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Abstract
The discovery of kisspeptins in the recent past remoulded current understanding of the neuroendocrine axis relating to the regulation of 
human puberty and reproduction. Kisspeptins have been recognised to act upstream of GnRH and have been shown to play a vital role in 
the control of the hypothalamic–pituitary–gonadal axis via regulation of gonadotrophin secretion, onset of puberty, and control of fertility. 
KNDy (kisspeptin/neurokinin-B/dynorphin) neurons have been suggested to modulate GnRH pulsatile secretion, which is required to 
support reproductive function in both sexes. They have also been involved in mediating both positive and negative sex steroid feedback 
signals to GnRH neurons and serve as a vital connection between reproduction and metabolic status of the body. When kisspeptin is 
administered to healthy humans, and in patients with reproductive disorders, it strongly and directly stimulates GnRH and subsequent 
LH secretion and enhances LH pulse frequency. These observations suggest that kisspeptins are a potential novel therapeutic approach 
for treating disorders with either pathologically reduced or augmented gonadotrophins pulsatile secretion and is currently a focus of 
translational research. Kisspeptins have also been identified in several peripheral reproductive organs, indicating their role in modulation 
of ovarian function, embryo implantation, and placentation, but a great deal of work remains to be done to explore further in this regard, 
and the evidence is only available from studies done on animal models. In this review we will mainly focus on current available evidence 
related to the role of kisspeptins in controlling GnRH pulse frequency, specifically their role in puberty, fertility, and reproduction. We will 
also be appraising other factors that regulate the kiSS1/Kisspeptin/GPR-54 system. (Endokrynol Pol 2015; 66 (6): 534–547)
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Streszczenie
Odkrycie kisspeptyn, które miało miejsce całkiem niedawno, odmieniło obecne rozumienie osi neuroendokrynnej, związanej z regulacją 
okresu dojrzewania i rozrodu. Odkryto, że kisspeptyny działają przed GnRH i odgrywają istotną rolę w kontroli osi podwzgórze–przy-
sadka–nadnercza poprzez regulację wydzielania gonadotropiny, rozpoczęcia okresu dojrzewania oraz kontroli płodności. Zasugerowano, 
że komórki KNDy (kisspeptyna/neurokinina-B/dynorfina) modulują pulsacyjne uwalnianie GnRH, wymagane, aby wspomagać funkcję 
rozrodczą u obu płci. Komórki te są również zaangażowane w przekazywanie zarówno pozytywnych, jak i negatywnych sygnałów 
hormonów płciowych do neuronów GnRH, a także stanowią kluczowe połączenie między reprodukcją i stanem metabolicznym ciała. 
Kiedy kisspeptyna jest podawana jednostkom zdrowym i pacjentom z zaburzeniami płodności, silnie i bezpośrednio stymuluje GnPH  
i dalsze uwalnianie LH oraz poprawia częstotliwość impulsów LH. Obserwacje te przedstawiają kisspeptyny jako nowe potencjalne tera-
peutyczne podejście w leczeniu zaburzeń patologicznie obniżonego lub zwiększonego pulsacyjnego uwalniania gonadotropin i obecnie 
stanowi główny punkt zainteresowania badań przekładających się na zastosowanie praktyczne. Kisspeptyny zidentyfikowano także  
w kilku organach obwodowych, uczestnicząc w modulacji czynności jajników, implantacji zarodka oraz placentacji, lecz dalsze badania  
w tym kierunku będą wymagały jeszcze wiele wysiłku, a dowody można uzyskać jedynie z badań przeprowadzanych na modelach zwie-
rzęcych. W niniejszej pracy autorzy skupili się głównie na obecnie dostępnych dowodach związanych z rolą kisspeptyn w kontrolowaniu 
częstotliwości impulsów GnRH, a zwłaszcza ich rolą w okresie dojrzewania, płodności oraz reprodukcji. W niniejszym artykule poddano 
ocenie także inne czynniki regulujące system kiSS1/Kisspeptin/GPR-54. (Endokrynol Pol 2015; 66 (6): 534–547)

Słowa kluczowe: sygnalizacja kisspeptyny; oś podwzgórze–przysadka–nadnercza; uwalnianie gonadotropiny; okres dojrzewania; rozród

Introduction

It is well established that secretion of gonadotrophic releas-
ing hormone (GnRH) from the hypothalamus is the key 
pathway that commences and controls reproductive func-
tion [1]. But some functional limitations in this pathway 
have been identified that lead to the suggestion that there 

must be some additional intermediate pathway control-
ling the hypothalamic-pituitary-gonadal (HPG) axis. One 
of them was the absence of oestrogen receptors (ER-α) in 
GnRH neurons in rats, which suggested some upstream 
pathway mediating gonadal feedback [2]. 

The discovery of kisspeptins in the recent past re-
moulded current understanding of the neuroendocrine 
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axis related to regulation of human puberty and repro-
duction [1, 3]. Kisspeptins have been shown to play a vital 
role in the control of the HPG-axis via regulation of GnRH 
secretion, and their discovery set the foundation for fur-
ther advances in untwisting the complexities of peripheral 
and central regulation of reproduction [4, 5]. Kisspeptin is 
a hypothalamic peptide that is encoded by KiSS1 gene [6]. 
It has been recognised to act upstream of GnRH and to be 
a pivotal regulator of gonadotrophins secretion, onset of 
puberty, and control of fertility [7]. More recent evidence 
has shown the involvement of other factors in controlling 
reproduction, in addition to kisspeptins, including neuro-
peptides such as neuropeptide Y (NPY) and nesfatin-1 [8, 
9], and neurokinin B (NKB) [10]. The neuronal network 
that secretes neurokinin B and kisspeptin is made up of 
KNDy (Kisspeptin-neurokinin B dynorphin) neurons as 
they also produce dynorphin [1, 10, 11]. 

