of nootkatone, we hypothesize that nootkatone treatment 
could alleviate periodontal inflammation, reduce osteo-
clast activity, and enhance alveolar bone regeneration. 
The aim of this study is to evaluate the possible therapeutic 
potential of nootkatone and its regulatory mechanism in a rat 
model of ligature-induced periodontitis. 

MATERIALS AND METHODS
Animals

Male Sprague-Dawley rats (n = 20), weighing 250 ± 
± 10 grams and aged 8 weeks, were selected for the exper-
iments (VitalRiver Biotech, Beijing, China). These rats were 
kept in a controlled environment with a 12-hour light/dark 
cycle and were provided with unlimited access to food 
and water. The animal experiments were approved by the 
Animal Ethics Committee of Tianjin Key Laboratory of Food 
Biotechnology (TKLFB-2023YJS-20).

Induction of periodontitis
To create a model of periodontitis, a 3-0 silk ligature was 

applied in the gingival areas around the second molars (M2) 
on the mandibles (n = 15) , as described in [22], with the unli-
gated rats as a control (n = 5). After a period of 21 days, the rats 
were given either 0.9% NaCl (PD group, n = 5) or nootkatone 
(Acmec, Shenzen, Guangdong, China) at doses of 45 (n = 5) or 
90 mg/kg (n = 5) via oral gavage daily for 10 days. Nookatone 
was dissolved in corn oil at 4.5 and 9 mg/mL, respectively, 
and 2.5 mL was administered each time.

Micro-CT analysis
Following the treatments, the animals were euthanized 

through inhalation of isoflurane, followed by decapitation, 
and their mandibles were harvested and fixed in 4% para - 
formaldehyde for 24 h. Micro-computed tomography 
(micro-CT, SKYSCAN 1276, Bruker, Beijing, China) was used 
to scan the mandibles as described by Borges et al. [23]. 
The images were analyzed to measure the cement-enamel 
junction to alveolar bone crest (CEJ-ABC) distance and vari-
ous bone parameters, including bone mineral density (BMD), 
bone volume (BV), total volume (TV) and the ratio of BV/TV.

Histological procedures
The harvested mandibles were decalcified using 10% 

EDTA for 28 days, then embedded in paraffin. Serial sections 
of 5 µm thickness were prepared and subjected to hemato- 
xylin and eosin (H&E) staining to examine tissue morphol-
ogy and inflammatory cells’ infiltration, tartrate-resistant 
acid phosphatase (TRAP) staining to identify osteoclasts, 
and Masson’s trichrome staining to assess collagen fibers 
and bone architecture  [24, 25]. We examined five sections 
from five mandibles in each group (n = 5). The specimen after 
staining were scanned on a digital Case Viewer (3D Histech, 
Budapest, Hungary). Inflammatory cells including lympho-
cytes, neutrophils and mononuclear macrophages in the 
gingival areas between the first molar (M1) and second 
molar (M2) were counted on the H&E sections by using 
Image J software (NIH, Bethesda, MD, USA). Representative 
images of H&E staining were captured at the magnifications 
of 5× and 40×. TRAP-positive cells in the area between M1 and 
M2 in each section were counted at magnification 20× with 
the use of Case Viewer Software (3D Histech). Representative 
images of TRAP staining were captured at magnification 40×.

Immunohistochemistry
Immunohistochemical staining was conducted on par-

affin sections to evaluate heme oxygenase 1 (HO-1) and 
nuclear factor erythroid-2 related factor 2 (Nrf2) expression. 
Sections were deparaffinized, rehydrated, and underwent 
antigen retrieval in citrate buffer (pH 6, 10 mM) at 121°C 
for 10 min. Endogenous peroxidase activity was blocked 
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using 3% hydrogen peroxide solution. Sections were 
then incubated overnight at 4°C with primary antibodies: 
anti-Heme Oxygenase 1 rabbit pAb (GB11549-100; 1:600, 
ServiceBio, Wuhan, Hubei, China) and anti-NRF2 rabbit 
pAb (GB113808-100; 1:600, ServiceBio). Afterwards, the 
sections were treated with HRP-conjugated goat anti-rabbit 
antibody (GB23303; 1:500, ServiceBio) for 50 min at room 
temperature, and signals were visualized using a DAB kit 
(G1212-200T, ServiceBio). Hematoxylin was used for coun-
terstaining. The integrated optical density (IOD) values of 
HO-1 and Nrf2 was analyzed with the use of Image J (NIH).

