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Abstract 
Heart failure (HF) is the leading cause of hospitalization among patients aged 65 years and older. One of the most com-
mon comorbidities in HF is iron deficiency (ID), being present in about 50% of all HF patients. ID in HF has been shown 
to reduce exercise capacity, increase the risk of cerebrovascular events, and increase patient morbidity and mortality. 
The association between heart failure with reduced ejection fraction (HFrEF) and ID has already been proven to lead to 
an increased risk of cardiovascular events, and some research is establishing a similar relation between heart failure 
with preserved ejection fraction (HFpEF) and ID. ID can lead to hypercoagulability, which in HF may be associated with 
an increased risk of stroke/TIA (transient ischemic attack).
Although current HF treatment guidelines recognize ID as a significant problem, ID is still rarely recognized and undertreated.
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Introduction

Iron deficiency (ID) is currently one of the most prominent 
nutrient deficiencies worldwide [1]. There are many possible 
causes of ID, such as increased demand and loss of iron, 
decreased absorption and inadequate dietary intake, and 
impaired iron release [2, 3]. According to current ESC 
guidelines, ID in HF patients is defined as either a serum 
ferritin concentration < 100 µg/mL or as 100–299 µg/mL 
with transferrin saturation (TSAT) < 20% [4].

However, ID still continues to be undertreated and un-
derdiagnosed in the clinical setting [5]. Concurrent ID and 
HF can have profound negative effects on the patient’s 
condition leading to a decreased exercise capacity and 

quality of life (QoL), higher morbidity, and mortality [4, 6, 
7]. ID may also cause a wide range of hematological 
complications within patients, such as predisposing the 
patient to thromboembolic events [8]. 

The aim of this paper is to emphasize connections made 
through the most current literature on the issue of cere-
brovascular events connected with ID in HF patients and 
to indicate the most needed directions of further research. 

Iron deficiency

Iron is an essential mineral for the body and is vital 
for a multitude of different functions, such as oxygen 
transport, metabolism and storage, cardiac and skeletal 
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muscle metabolism, erythropoiesis, mitochondrial pre-
servation and function, a cofactor for various enzymes 
or cellular metabolism [5, 7, 9]. Iron exists either in the 
ferrous form (Fe2+), during absorption in the small inte-
stine, or bound intracellularly to ferritin or as the ferric 
form (Fe3+) coupled to the transport protein transferrin 
during circulation [5]. 

Iron homeostasis is solely regulated by absorption, as 
no means of iron excretion exists [9]. In the physiological 
state, only about 5–10% of the dietary iron is absorbed.

Iron absorption, taking place mainly in the duodenum 
and upper jejunum [5], can occur in three pathways accor-
ding to the chemical form of iron present. Those pathways 
are shown in Figure 1. Free ferrous ions are absorbed 
via the divalent-metal-transporter-1 pathway, whereas 
heme-bound iron is absorbed via the heme-carrier-prote-
in-1 pathway. In the enterocyte, iron can be stored bounded 
by ferritin or it can be transported directly to the basolate-
ral side by mobilferrin to release iron to the circulation via 
the intramembranous channel ferroportin. Hepcidin, pro-
duced in the liver, is the main regulator of iron absorption 
as it binds to ferroportin to decrease its expression as well 
as by inhibiting the mobilization of stored iron in macrop-
hages of the reticuloendothelial system [10]. 

Iron deficiency anemia (IDA) is a consequence of pro-
longed ID where the ID is severe enough to reduce erythro-
poiesis in the bone marrow [11]. The prevalence of iron 

deficiency has been extensively studied and well summari-
zed by Savarese et al. [12], about one in every two per-
sons with HF has ID. It seems that regardless of anemia, 
ID is present in about 50% of patients with HF [12]. On the 
contrary, ID and anemia in HF coexist rarely [13]. Moreover, 
anemia does not influence mitochondrial functions, and 
its treatment relieved HF symptoms, but at the same time 
increased thromboembolic events’ risk [13]. IDA leads to 
structural and functional alterations in tissues with a high 
mitotic index and oxygen demand, such as neoplastic, im-
mune and cardiac cells, which are especially sensitive to 
anemia [5]. It has a significant impact on HF pathology and 
is an established predictor of a worse prognosis [10]. Pre-
vious studies have shown accelerated left ventricular (LV) 
remodeling, mitochondrial damage, and low iron content in 
cardiomyocytes in HF patients, possibly explaining reduced 
peak oxygen consumption and LV dysfunction associated 
with HF [7]. Furthermore, skeletal muscle dysfunction can 
ultimately lead to inspiratory muscle weakness, dramati-
cally lowering the QoL of HF patients [5]. Impaired exercise 
capacity is the result of crucial patient characteristics and 
multisystem dysfunction, including aging, impaired pulmo-
nary reserve, peripheral and respiratory skeletal muscle 
dysfunction as well as ID [14, 15]. 