In this review we will focus on current available evi-
dence related to the role of kisspeptin in controlling GnRH 
pulse frequency, specifically its role in puberty, fertility, 
and reproduction. We will also appraise other factors that 
regulate the kiSS1/Kisspeptin/GPR-54 system. 

Methods

An extensive search of PubMed was performed for all 
the articles published up to March 2015 related to the 
kiSS1/Kisspeptin/GPR-54 system. The search was per-
formed mainly for the articles related to human studies, 
but studies related to other species were also reviewed 
and where appropriate were included. 

Discovery of KiSS1/kisspeptin/GPR54

The KiSS1 gene which encodes peptide products, 
kisspeptins, was originally discovered in 1996 as a me-
tastasis suppressor gene in malignant melanoma cells 
[6]. It was named after the famous Hershey’s chocolate 
‘kisses’ as it was first discovered in Hershey, Pennsyl-
vania, USA. The KiSS1 gene is located on human chro-
mosome 1 (1q32), which initially produces a 145 amino 
acid precursor peptide (prepro-kisspeptin), which is 
cleaved to 54 amino acid protein (kisspeptin-54, Kp-45, 
formerly called metastin) [12, 13]. Kp-54 may be further 
cleaved to lower molecular weight forms of kisspeptins, 
Kp-14, Kp-13, and Kp-10, sharing a common C-terminal 
sequence of arginine-phenylalanine-NH2 motif that is 
sufficient to fully activate GPR54. These peptides are 
collectively now recognised as kisspeptins [4, 14, 15]. 

GPR54 (G-protein coupled receptor 54), now termed 
KiSS1R, was first discovered in the rat brain in 1999 as 
an orphan receptor [16] and later in humans, and was 
named AXOR12 or hOT7T175 [13, 17]. In 2001 GPR54 was 
categorised as a putative receptor for kisspeptins [13, 17]. 

Discovery of the reproductive role  
of kisspeptins

The role of KiSS1 in reproduction remained unrecog-
nised until the end of 2003 when two independent 
groups discovered that mutations of GPR54 were 
associated with idiopathic hypogonadotrophic hypo-
gonadism (iHH) [3, 5]. These findings in humans were 
subsequently found in animal studies in which GPR54 
knockout (KO) mice showed small testis and ovaries, 
low gonadotrophins, delayed puberty, and reduced fer-
tility and sexual behaviour [5, 18]. These findings were 
confirmed more recently in KiSS1 and GPR54 KO mice 
models that developed features of iHH, although the 
features were more severe in GPR54 KO mice [19–21]. 
These discoveries identified kisspeptins and GPR54 
as pivotal regulators of key aspects of puberty and 
reproductive function and paved the way for further 
exploration to unravel the underlying mysteries related 
to the reproductive actions of kisspeptins.

Functional neuroanatomy of the kisspeptin 
system

Studies have revealed that the location of kisspeptin 
neurons within the hypothalamus is species specific, but 
we will be focusing mainly on current understanding of 
human neuroanatomy with evidence from animal stud-
ies if needed. Several studies have localised kisspeptin 
neurons in the infundibular/arcuate nuclei across all 
species, including humans, and have suggested that 
the rostral portion of the hypothalamus is species spe-
cific [22–26] (Fig. 1) [27, 28]. The studies performed on 
human autopsy samples recently have confirmed that 
kisspeptin neurons in humans are mainly located in 
the infundibular (arcuate in other species) and rostral 
preoptic area (POA) of the hypothalamus [24, 29]. Stud-
ies have also indicated direct participation of kisspeptin 
in GnRH secretion [30], as evidenced by kisspeptin 
receptor mRNA expression by GnRH neurons [31, 32], 
and close connections found between kisspeptin and 
GnRH neurons [22, 24, 26], although in humans not all 
GnRH neurons showed close connection with kisspep-
tin neurons [22, 24, 26, 33]. 

Later it was discovered that kisspeptin neurons 
located in the infundibular region in humans/arcuate 
nucleus in rodents co-express other neuropeptides, 
named neurokinin-B and dynorphin, and were col-
lectively called KNDy neurons [24, 29, 34], but neurons 
in POA did not express any of these neuropeptides [1]. 
It has been suggested that these distinctive popula-
tions of kisspeptin neurons also differ in physiological 
function [35, 36]. The KNDy neurons autosynaptically 
modulate pulsatile secretion of kisspeptin and GnRH 
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[10, 37], as evidenced by expression of dynorphin 
receptors (kappa opioid peptide receptor) and neurok-
inin-B receptors by KNDy neurons [38, 39]. It has been 
implied that via the inhibitory action of dynorphin 
and the stimulatory action of neurokinin-B, KNDy 
neurons regulate kisspeptin secretion, which further 
modulates pulsatile release of GnRH and LH [38]. It has 
also been suggested that these KNDy neurons in the 
infundibular region in humans are mainly involved in 
relaying both positive and negative sex steroid feed-
back signalling [29, 40].

The evidence has also shown sexual dimorphism in 
kisspeptin neuron pathways in humans and in other 
species, with obvious differences in expression of both 
kisspeptin fibres and cell bodies in hypothalamus nuclei 
[24, 34], further explaining their differential physiologi-
cal functions.

Physiological role of kisspeptins  
in modulating GnRH secretion

Evidence suggests that kisspeptin acts directly on the 
GnRH neurons and stimulates the release of GnRH after 
interaction with its receptor. GnRH further stimulates 
gonadotrophs in the pituitary gland to secrete FSH and 

LH into the peripheral circulation [1]. The evidence re-
lated to the stimulatory effects of kisspeptins on GnRH 
neurons has been provided mainly from animal studies 
[7]. They have shown increased expression of GnRH 
mRNA by GnRH neurons after kisspeptin exposure 
[40, 41]. Likewise, it has been shown that kisspeptins 
can evoke an increased firing rate of GnRH neurons as 
measured by voltage recordings in hypothalamic slices 
from mice [42–45], stimulate the release of GnRH in 
hypothalamus explants [46, 47], and cause a dramatic 
increase in GnRH in the CSF of sheep [48]. Studies using 
kisspeptin antagonist have further elaborated its role 
in modulating GnRH secretion, by demonstrating that 
increased firing of GnRH neurons induced by kisspep-
tin was eliminated by kisspeptin antagonist [44, 49, 50]. 