Enzyme-linked immunosorbent assay (ELISA)
Gingival tissues around second molars on the man-

dibles were homogenized on ice in phosphate-buffered 
saline (PBS) and centrifuged at 5000 g for 10 min at 4°C 
to collect supernatants. The concentrations of IL-1β, IL-6, 
and TNF-α in the supernatants were measured using 
ELISA kits (E-HSEL-R0002, E-HSEL-R0004, E-EL-R2856; 
Elabscience, Wuhan, Hubei, China) according to the man-
ufacturer protocols. Absorbance readings were taken 
at 450 nm using a microplate reader (Thermo Fisher, 
Waltham, MA, USA).

Determination of MDA levels and SOD activity
Malondialdehyde (MDA) level and superoxide dismutase 

(SOD) activity in gingival tissue supernatants were quanti-
fied using commercial kits (Elabsicence). MDA levels were 
determined via reaction with thiobarbituric acid  [26], while 
SOD activity was measured through a colorimetric assay that 
monitors the inhibition of nitro blue tetrazolium reduction 
as per the manufacturer’s protocol.

Western blot analysis
Proteins were extracted from gingival tissues using RIPA 

lysis buffer with added protease and phosphatase inhib-
itors (Beyotime, Shanghai, China). Protein samples were 
subjected to SDS-PAGE, then transferred to PVDF mem-
branes. Membranes were blocked with 5% non-fat milk 
and incubated overnight at 4°C with anti-NF-κB rabbit pAb 
(GB11997-100; 1:800, ServiceBio) and anti-glyceralde-
hyde-3-phosphate dehydrogenase antibody (anti-GAPDH) 
rabbit pAb (GB15004-100; 1:5000, ServiceBio). After wash-
ing, membranes were incubated with HRP-conjugated goat 
anti-rabbit antibody (GB23303; 1:10000, ServiceBio). Protein 
bands were visualized using an ECL detection kit (ServiceBio), 
and the relative protein expression levels against GAPDH 
were analyzed using ImageJ software (imagej.net).

Statistical analysis
Statistical analyses were performed using GraphPad 

Prism software (GraphPad Inc., San Diego, CA, USA). Group 

comparisons were made using one-way ANOVA followed 
by Tukey’s post-hoc test for multiple comparisons. A P-value 
of less than 0.05 was considered statistically significant.

RESULTS
Nootkatone alleviates the alveolar bone resorption 

in rats with ligature-induced periodontitis
As described above, a periodontitis rat model was 

established using the ligature-induced methods around 
the second molar (M2) of the left mandible, with the 
uninduced counterpart as a control (Ctrl). After 21 days 
of ligature inducement, the rats were treated with 
0.9% NaCl or nootkatone (45 or 90 mg/kg) by gavage 
for 10 days. The CEJ-ABC distance of M2 on the lingual side 
was analyzed and results showed that ligature induction 
increased the CEJ-ABC distance significantly, signifying the 
successful establishment of the PD rat model (Fig. 1A–C). 
The oral administration of nootkatone decreased the CEJ-
-ABC distance, yet the larger dose (90 mg/kg) exerted 
similar effect as the 45 mg/kg dose (Fig. 1A–C). The micro-
CT analysis also revealed that the bone parameters BMD, 
BV and BV/TV were decreased in PD group whereas 
treatment with nootkatone restored these parameters 
to control values (Fig. 1D, E, G). No significant difference 
in TV values among the groups were found in this study 
(Fig. 1F). Furthermore, the results showed that the larger 
dose (90 mg/kg) didn’t show better effect than 45 mg/kg 
(Fig. 1D, E, G). These results initially demonstrated that 
nootkatone could alleviate the alveolar bone resorption 
in PD rats and larger dose (90 mg/kg) didn’t show better 
effect than 45 mg/kg.