Despite the significant prevalence of ID in HF, the 
etiology is often unrecognized [3]. The main suggested 
mechanisms include reduced iron intake and absorption, 

Figure 1. Iron metabolism in the body; DMT1 — divalent-metal-transporter-1; Fe2+ — ferrous iron form; Fe 3+ — ferric iron form; HMP1 — 
heme-carrier-protein-1
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increased iron loss, and impaired iron release [2]. The 
summary of the possible etiologies of ID in HF is seen 
in Figure 2.

Reduced iron intake
Iron requirements and thus recommended iron intake de-
pend mainly on sex, age and pregnancy status. In a large 
international HF cohort, Van Der Wal et al. [3] showed that 
a poor nutritional status with low serum albumin level might 
be an etiological pathway for ID in HF. As iron intake was 
not studied itself, and the underlying reason for the poor 
nutritional status is not clear yet, further studies need to be 
done. A cross-sectional study from Christina Andreae [16] 
identified a significant prevalence of loss of appetite with 
a high risk of weight loss in patients with HF. It needs to be 
emphasized that increasing the intake of iron such as in 
oral iron therapy is not effective and due to excessive polyp-
harmacy and possible side effects is not recommended [5]. 

Reduced iron absorption
Venous congestion leads to gastrointestinal wall edema, 
which might reduce the absorption of nutrients such as 

iron [3]. Other factors like concomitant diseases such as 
inflammatory bowel disease or the high prevalence of pro-
ton pump inhibitor usage in HF patients, might also play an 
etiological role in ID in HF [3]. Furthermore, recent studies 
showed that hepcidin levels are decreased in HF patients, 
suggesting that the iron concentration is a dominating 
factor over the inflammatory state to determine the rate 
of hepcidin synthesis [3, 5, 10]. In conclusion, ID is more 
likely caused by an absolute decrease in iron availability 
than by a metabolic mechanism induced by a chronic 
inflammatory state [5]. 

Increased iron loss
Increased iron loss is another factor that contributes ID in 
HF. Firstly, as a recent study by Meijers et al. [17] identified 
HF as a novel risk for incident cancer, blood loss, and as 
a consequence, iron loss in HF might therefore be due to 
malignancies or gastrointestinal diseases such as gastri-
tis or peptic ulcers [2]. Secondly, patients with ID have 
a higher prevalence of antiplatelet use [3]. Thus, iron loss 
in these patients might be due to an increased tendency 
for bleeding.

Figure 2. Iron deficiency etiology in heart failure
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All in all, the etiology of ID in HF is highly complex, mul-
tifactorial, and not well understood. Further research on 
the etiopathogenesis of ID in HF needs to be conducted 
to establish recognized causal factors which can help in 
finding sufficient treatment of ID in HF, as a predictor of 
a worse prognosis [7]. 

Stroke and ID in heart failure 

The etiology of HF varies depending on the phenotype. HFrEF 
results as a consequence of the necrosis of cardiomyocytes, 
due to myocardial ischemia, myocarditis, or cardiotoxins, 
and it has the predisposition to affect males more [18]. 
HFpEF occurs most often in patients suffering non-cardiac 
comorbidities such as hypertension, pulmonary disease, 
diabetes mellitus, sleep apnea or obesity and it has the 
predisposition to affect females more often [18]. It is 
known that HF, even in its earliest stage, is a risk factor for 
stroke [19, 20]. Among stroke patients, 9% had HF as the 
cause of the event [20]. Furthermore, 10–24% of stroke 
patients also have HF [20]. The Framingham Heart Study 
emphasized that patients with HF are two to 3 times more 
likely to suffer from a stroke than those without HF [21]. 
On the other hand, one of the pathomechanisms of HF is 
chronic inflammation which may either be a consequence 
of HF or it may precede and be one of the causative factors 
which led to HF. In consequence, chronic inflammation 
leads to hypercoagulability. Finally, endothelial damage is 
also responsible for the pathogenesis of HF, which may be 
caused by various different vasculopathies [20, 21]. The 
above-mentioned factors form the Virchow’s Triad, which 
are at the same time the most important elements for the 

formation of thrombosis [22]. That makes HF a disease of 
a higher risk of thromboembolism forming.