Few other studies have suggested that kisspeptin 
stimulates the pituitary gland directly to release FSH 
and LH. It has been shown from animal studies reveal-
ing expression of genes related to kisspeptin and its 
receptor in gonadotrophs[51], secretion of FSH and LH 
from kisspeptin treated pituitary explants [52, 53], and 
the presence of kisspeptin in the hypophyseal portal 
system [54]. It has been further explained that although 
kisspeptin may directly stimulate the pituitary gland, 
the evidence is more in favour of indirect stimulation 
of gonadotrophs by increasing GnRH secretion as the 
principal physiological pathway [1]. 

The role of kisspeptins in GnRH pulse 
generation

The manipulation of pulsatile release of GnRH has been 
suggested to have a therapeutic potential for future 
development of drugs that might control reproduc-
tion [55]. Kisspeptin neurons have been suggested as 
a GnRH pulse generator that is required to support the 
reproductive function in both sexes, such as follicular 
development, sex steroid production, and spermato-
genesis [55]. This possibility has been supported by 
anatomical, functional and recent pharmacological 
data from both humans and animals [7]. The evidence 
suggests the arcuate nucleus as the site of GnRH pulse 
generation, where kisspeptin neurons are abundantly 
located, because kisspeptin antagonist abolishes the 
pulsatile release of gonadotrophs when injected to the 
arcuate nucleus, but not when injected into the POA 
in rats [26, 56]. Further, kisspeptin antagonist abolishes 
both GnRH pulses and basal discharge when injected 
into the median eminence (ME) of monkeys [50]. 
Pharmacological evidence revealed that injection of 
kisspeptin-10 and kisspeptin-54 in humans increased 
gonadotrophin pulsatile release, especially LH [57, 58]. 
The increase in pulsatile secretion of LH by kisspeptins 
has also been shown in human disease models [59-61]. It 

POA — preoptic area of hypothalamus; KNDy neuron — kisspeptin 
neurokinin dynorphin neuron; GPR54 — G-protein coupled receptor 
54 (GPCR); GnRH — gonadotrophin releasing hormone; GnRHR-1 
— gonadotrophin releasing hormone receptor 1, LH — luteinizing 
hormone, FSH — follicle stimulating hormone, ERα — oestrogen 
receptor alpha, PR — progesterone receptor, NKB — neurokinin-B, 
Dyn — dynorphin, + stimulatory, – inhibitory
Figure 1. Diagrammatic representation of the relationship between 
kisspeptin neurons, KNDy neurons, and GnRH neurons in 
humans. Adapted from Dungan et al., 2006; Gottsch et al., 2006; 
Oakley et al., 2009; Roseweir and Millar, 2009; Skorupskaite  
et al., 2014
Rycina 1. Schemat relacji między neuronami Kisspeptin, 
neuronami KNDy oraz neuronami GnRH u ludzi. Na podstawie: 
Dungan i wsp., 2006; Gottsch i wsp., 2006; Oakley i wsp., 2009; 
Roseweir and Millar, 2009; Skorupskaite i wsp., 2014
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has been suggested that kisspeptins also help in adjust-
ing the hypothalamic clock of GnRH pulsatile release in 
addition to its stimulation in men [62], but the evidence 
does not support this effect in women [63]. The reason 
suggested for this was differential sex steroid feedback 
in females due to changes in hormonal levels across the 
menstrual cycle and sexual dimorphism in functional 
neuroanatomy of kisspeptins [1].

Kisspeptin neurons act as conduits  
for negative feedback of sex steroids

The suggestion that there must be some separate popu-
lation of neurons that act as arbitrators to pass on the 
feedback signals from sex steroids to the GnRH neurons 
came from the fact that GnRH neurons do not express 
oestrogen receptors (ERs). Recent evidence suggests 
that KNDy neurons act as mediators to transmit both 
positive and negative signals from sex steroids to GnRH 
neurons [7]. The most striking feature of kisspeptin 
neurons is that almost all of them express oestrogen 
receptor alpha (ERα) and a major fraction also express 
oestrogen receptor beta (ERβ) [64, 65]. 

The initial evidence that kisspeptin neurons regu-
late sex steroids negative feedback came from studies 
done on rats, which revealed significantly increased 
expression of Kiss1 mRNA in the hypothalamus of both 
male and female rats after gonadectomy, with a parallel 
increase in levels of circulating gonadotrophins. Intrigu-
ingly, the above changes were reversed when these 
experimental models were replaced with sex steroids 
[66]. These findings were confirmed by similar studies 
using more refined techniques that also localised the 
changes to the arcuate nucleus [64, 65]. Further stud-
ies in different species including monkeys, pigs, sheep 
[67–69], and humans localised the same findings to the 
arcuate/infundibular nucleus after gonadectomy in 
animals and after menopause in humans [29]. Studies 
have also demonstrated that negative feedback effects 
of oestrogen are mainly mediated via ERα [64–66], 
which are expressed by kisspeptin neurons but not by 
GnRH neurons. This was proven by increased expres-
sion of Kiss1-mRNA associated with a marked increase 
in LH levels after selective elimination of ERα from 
mice models [70].

It has also been explained that in addition to ERα, 
the hypertrophied infundibular neurons in postmeno-
pausal women also showed increased expression of 
neurokinin B-mRNA [71, 72], and evidence suggests 
that both neurokinin-B and kisspeptin function syn-
ergistically to deliver negative feedback of oestrogen 
[10, 40]. Similarly, neurokinin-B gene expression was 
increased in monkeys after ovariectomy, which was 
reduced by oestrogen supplementation [73]. 