Nootkatone decreased number of osteoclast cells 
and promoted the new bone formation

The TRAP staining was used to analyze the perio-
dontal tissues in each group for the counts of osteoclast 
cells. Results presented an increase in the number of 
osteoclast cells in alveolar bone area in ligature-induced 
PD group compared to the Ctrl (Fig. 2A, B, D). The treat-
ment with nootkatone (45 mg/kg) for 10 days significantly 
reduced number of osteoclasts and no significant differ-
ence was found between the nootkatone and Ctrl groups 
in the number of TRAP-positive cells (Fig. 2C, D). Masson 
staining displayed intact epithelium and regular junctional 
epithelium in the Ctrl group (Fig. 2E), absence of interden-
tal papilla, migration of the junctional epithelium in the 
PD group (Fig. 2F), and its restoration in the nootkatone 
group (Fig. 2G). The maturity of the bone was high in the 
Ctrl group (Fig. 2E). In PD group, Masson staining showed 
more collagen fibers, correlated with low calcification of 
the alveolar bone and Haversian structure was still in the 
stage of initial formation (Fig. 2F). 
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Nootkatone inhibited the inflammation  
in ligature-induced periodontitis rats

Consistent with the results of Masson staining, H&E 
staining also demonstrated the loss of interdental papilla 
and apical migration of junctional epithelium in PD group, 
which was restored in the nootkatone group (Fig. 3A–C). 
On the other hand, compared to the control rats, the num-
ber of inflammatory cells was significantly increased in 
the PD group and was reduced by nootkatone treatment, 
whereas no significant difference was found between the 
nootkatone and Ctrl groups (Fig. 3D). The levels of inflam-
matory cytokines, IL-1β, IL-6 and TNF-α, were examined in 
gingival tissues using ELISA. The concentrations of these 
proteins were elevated in PD group (versus Ctrl) and were 
decreased in the nootkatone group. Still, the IL-1β, IL-6 and 

TNF-α concentrations were significantly higher in nootka-
tone-treated rats than control ones (Fig. 3E, F, H). 

Nootkatone alleviated the periodontitis in rats 
through oxidative stress related-Nrf2/HO-1/NF-kβ 

pathway 
Immunohistochemistry results showed that HO-1immu-

noreactivity (-Ir) was lower in PD group in comparison with 
the control group, whereas nootkatone treatment increased 
HO-1-Ir to the level higher in nootkatone group than the Ctrl 
group (Fig. 4A, C). Nrf2-Ir was lower in the PD group; howev-
er, the nootkatone treatment significantly increased Nrf2-Ir 
as compared to the control group (Fig. 4B, D). In addition, 
western blot analysis showed that NF-κβ expression was 
enhanced in the PD group and reduced in the nootkatone 

Figure 1. Nootkatone alleviates the alveolar bone resorption in mandibles with ligature-induced  periodontitis (PD) in rat. PD rat models 
were established using the ligature-induced methods around the M2 of the left mandible, with the uninduced counterpart as a Ctrl.  
After 21 days of ligature inducement, the rats were treated with 0.9% NaCl or nootkatone (45 or 90 mg/kg) by gavage for 10 days.  
Micro CT method was applied to evaluate the PD-induced changes of the bone. A. Representative images of the molars after 3D reconstruc-
tion of the mandibles in each group. B. Representative scanning images of the molars that are used to analyze the CEJ–ABC distance.  
C. CEJ-ABC distance. D. BMD. E. BV. F. TV. G. The ratio of BV/TV. In histograms the bars represent means and the whiskers standard errors. 
 *P < 0.03; **P < 0.002; ***P < 0.0002; ****P < 0.0001; #P < 0.03; ##P < 0.002 in comparisons with the Ctrl group. Abbreviations: BMD — bone min-
eral density; BV — bone volume; CEJ–ABC — cementoenamel junction to alveolar bone crest; CT — computed tomography; Ctrl — control; 
M2 — second molar; ns — not significant; TV — total volume.
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group (Fig. 4E). The MDA content was enhanced in PD 
group but was decreased in the nootkatone group (Fig. 4F). 
SOD activity was inhibited in the PD group but it was recov-
ered in the nootkatone group (Fig. 4G). In addition, no signif-
icant differences were found in the levels of MDA and SOD 
activity, as well as NF-κβ protein expression between the 
nootkatone and control groups (Fig. 4E–G). These results 
indicated that the oxidative stress parameters activated 
in ligature-induced periodontitis rats were reversed by the 
nootkatone treatment. 