Aside from the already proven fact that ID in HF patients 
leads to a decreased QoL and exercise tolerance, as well 
as to increased patient mortality and morbidity [4], it sho-
uld also be The combination of both these diseases may 
prove deleterious consequences in patients ultimately le-
ading to an increased probability of stroke occurring. Kan-
dinata et al. [23] presented a case of a 34-year-old patient 
with ID who suffered from a stroke. It implies that ID may 
be a great predictive value for stroke, and even greater 
if it is combined with comorbidities. Gillum et al. proved 
there may be a U-shaped connection between iron status 
and the risk of stroke [24]. However, the data on iron sta-
tus and its influence on stroke prevalence is limited and 
conflicting, there is a need to conduct further research on 
the prognostic significance and treatment ID in patients 
with cerebrovascular events [12]. Current trends indicate 
the possible use of hematologic parameters such as ID as 
biomarkers in HF [25].

Table 1 presents selected studies regarding HF and ID 
and their correlation with cerebrovascular events.

Significance and solutions — IRONMAN 
study

The only efficacious and recommended treatment for rever-
sing ID is intravenous (IV) ferric carboxymaltose. However, 
the approved treatment of ID in the setting of left ventricle 
ejection fraction < 50%, there is currently no approved tre-
atment for ID in the setting of HFpEF [4]. To our knowledge, 
IRONMAN was the first large clinical trial that investigated 

Table 1. A review of current literature regarding heart failure and iron deficiency and its correlation with cerebrovascular events

Author Year Type of study N Results/conclusions

Gillum et al. [24] 1995 Follow-up of a national 
cohort

5033 There is a significant U-shaped association of transferrin 
saturation with risk of incident stroke

Dubyk et al. [26] 2012 Prospective, cohort 94 IDA as a risk factor in elderly patients at hospital admis-
sion for TIA or first stroke

Shovlin et al. [27] 2014 Prospective, cohort 497 Iron deficient patients with pulmonary malformations at 
a higher risk of ischemic stroke

Potaczek et al. [28] 2016 Prospective, cohort 229 ID may represent a risk factor for thrombosis recurrence

Adelborg et al. [19] 2017 General population cohort 1 446 765 HF is an important risk factor for all types of stroke.

Gill et al. [29] 2018 Mendelian randomized 48 972 Higher iron status is associated with increased stroke risk

Tang et al. [30] 2020 Prospective, cohort 795 ID and CC are risk factors for thromboembolic diseases

Szulc-Bagrowska et 
al. [31]

2022 Retrospective, observational 150 ID in HF is associated with a higher risk of stroke/TIA

Doehner et al. [32] 2022 Prospective, observational 746 ID and anemia significantly lower functional capacity 
after acute stroke

CC — contraceptives; ID — iron deficiency; IDA — iron deficiency anemia; HF — heart failure; TIA — transient ischemic attack
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Table 2. A comparison of selected clinical trials regarding intravenous iron administration in HF patients

FAIR-HF [36] CONFIRM-HF [37] EFFECT-HF [38] AFFIRM-HF [34] IRONMAN [33]

Type of study Prospective, rando-
mized, multicenter

Prospective, randomi-
zed, multicenter

Prospective, randomi-
zed, open-label, SoC-
-controlled

Prospective, randomi-
zed, multicenter

Prospective, randomi-
zed, open-label, SoC-
-controlled

N FCM: 305 
Placebo: 154

FCM: 152 
Placebo: 152

FCM: 88 
SoC: 86

FCM: 559 
Placebo: 551

FDI: 569 
SoC: 568

Study popu-
lation

Chronic HF NYHA 
class II (LVEF  
≤ 40%) or III  
(LVEF ≤ 45%)  
with ID

Chronic HF NYHA class 
II/III (LVEF ≤ 45%) 
BNP > 100 pg/mL  
and/or NT-proBNP  
> 400 pg/mL with ID

Chronic HF NYHA class 
II/III (LVEF ≤ 45%) 
BNP > 100 pg/mL 
and/or NT-proBNP 
> 400 pg/mL with ID  
Peak VO2 10–20 mL/ 
/kg/min 

Acute HF Hospitalized 
for acute HF, treated 
with at least 40 mg 
furosemide (or equi-
valent) LVEF < 50% 
with ID

Chronic HF NYHA II–IV 
and recent HF hospita-
lization or elevated NPs 
(LVEF ≤ 45%) 
Ferritin < 100 µg/L  
or TSAT < 20%

Primary end-
point result

Improvement in self-
-reported PGA (50% 
for FCM vs. 28% 
placebo; OR 2.51; 
95% CI: 1.75–3.61; 
p < 0.001) and 
NYHA class I/II at 
24 week (47% vs. 
30%; OR 2.40; 
95% CI: 1.55–3.71; 
p < 0.001)