The studies have also revealed dynorphin as a 
mediator of sex steroids negative feedback shown by 
increased expression of prodynorphin mRNA in the 
infundibular nucleus of postmenopausal women [74] 
and suppressed in arcuate nucleus of ovariectomised 
animals [11, 75–77]. These findings collectively suggest 
that sex steroids mediate their negative feedback to 
GnRH neurons by stimulating dynorphin secretion and 
suppressing neurokinin-B and kisspeptin secretion in 
the infundibular nucleus in humans.

Kisspeptin neurons act as conduits  
for positive feedback of sex steroids.  
Their role in preovulatory surge

Evidence from anatomical, expression, and pharmaco-
logical data supports the role of oestrogen and other 
sex steroids, such as progesterone, in moulding GnRH/
LH responsiveness to kisspeptins, a fact that also con-
tributes to the mechanisms for positive feedback and 
production of preovulatory surge. The evidence also 
elaborates that it is species and site specific [7]. 

Convincing evidence from studies performed on 
rodents suggest that oestrogen stimulates neurons at 
the AVPV (anteroventral periventricular nucleus), in as-
sociation with activated progesterone receptors (PRs), to 
deliver its positive feedback by inducing preovulatory 
LH surge [7]. It was evident from decreased expression 
of Kiss1-mRNA at AVPV after gonadectomy, which 
increased after sex steroid replacement in both male 
and female mice [64, 65]. These findings were further 
confirmed by studies performed in rats [25, 78], which 
also revealed increased activation of kisspeptin neu-
rons at AVPV (measured by increased c-fos expression) 
preceding oestrogen-induced preovulatory LH surges 
[78, 79]. Recent studies in rodents have also shown 
that kisspeptin neurons activation at AVPV follows an 
oestrogen-dependent circadian pattern [80–82], which 
receives its input from the suprachiasmatic nucleus 
(SCN) as evidenced by vasopressinergic (AVP) neuronal 
projections to kisspeptin neurons and the ability of AVP 
to augment their neuronal activity [80, 83]. 

In humans, anatomical evidence related to increased 
kisspeptin expression in response to oestrogens mainly 
comes from other species, which like humans have no 
area homologous to the AVPV nucleus, because no 
human studies have yet been done in this regard [1]. 
The evidence suggests that oestrogen increases the 
expression of kiss1-mRNA at the rostral periventricular 
nucleus in pigs [68] and POA/ARC in sheep during the 
late follicular phase corresponding to in vivo oestrogen 
peak preceding gonadotrophin surge [84–86]. There is 
also convincing evidence in humans suggesting mid-
cycle surge of gonadotrophins by direct enhancement of 
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GnRH signalling at the pituitary instead of augmenting 
GnRH pulse secretion [87, 88]. 

The first pharmacological evidence favouring the 
role of sex steroids in shaping kisspeptin responsive-
ness came from rats that demonstrated that Kp-10 
administration resulted in increased LH secretion 
with maximal release at the periovulatory period [89]. 
Recent pharmacological studies in animals have dem-
onstrated that kisspeptin administration resulted in 
early LH surge [90] while preovulatory LH and FSH 
surge was attenuated by kisspeptin antagonist [91, 92]. 
In humans kisspeptin-54 injection generated LH surge 
and stimulated oocyte maturation with subsequent 
live term birth [93]. Similarly, another study in women 
showed kisspeptin-54 administration caused early LH 
surge and shortened menstrual cycle length [94]. In 
addition, injection of kisspeptin-10 in ovariectomised 
rats resulted in maximal gonadotrophin response only 
after oestrogen and progesterone replacement [89]. 
Further exploration revealed that selective blockade 
of ERα in rats resulted in significant suppression of 
LH response and reduced preovulatory LH surge to 
exogenous administration of Kp-10 (but no effects were 
observed on preovulatory LH surge after selective 
ERβ blockade) and enhanced the magnitude of acute 
response to Kp-10 [95, 96]. It suggested that oestrogen 
moulds gonadotrophin response to kisspeptins during 
the preovulatory period by maintaining a balance be-
tween ERα and ERβ signalling [96]. These studies also 
observed maximal response of gonadotrophin secretion 
when ovariectomised rats were supplemented with 
progesterone and selective ERα agonists favouring 
their potential role in inducing preovulatory gonado-
trophins surge [7].

Kisspeptin effects on GnRH secretion  
in humans

Kisspeptin pharmacokinetics in humans
It is vital to understand the pharmacokinetics of 
kisspeptins for the proper interpretation of results of 
research studies administering kisspeptins in humans. 
The studies done in humans involving kisspeptin ad-
ministration have used different kisspeptin isoforms 
(kp-10 and Kp-54), different techniques of administra-
tion (single or multiple boluses or continuous infusions), 
and distinct administration routes (subcutaneous [SC], 
intravenous [IV]) [97]. 

Both the isoforms of kisspeptins (Kp-10 and Kp-54) 
showed similar potency and activity when used on in 
vitro cultured cells [13, 14, 17], but studies in rodents 
demonstrated that Kp-10 had a slightly shorter onset 
and duration of action than Kp-54 even when both were 
given through same route and at same concentrations 

[47, 98]. The possible explanation for in vivo differences 
between the two isoforms is probably due to dissimilari-
ties in their pharmacokinetic properties. While many 
studies have been done to explore the kisspeptin phar-
macokinetics [99–101], the evidence is still not enough 
to understand the differences completely, although the 
available data is helpful to interpret the clinical studies 
being formed using different kisspeptin isoforms.

In short, it is comprehensible from the available 
evidence that Kp-54 decays slowly and has longer 
duration of action as compared to Kp-10, which 
decays very quickly. Secondly, studies have shown 
that more sustained levels of kisspeptin could be 
achieved after SC administration as compared to the 
IV route [97]. Evidence also suggests that kisspeptins 
are safe to administer as no adverse events, subject 
complains, changes in vitals, or changes in cell counts 
or liver and kidney function have been outlined by 
published reports [97].