DISCUSSION
In this study, we showed that nootkatone treatment 

leads to a reduction in alveolar bone loss compared to the 
periodontitis group using micro-CT analysis. Histological 
staining showed decreased osteoclasts’ number and 
improved gingival tissue structure in the periodontitis rats 
after nootkatone treatment. These findings suggest that 
nootkatone could alleviate periodontitis. Previous studies 
showed that nootkatone could protect against oxidative 
stress in murine models of liver injury, neurotoxicity, and 

nephrotoxicity  [17, 20, 27]. In liver injury murine model, 
nootkatone was confirmed to suppress oxidative stress 
through Nrf2/HO-1/NF-kβ pathway [28]. In myocardial 
injury model, nootkatone also inhibited oxidative stress 
via NF-kβ route  [29]. Previous research showed that herbal 
medicine could regulate Nrf2/HO-1 to protect human or 
mouse vascular endothelial cells from oxidative stress 
induced by H

2
O

2, 
IL-1, TNF-κ, and other factors  [30]. Herbal 

medicine was also discovered to inhibit neuroinflamma-
tion and depression via oxidative stress inhibition through 
Nrf2/HO-1 signaling  [31]. For instance, Daidzein, a natural-
ly occurring dietary isoflavone, alleviated the neuropathic 
pain neuroinflammation induced in mice by paclitaxel, 
inhibiting oxidative stress by activating Nrf2/HO-1 path-
way [32]. Nrf2 is a transcription factor that regulates the 
expression of antioxidant proteins protecting against oxi-
dative damage triggered by injury and inflammation  [33]. 
HO-1, a downstream target of Nrf2, has been shown to 
exert anti-inflammatory and cytoprotective effects [34]. 
Sinensetin, a polymethoxylated flavone alleviated liga-
ture-induced periodontitis in rat by upregulating HO-1 and 

Figure 2. Nootkatone promoted the new bone formation and decreased number of osteoclasts identified by TRAP staining. The periodontal 
tissues were examined using the TRAP and Masson staining methods. A–C. TRAP staining in Ctrl, PD and PD + nootkatone (45 mg/kg) groups, 
respectively. The red arrows marked the osteoclasts. D. TRAP-positive cells in each group were counted as described in Methods. E–G. Mas-
son staining in Ctrl, PD and PD + nootkatone (45 mg/kg) groups, respectively. **P < 0.002. Abbreviations: Ctrl — control; ns — not significant; 
PD — periodontitis; TRAP — tartrate-resistant acid phosphatase.
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Figure 3. Nootkatone inhibited the infiltration of inflammatory cells and concentrations of proinflammatory cytokines in ligature-induced 
periodontitis (PD) in rat. H&E staining was performed on sections of mandibles from control and PD-induced rats. A. Respective H&E-stained 
section in the Ctrl group. The black boxed area in the gingiva was augmented in the right panel at 40×. B. Ligature-induced PD group. 
C. PD and nootkatone (45 mg/kg) group. D. Number of inflammatory cells in gingival area was determined as described in Methods. 
E–G. ELISA kits were used to analyze the protein levels of IL-1β, IL-6 and TNF-α in the gingival tissues. *P < 0.03; **P < 0.002; ***P < 0.0002; 
#P < 0.03; ##P < 0.002 in comparisons with the Ctrl group. Abbreviations: Ctrl — control; H&E — haematoxylin and eosin; ns — not significant; 
PD — periodontitis. 