Change in 6WMT distan-
ce from baseline to 
week 24 for FCM vs. pla-
cebo — both LS means 
± SE (18 ± 8 meters vs. 
16 ± 8 meters; differen-
ce FCM vs. placebo: 33 
± 11 meters; p = 0.002)

Change from baseline 
in peak VO2 at week 
24 for FCM vs. control 
(SoC) — LS mean ± 
SE (−0.16 ± 0.387 vs. 
−1.19 ± 0.389 mL/ 
/min/kg; p = 0.020) 
Sensitivity analysis in 
which missing data 
were not imputed 
for FCM vs. control: 
(−0.16 ± 0.37 vs. 
−0.63 ± 0.38 mL/ 
/min/kg; p = 0.23)

Composite of total HF 
hospitalizations and CV 
deaths up to 52 weeks 
after randomization for 
FCM vs. placebo (293 
primary events [57.2 
per 100 patient-years] 
vs. 372 [72.5 per 100 
patient-years] RR 0.79; 
95% CI: 0.62–1.01; 
p = 0.059) 
(Pre-COVID-19 sens-
itivity analysis: 274 
primary events [55.2 
per 100 patient-years] 
vs. 363 [73.5 per 100 
patient-years] RR 0.75; 
95% CI: 0.59–0.96; 
p = 0.024)

Composite of CV deaths 
and hospitalizations 
for HF for FDI vs. SoC: 
(336 primary events 
[22.4 per 100 patient-
-years] vs. 411 [27.5 
per 100 patient-years] 
RR 0.82; 95% CI: 
0.66–1.02; p = 0.070)

Secondary 
endpoint 
result

Improvement 
(p < 0.001) with 
FCM vs. placebo in:
•	 Self-reported 

PGA at weeks 4 
and 12

•	 6 MWT distance 
at weeks 4, 12, 
and 24

•	 QoL (EQ-5D 
visual as-
sessment) at 
weeks 4, 12, 
and 24

•	 Overall KCCQ 
score at weeks 
4, 12, and 24

Improvements with FCM 
vs. placebo in: 
•	 PGA at week 12 

(p = 0.035) week 
24 (p = 0.047), 
weeks 36 and 52 
(both p < 0.001)

•	 NYHA class at week 
24 (p = 0.004) and 
weeks 36 and 52 
(both p < 0.001) 

•	 6 MWT difference 
in changes at week 
36 (42 meters with 
95% CI of 21–62; 
p < 0.001) and 
week 52 (36 me-
ters with 95% CI of 
16–57; p < 0.001)

•	 Fatigue score 
at week 12 
(p = 0.009), week 24 
(p = 0.002), week 
36 (p < 0.001), 
and week 52 
(p = 0.002)

•	 Improvements 
with FCM vs. con-
trol in:

•	 NYHA class at 
weeks 6, 12 and 
24 (with imputa-
tion; all p < 0.05)

•	 PGA at weeks 12 
and 24 (with impu-
tation; p < 0.05)

Total CV hospitaliza-
tions and CV deaths 
with FCM vs. placebo:
•	 370 vs. 451 

(RR 0.80; 95% 
CI: 0.64–1.00; 
p = 0.050) CV 
deaths

•	 77 (14%) vs. 78 
(14%) (HR 0.96; 
95% CI: 0.70–
1.32; p = 0.81) 
lower number HF 
hospitalizations 

•	 217 vs. 294 
(RR 0.74; 95% 
CI: 0.58–0.94; 
p = 0.013) treat-
ment for time to 
first hospitalization 
or CV death — 181 
(32%) vs. 209 
(38%) (HR 0.80; 
95% CI: 0.66– 
–0.98; p = 0.030)

Composite of CV de-
aths or hospital admis-
sion for HF, stroke or MI 
with FDI vs. placebo: 
209 vs. 246 (RR 0.83; 
95% CI: 0.69–1.00; 
p = 0.045)