Effects of acute kisspeptin administration  
in healthy subjects
Several studies have shown that kisspeptin strongly 
and directly stimulates GnRH and subsequently both 
LH and FSH secretion in humans, although the effect 
on LH secretion is much more pronounced [102]. Kiss-
peptin was first studied in healthy male volunteers, who 
received a 90-minute infusion of Kp-54 and showed 
significant and dose-dependent increase in plasma LH 
and less marked increase in FSH and testosterone [101]. 
Similarly, Kp-10 stimulated dose-dependent release of 
gonadotrophins after single IV bolus in both males and 
females [57, 100]. 

Studies in women have shown significant variation 
in response to kisspeptins across the menstrual cycle. A 
few studies have revealed a significant increase in LH 
secretion after a single IV bolus of Kp-10 in women, 
mainly in the preovulatory period [63, 100] when 
pituitary sensitivity to GnRH is usually enhanced due 
to positive feedback by oestrogen [97]. Inversely, mark-
edly reduced responses were seen after Kp-10 injection 
or infusion in the early to mid-follicular phase, the 
phase in the menstrual cycle having lowest circulating 
oestrogen levels [100, 103], although some studies also 
found robust LH secretion during mid-luteal phase, 
which was not as significant as in the preovulatory 
phase [63]. Similarly, potent LH and FSH responses 
were observed mainly during the preovulatory period 
in women after sustained exposure to SC Kp-54 [99]. 
Intriguingly, a biphasic response was observed during 
the mid-luteal phase after SC Kp-54, which had been 
observed previously after long-acting GnRH analogues 
[104]. A possible explanation for this was differential 
pituitary behaviour to prolonged GnRH receptor acti-
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vation. The studies also observed that the magnitude 
of gonadotrophins response to exogenous kisspeptins 
was greater than that to the endogenous kisspeptins, 
especially during the preovulatory and mid-luteal 
phases but not in the early follicular phase [63].

In brief, although the studies have used different 
kisspeptin isoforms, administration routes and doses, 
the results of all the studies are consistent in terms of 
kisspeptins effects on gonadotrophins secretion with 
more potent effects on LH release as compared to FSH. 
However, the response in women varies across the 
menstrual cycle, being markedly reduced in the early 
follicular phase, intermediate during the luteal phase, 
and immense in the preovulatory period.

Effects of kisspeptin administration in subjects 
with reproductive disorders
The effects of kisspeptin administration have also been 
studied in patients with reproductive disorders, hav-
ing reduced gonadotrophin secretion. The first disease 
model studied was hypothalamic amenorrhea (HA), 
usually caused by stress, negative energy balance, and 
excessive exercise [105], and which is characterised by 
slow GnRH pulsatile secretion with subsequently low 
LH compared to FSH and reduced ovarian follicular 
activity. When Kp-54 was administered in these patients 
as a single SC bolus it resulted in significant elevations 
of LH and FSH, but there was no significant increase 
in oestrogen levels as indicated by ovarian inactivity 
on ultrasound scans [106]. Furthermore, when Kp-54 
was given at an increased frequency (twice daily for 
two weeks) it resulted in an initial rise in LH levels, but 
after two weeks of treatment there was no detectable 
LH response. The reason suggested was kisspeptin 
receptor desensitisation with prolonged kisspeptin 
exposure [106, 107]. In order to avoid desensitisation, 
Kp-54 injections were given twice weekly for eight 
weeks. There was sustained gonadotrophins secretion 
over the eight weeks period although the response was 
reduced in the later period compared to day 1 and it 
again did not result in significant oestradiol release 
and ovulation was not achieved [107]. Furthermore, 
it has been shown recently that LH pulsatility could 
be achieved after Kp-54 infusion for eight hours with 
a three-fold rise in LH pulse frequency and mass per 
pulse [59], which supports the hypothesis that in order 
to restore reproductive endocrine activity in females 
with HA, pulsatile delivery of kisspeptins should be 
given because kisspeptin release is pulsatile [54, 108]. 
This is similar to the fact that in order to stimulate the 
reproductive axis GnRH must be delivered in a pulsatile 
mode [109].

The effects of exogenous kisspeptin have also been 
studied in men with type 2 diabetes having hypotha-

lamic/pituitary hypogonadism with low testosterone. 
Such patients revealed robust increase in LH levels 
(two fold) after a single Kp-10 intravenous bolus and 
showed a more profound (five-fold) response after Kp-
10 infusion for 11 hours. The results were comparable to 
the response seen in healthy males. In addition to the 
significant increase in LH levels, kisspeptin infusion also 
enhanced LH pulse frequency and raised testosterone 
levels to the physiological range in these patients. The 
levels were maintained over the course of infusion 
without any evidence of desensitisation as observed 
in females with HA. However, current evidence does 
not explain whether these effects will be maintained for 
longer periods in order to achieve therapeutic benefit, 
which needs further exploration.

One study looked at the effects of Kp-10 in patients 
with mutations in the neurokinin gene and its receptor 
(TAC3 and TACR3), which present with hypogonado-
trophic hypogonadism [110]. These genes are thought 
to be involved directly or indirectly in modulating 
GnRH neuron secretion and the inability of neurokinin 
B to stimulate secretion of kisspeptin, and subsequent 
release of gonadotrophins is seen in these patients [111, 
112]. When an infusion of Kp-10 was given to these 
patients, the number and the amplitude of LH pulses 
increased [61]. These observations revealed that GnRH 
neurons are intact in these patients, and kisspeptins do 
not need neurokinin B for their capability to stimulate 
GnRH secretion, which makes kisspeptins an appeal-
ing therapeutic approach to restore gonadotrophin 
secretion in patients with isolated GnRH deficiency 
[97]. It will also be helpful in future studies for further 
exploration in this aspect and prospective treatment for 
associated issues, such as fertility.