suppressing oxidative stress  [35]. In our study, adminis-
tration of nootkatone to rats with periodontitis increased 
the immunoreactivity of Nrf2 and HO-1 in periodontal 
tissues, suggesting that nootkatone enhances the anti-
oxidant defense mechanisms, reducing oxidative stress as 
shown by decreased MDA level and enhanced SOD activity. 
Oxidative stress is one of key factors in the pathogenesis of 
periodontitis in rat and human [36]. The Nrf2/HO-1 path-
way plays a crucial role in mitigating oxidative stress by 
upregulating the expression of antioxidant enzymes such 
as SOD, thereby neutralizing ROS and protecting perio-
dontal tissues from oxidative damage  [37]. In the in vitro 
and in vivo models of periodontitis, excessive ROS can acti-
vate the NF-κB, further exacerbating the inflammatory 

response and contributing to the destruction of perio-
dontal tissues  [38].

Pro-inflammatory cytokines IL-1β, IL-6 and TNF-α are 
widely reported in inflammation-related diseases, including 
periodontitis and rheumatoid arthritis [39, 40]. Periodontitis, 
triggered by pathogen microbes, is characterized by 
destructive inflammatory immune response and resultant 
connective tissue damage and alveolar bone loss [41]. In 
periodontitis patients, pro-inflammatory cytokines IL-1β, 
IL-6 and TNF-α are biomarkers of the disease severity [42, 
43]. Treatment with antagonists of IL-1 and TNF-α showed 
significant therapeutic effect in a non-human primate 
model of periodontitis induced by ligature impregnated 
with Porphyromonas gingivalis [44]. In ligature-induced 
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periodontitis rats, blocking IL-6 inhibited inflammatory cells’ 
infiltration, and reduced attachment damage and bone 
loss [41]. Our findings showed that nootkatone decreased 
the levels of IL-κB, IL-6 and TNF-α in gingival tissue of rats 
with induced periodontitis, which likely contributes to 
reduced alveolar bone loss.

The therapeutic potential of natural compounds 
in the therapy of periodontitis has been increasingly recog-
nized due to their safety profile and efficacy in modulating 
biological pathways involved in inflammation and tissue 
regeneration. Curcumin, for instance, has been extensive-
ly studied for its anti-inflammatory and bone-protective 
effects in periodontitis models [45]. Resveratrol has also 
shown promise in reducing oxidative stress and modulating 

inflammatory responses in periodontal disease  [46, 47]. 
Our study adds to this growing body of evidence by high-
lighting nootkatone as a novel natural compound with 
therapeutic benefits for periodontitis. The limitation of this 
study exists in the limited exploration of complex molec-
ular mechanisms related to nootkatone action and on the 
specific type of mechanically induced PD. Animal models 
induced by placement of P. gingivalis-infected silk ligatures, 
have been widely used in validating therapeutic effects of 
new material or compound in periodontitis [48, 49]. 

In summary, this study identifies nootkatone as a prom-
ising candidate for the possible adjunctive treatment of 
periodontitis if future research could show its effectiveness 
in other models of PD. 

Figure 4. Nootkatone alleviated the periodontitis in rat acting on Nrf2/HO-1/NF-κB signaling pathway. A–D. Immunohistochemical method 
was applied to analyze the presence of HO-1 and Nrf2 proteins in periodontal tissues. Image J software was used to analyze the IOD values 
of HO-1 and Nrf2 in each group. E. Western blot was performed to measure the protein levels of NF-kβ with normalization to GAPDH. 
F, G. MDA and SOD levels were measured as described in Methods. *P < 0.03. **P < 0.002, ***P < 0.0002; ****P < 0.0001; #P < 0.03; ##P < 0.002 
in comparisons with the Ctrl group. Abbreviations: GAPDH —glyceraldehyde-3-phosphate dehydrogenase antibody; IOD — integrated 
optical density; MDA — malondialdehyde; ns — not significant; SOD — superoxide dismutase.
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