6 MWT — 6-min walking test; AFFIRM-AHF — Study to Compare Ferric Carboxymaltose With Placebo in Patients With Acute Heart Failure and Iron Deficiency; BNP — brain natriuretic peptide; CONFIRM-HF 
— Ferric CarboxymaltOse evaluatioN on perFormance in patients with IRon deficiency in coMbination with chronic Heart Failure; CI — confidence interval; CV — cardiovascular; EFFECT-HF — Effect of Ferric 
Carboxymaltose on Exercise Capacity in Patients With Iron Deficiency and Chronic Heart Failure; EQ-5D — EuroQol-5 Dimension; FAIR-HF — Ferinject Assessment in patients with IRon deficiency and chronic 
Heart Failure; FCM — ferric carboxymaltose; FDI — ferric derisomaltose; HF — heart failure; HR — hazard ratio; ID — iron deficiency; IRONMAN — Intravenous ferric derisomaltose in patients with heart failure 
and iron deficiency in the UK; KCCQ — Kansas City Cardiomyopathy Questionnaire; LS — least squares; LVEF — left ventricular ejection fraction; NT-proBNP — N-terminal pro-B-type natriuretic peptide; NYHA — 
New York Heart Association; PGA — patient global assessment; OR — odds ratio; QoL — quality of life; RR — rate ratio; SE — standard error; SoC — standard of care; TSAT — transferrin saturation
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the long-term effect of IV ferric derisomaltose (FDI) ad-
ministration on cardiovascular (CV) outcomes, including 
recurrent hospitalizations for HF [33]. 1137 patients were 
randomized, 569 received IV FDI treatment and 568 usual 
care. The primary endpoint, which included a composite of 
CV deaths and hospitalizations for HF occurred for FDI tre-
atment vs. standard of care: (336 primary events [22.4 per 
100 patient-years] vs. 411 [27.5 per 100 patient-years] RR 
[rate ratio] 0.82; 95% CI [confidence interval]: 0.66–1.02; 
p = 0.070) [33], what was on the borderline of statistical 
significance, such as in AFFIRM trial [34]. IRONMAN study 
proved that IV administration of iron reduced the combined 
secondary endpoint (CV death, hospital admissions for 
stroke, HF, and myocardial infarction) (HR = 0.82; 95% CI: 
0.69–1.00; p = 0.045) [33]. The recommended COVID-19 
analysis showed consistent results (HR = 0.78; 95% CI: 
0.62–0.98; p = 0.030 respectively) [33]. To our kno-
wledge, previous studies of ID in HF did not include stroke 
hospitalization as endpoint, which needs to be strongly 
emphasized [33]. Subsequently, important differences 
between IRONMAN and another clinical trial regarding ID, 
for instance, AFFIRM-AHF, are worth noticing [34]. Firstly, 
the follow-up was longer in IRONMAN (median follow-up 2.7 
years [IQR 1.8–3.6]) than in AFFIRM-AHF, in which IV iron 
treatment was finalized after 24 weeks [33, 34]. Hence, 

IRONMAN study confirmed the long-term safety of IV FDI, 
since there were no excessive serious adverse events 
[33]. Subsequently, there was no collection of phosphate 
samples in IRONMAN, since the risk of hypophosphataemia 
is significantly lower in FDI [35]. A comparison of selected 
clinical trials is shown in Table 2.

Conclusions

HF with ID may predispose the patient to a higher risk of 
suffering from cerebrovascular events. Numerous studies 
emphasize that ID in clinical practice is often unrecognized 
and definitely underdiagnosed even though it is in the ESC 
treatment guidelines for HF. Better screening for ID should 
be implemented to reverse this health issue. HF with ID 
should be recognized and promptly treated by the clinician 
and the risk of stroke should be assessed as ID is a positive 
predictive value for stroke. Finally, upcoming randomized 
clinical trials should focus on assessing whether IV iron 
administration is an effective treatment for ID in HF patients 
with LVEF ≥ 45%
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Streszczenie
Niewydolność serca (HF) jest główną przyczyną hospitalizacji wśród pacjentów w wieku 65 lat i starszych. Jedną z naj-
częstszych chorób współistniejących w HF jest niedobór żelaza (ID), występujący u około 50% wszystkich pacjentów z HF. 
Wykazano, że ID w HF zmniejsza wydolność wysiłkową, zwiększa ryzyko incydentów naczyniowo-mózgowych, chorobo-
wość i śmiertelność pacjentów. Udowodniono, że związek między niewydolnością serca z obniżoną frakcją wyrzutową 
(HFrEF) a ID prowadzi do zwiększonego ryzyka incydentów sercowo-naczyniowych, a niektóre badania wskazują na 
podobny związek między niewydolnością serca z zachowaną frakcją wyrzutową (HFpEF) a ID. ID może prowadzić do nad-
krzepliwości, co w HF może wiązać się ze zwiększonym ryzykiem udaru mózgu/przemijającego ataku niedokrwiennego.
Chociaż obecne wytyczne dotyczące leczenia HF uznają ID za istotny problem, jest ono nadal rzadko rozpoznawane 
i niedostatecznie leczone.

Słowa kluczowe: niedobór żelaza, niewydolność serca, udar mózgu, TIA, incydenty mózgowo-naczyniowe
Folia Cardiologica 2023; 18, 1: 16–23
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