Sexual dimorphism to exogenous kisspeptin
Both men and women respond differently to exogenous 
kisspeptin, a phenomenon called sexual dimorphism. 
Kisspeptin administration stimulates significant gon-
adotrophin release in males, but the response is variable 
in women across the menstrual cycle. This phenomenon 
has been explored in both men and women using differ-
ent kisspeptin isoforms, doses, and routes. The response 
observed in several trials on healthy male volunteers 
showed consistently that kisspeptins used in different 
isoforms, doses, and routes resulted in enhanced LH 
pulsatility and significant LH release [62, 101, 113]. 
However, the evidence related to females suggests that 
they respond differently to exogenous kisspeptins; one 
of the studies on healthy women did not show any de-
tectable LH response in early follicular phase when Kp-
10 was administered as an IV bolus, SC bolus, or IV infu-
sion [100]. But a significant LH response was observed 
in another study in early follicular phase after using  
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a Kp-10 IV bolus. Similarly, remarkable LH response was 
seen in healthy women in early follicular phase after 
Kp-54 administration suggesting the response is better 
to longer isoform [99, 100]. The response observed was 
higher after Kp-10 administration in postmenopausal 
women and in women during the luteal phase as com-
pared to women on sex steroid replacement and women 
in the early follicular phase of menstruation [99, 114]. 
These complex responses and relationships in females 
suggest that kisspeptin sensitivity is regulated across 
the menstrual cycle by changing levels of sex steroids 
and other possible unknown mechanisms. This sexual 
diversity in response to exogenous kisspeptins also 
explains the possible mechanisms that contribute to the 
generation of preovulatory surge of gonadotrophins, 
unique to females [1].

Continuous kisspeptin exposure leads  
to desensitisation
It is a remarkable feature of GnRH receptors that they 
undergo desensitisation after initial augmentation if 
they are stimulated by continuous GnRH administra-
tion [109, 115, 116], which has a therapeutic role for the 
treatment of prostate cancer [117]. Evidence from animal 
studies has shown that kisspeptins exhibit pulsatile se-
cretion within the hypothalamus [108] and continuous 
Kp-10 stimulation leads to desensitisation of kisspeptin 
receptors as shown by an initial rise in LH levels fol-
lowed by a rapid drop to baseline levels [118–121]. But 
when Kp-10 was given intermittently as twice daily 
injections it resulted in chronic stimulation of HPG-axis 
in both rats and monkeys [122, 123]. Moreover, reproduc-
tive function was recovered in rat models having HA 
by intermittent Kp-10 supplementation [124]. Similarly, 
in women with HA, desensitisation was observed after 
continuous SC administration of Kp-54 for two weeks 
[106], but the evidence is not consistent in other stud-
ies [1]. Recently in a study in women having HA, eight 
hours infusion of low dose Kp-54 restored pulsatile re-
lease of LH in addition to continuous LH secretion [59], 
and in another study in healthy women, their menstrual 
cycle was advanced by continuous administration of Kp-
54 [94]. The studies done in healthy men showed varied 
results with no evidence of desensitisation to continuous 
infusion of Kp-10 at lower dose while LH response was 
reduced when continuous infusion of high dose Kp-10 
was given for 24 hours [1, 57].

These observations therefore suggest that Kp-10 
and Kp-54 desensitise the kisspeptin receptors at 
higher dose but not at lower dose, as further clarified in  
a dose-finding study. The alternative reason suggested 
was that kisspeptins at high dose might stimulate gon-
adotrophin inhibitory receptor to reduce any further 
rise in GnRH and LH [1, 57]. This feature of kisspeptin 

receptors has a therapeutic potential, and two kiss-
peptin receptor agonists (TAK-448 and TAK-683) have 
already been developed, which have shown promising 
results in recent phase I clinical trials in healthy men for 
future use in suppressing gonadotrophin levels, similar 
to GnRH analogues [125, 126].

The role of kisspeptins in puberty onset

The initial indication for a crucial role of kisspeptins in 
puberty came from studies in humans and mice, which 
revealed that inactivating mutations of GPR54 were 
associated with impaired pubertal development [3, 5, 
18, 19]. Subsequently, activating mutations of kisspeptin 
receptor gene were found in patients with precocious 
puberty [127, 128]. These findings attracted substantial 
attention and have been the subject of rigorous analysis 
in various mammalian and non-mammalian species 
[92, 129] and the current available neuroanatomical 
and functional evidence, although mainly in rodents, 
strongly supports the role of kisspeptins in triggering 
the onset of puberty [129, 130]. 

Studies in primates and rodents have shown in-
creased hypothalamic expression of kiss1 gene and 
kiss1r mRNA during pubertal development [66, 131]. 
Pharmacological studies revealed that repeated ad-
ministration of Kp-10 resulted in advanced pubertal 
development in immature rats and enhanced GnRH 
secretion in juvenile monkeys [122, 123]. Further, 
studies in rodents have shown that during puberty 
there was an increased quantity of GPR54 expressing 
GnRH neurons, increased GPR54 signalling efficiency, 
and enhanced sensitivity to kisspeptin stimulatory 
effects indicated by increased gonadotrophin secre-
tory response during puberty [31, 39, 132]. There was 
also less propensity of GPR54 to desensitisation to 
continuous stimulatory effects of kisspeptins during 
pubertal development in female rats [133]. Recent im-
munohistochemical data showed a sharp rise in the 
number of kisspeptin neurons and kisspeptin neuron 
projections to the GnRH neurons at onset of puberty 
in female rodents involving oestrogen stimulating sig-
nals, suggesting that early stages of ovarian activation 
occur before complete stimulation of kisspeptin neu-
rons during puberty, which serve as an amplifier for 
gonadotrophin secretion along pubertal maturation 
[134]. Conversely, kisspeptin antagonist administra-
tion attenuated pulsatile release of gonadotrophins in 
monkeys during puberty and slowed pubertal growth 
in rats [50, 92].

Collectively, all of these findings suggest that kiss-
peptin signalling has an indispensible role in triggering 
complex activational mechanisms required for initiating 
puberty in a range of species.



541

Endokrynologia Polska 2015; 66 (6)

PR
A

C
E 

PO
G

LĄ
D

O
W

E

The role of kisspeptins in metabolic control 
of puberty and reproduction

It has been observed that pubertal growth and repro-
duction in humans and other species is affected by both 
extremes of nutritional behaviour, including malnutrition 
and over-nutrition (and obesity). Current evidence sug-
gests that kisspeptins function downstream to nutritional 
and metabolic signals; they transmit information related 
to energy stores to gonadotrophin neurons and serve 
as a connection between reproduction and the meta-
bolic status of the body. Evidence related to the role of 
kisspeptins in metabolic control of reproduction comes 
from studies done in both animals and humans. Studies 
in rodents and primates have shown reduced gonado-
trophin secretion along with decreased expression of 
Kiss1 mRNA after fasting [124, 135–137], and kisspeptin 
administration in rats has been shown to restore delayed 
pubertal features associated with malnutrition [122, 124]. 

The data also suggests that leptin affects the timing 
of puberty by regulating kisspeptin neurons. Leptin 
deficiency has been found to be associated with hypo-
gonadotrophic hypogonadism and impaired pubertal 
development in humans [138, 139], and leptin admin-
istration resulted in normal pubertal development in 
both male and female patients [140]. The idea that kiss-
peptins are involved in mediating leptin signals to the 
HPG axis came from the finding that leptin receptors 
are not present on GnRH neurons but on kisspeptin 
neurons. Kiss1 mRNA expression was reduced in 
leptin-deficient mice, which was enhanced by leptin 
administration [141], but evidence also suggests that 
leptin signalling is not obligatory for reproduction and 
normal pubertal development [142].

The reason for hypogonadotrophic hypogonadism 
with reduced testosterone levels found in obese patients 
with type 2 diabetes mellitus [143] has been suggested 
due to reduced kisspeptin stimulatory effects [144]. It 
was proven by a study in the rat model of diabetes in 
which reduced levels of hypothalamic Kiss1 mRNA 
and gonadotrophins were restored by kisspeptin ad-
ministration [145, 146]. Similarly, in humans reduced 
gonadotrophin levels in patients with obesity and type 
2 diabetes mellitus were restored by kisspeptin admin-
istration [60]. This gives hope for future therapeutic 
potential in restoring reproductive function in patients 
suffering from conditions of negative energy balance, 
like diabetes and anorexia nervosa.

Kisspeptin actions on the reproductive 
system in addition to the hypothalamus

Although current data suggests that the hypothalamus 
is the primary site of action of kisspeptins, convincing 

evidence also suggests that kisspeptins act on other 
levels of the reproductive system.

Pituitary
The first evidence related to the direct action of kiss-
peptins at the pituitary came from studies done on rats, 
which showed increased LH secretion from pituitary 
in vitro [52, 147]. Later studies in many other species 
showed the same results, where kisspeptin was able to 
stimulate LH secretion directly from pituitary cells [53, 
54, 148–151]. Likewise, expression studies in rats and 
monkeys have shown that both kiss1 and GPR54 mR-
NAs are expressed at pituitary cells that are hormonally 
regulated by oestrogen and GnRH [51, 53]. Additionally, 
kisspeptins have been found in hypophyseal portal 
blood of sheep [54]. Collectively, the above-mentioned 
data significantly suggest the role of kisspeptins in 
direct pituitary stimulation to release gonadotrophins 
at certain times, but it is essential to mention that 
some other studies in rats have been unable to find 
any kisspeptin action on pituitary [46, 152]. Overall, 
these negative results do not disprove the likelihood 
of direct pituitary action of kisspeptin in controlling 
the gonadotrophic axis, which nevertheless demands 
further validation.

Female reproductive tract
It has been suggested that kisspeptins modulate fol-
licular maturation, oocyte survival, and subsequent 
ovulation. The initial evidence regarding the pres-
ence of kisspeptin and its receptor on the ovaries 
and uterus came from studies done on rats [153], 
which was later confirmed by immunohistochemi-
cal analysis performed in other species including 
humans [154–158]. Interestingly, in these studies it 
was observed that kiss1 mRNA expression occurs 
in a cyclic manner during the oestrous cycle with  
a significant increase at the preovulatory stage, which 
could be prevented by attenuating preovulatory 
LH surge and could be restored by hCG treatment 
[154]. Similar results were observed in indomethacin-
treated rats and photo-inhibited hamsters [155, 157]. 
Additionally, recent studies on kiss1r heterozygous 
and knockout mice models further provide strong 
evidence in favour of the direct role of kisspeptins 
in the ovary by revealing that the loss of one kiss1r 
allele resulted in premature ovarian failure and loss 
of both kiss1r alleles blocked maturation of ovarian 
follicles and ovulation, which could not be rescued 
by gonadotrophins administration [159–161]. It has 
also been suggested that localised kisspeptin signal-
ling is crucial for endometrial decidualisation and 
embryo implantation. It has been shown by studies 
in rats [160] that showed impaired embryo implan-
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tation in kiss1 knocked out mice that could not be 
rescued by gonadotrophins administration indicting 
the defect is uterine based. It was explained further 
that localised uterine kisspeptin signalling modulates 
embryo implantation by regulating localised leuko-
cyte inhibitory factor (LIF) secretion, which has been 
shown to be critical for implantation in mice [162, 
163]. Similarly, studies in mice have shown increased 
expression of kiss1 and kiss1r at the time of endome-
trial decidualisation, and the process was attenuated 
by downregulating kiss1 expression [164]. 

Kisspeptins have been suggested to play a critical 
physiological role in human placental function and 
implantation by modulating invasion of placental 
trophoblast cells into the endometrium. It has been dem-
onstrated by the presence of high levels of Kiss1 gene 
and kisspeptin in the human placenta and their role 
in controlling human extravillous trophoblasts’ (EVTs) 
migratory and invasive properties [14, 17, 163, 165–167]. 
Recently it has also been revealed that kisspeptin and its 
receptor play an important role in regulating placental 
angiogenesis, a critical process in successful establish-
ment of placenta, required for normal foetal growth and 
development and for maintenance of a healthy preg-
nancy [168–171]. Furthermore, high levels of kisspeptins 
have been found in pregnant women as compared to 
non-pregnant women, suggesting kisspeptin is placenta 
derived [167]. The levels rise substantially as the preg-
nancy progresses and stay high until parturition [167], 
which has been suggested to play an important role in 
negatively modulating the trophoblastic invasion in 
later pregnancy [106, 172–174]. Additionally, low levels 
of kisspeptins have been found to be associated with 
gestational diabetes mellitus as they stimulate glucose-
dependent insulin secretion [175, 176].

Male reproductive tract
Kisspeptin and its receptor have been suggested to be 
involved in the regulation of human sperm motility 
and male fertility. It has been evidenced by detection 
of kisspeptin and its receptor in human sperm, which 
could be activated by kisspeptin treatment while 
sperm activity was blocked by kisspeptin antagonists 
[177]. Similarly, Kiss1 and Kiss1r have been detected 
in the testes of mice and have been suggested to 
regulate sperm function, although kisspeptins failed 
to release testosterone form seminiferous tubule 
explants [178, 179].

Clinical utility of kisspeptins  
in reproduction

On the basis of pharmacological and physiological data 
as discussed above, kisspeptins and neurokinin B (NKB) 

provide a novel therapeutic approach for treating 
disorders with either pathologically reduced or aug-
mented gonadotrophin pulsatile secretion. Kisspeptin 
and NKB agonists may be used to stimulate the HPG 
axis in conditions with reproductive insufficiency of 
central origin provided the GnRH neuronal system is 
intact. Exogenous kisspeptin administration has been 
shown to initiate puberty in rodents and monkeys [122, 
123], and restored pulsatile secretion of LH in diabetic 
men having central hypogonadism, and in women 
with hypothalamic amenorrhea [60, 107]. Similarly, 
kisspeptin restored pulsatile gonadotrophin secretion 
in patients having central hypogonadism due to NKB 
or its receptor mutations [61], although NKB adminis-
tration in healthy males or females did not cause any 
significant alterations in reproductive hormone secre-
tion [180]. Kisspeptin has also been revealed recently to 
induce oocyte maturation in women with subfertility 
undergoing IVF (in vitro fertilisation) treatment with 
successful attainment of live birth [93, 181]. It has been 
suggested that kisspeptins might be associated with less 
risk of ovarian hyperstimulation syndrome (OHSS) as 
compared to routinely used hCG injections, and further 
work is now underway in a large population who are 
at high risk of OHSS [93]. Also, the ability of different 
kisspeptin forms (Kp-54, Kp-10) to strongly stimulate 
secretion of gonadotrophins in humans suggest the 
development of optimal protocols (dose, duration, and 
pattern) of kisspeptin administration to activate the 
HPG axis by kisspeptin analogues without the develop-
ment of gonadotrophic system desensitisation [57, 62, 
99, 101, 106, 113]. 

Conversely, kisspeptin antagonists have been clearly 
shown to diminish the frequency and amplitude of LH 
pulsatile release without affecting basal LH secretion 
[50], which can be helpful in situations of increased 
gonadotrophins pulsatility where a diminished rather 
than complete suppression is required. Secondly, in con-
trast to GnRH analogues, kisspeptin antagonists cause 
less profound reduction in LH pulsatility, with conse-
quently fewer chances of side effects associated with 
GnRH analogues, including loss of libido, hot flushes, 
and reduced bone mineral density [1, 50]. Conditions 
such as endometriosis, uterine fibroids, and benign 
prostatic hyperplasia might benefit from kisspeptin 
antagonists, where limited suppression of gonadotro-
phins could improve the pathologies without having 
side effects of complete suppression associated with 
GnRH analogues [7]. Similarly, the ability of kisspeptin 
antagonists to impede LH ovulatory surge without af-
fecting its basal levels offers a potentially novel female 
contraceptive in which ovulation would be suppressed 
but oestrogen production and follicular development 
would continue [92]. Kisspeptin antagonists might also 
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be helpful in normalising relative LH hypersecretion 
with subsequent improved follicular development and 
ovulation in patients having polycystic ovary syndrome 
(PCOS) [1, 182]. In a recent randomised trial researchers 
found that NKB antagonist (AZD4901) administration 
in patients having PCOS resulted in reduced LH pulse 
frequency and secretion with subsequent remarkable 
and sustained reduction in testosterone levels [183]. 
Likewise, kisspeptin and NKB antagonists might be 
helpful in treating patients having precocious puberty 
[1] with the additional benefit of reduced menopausal 
side effects [184-186].

Conclusions

There is robust evidence available in favour of kiss-
peptins as a central modulator of pulsatile gonadotro-
phin secretion, which plays a pivotal role in controlling 
the onset of puberty and reproduction in both human 
sexes. There is also significant evidence available sug-
gesting kisspeptins mediate both positive and negative 
sex steroid feedback signals to GnRH neurons and 
serve as a vital connection between the reproduction 
and metabolic status of the body. Exogenous kisspeptin 
administration in humans has also been recognised as  
a potential novel therapeutic approach for treating dis-
orders with either pathologically reduced or augmented 
gonadotrophin pulsatile secretion and is currently  
a focus of translational research. The studies in humans 
have used different kisspeptin isoforms, administration 
routes, and doses, but the results are consistent in terms 
of the effect of kisspeptins on gonadotrophin secretion. 
A great deal of work has been done in this regard, but 
there is still a need to develop appropriate protocols for 
kisspeptin administration before they can be used for 
infertility and reproductive disorders in humans. Kiss-
peptins have also been identified in several peripheral 
reproductive organs indicating their role in modulat-
ing vital physiological processes, including ovarian 
function, embryo implantation, and placentation, but 
more robust evidence is required before making these 
findings relevant in humans because current evidence 
is only available from studies done on animal models.
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