open access

Vol 69, No 3 (2018)
Review article
Published online: 2018-06-25
Submitted: 2017-11-07
Accepted: 2017-11-20
Get Citation

Thyroid hormones and obesity: a known but poorly understood relationship

Pablo García-Solís, Olga P. García, Gabriela Hernández-Puga, Ana A. Sánchez-Tusie, Carlos E. Sáenz-Luna, Hebert L. Hernández-Montiel, Juan C. Solis-S
DOI: 10.5603/EP.2018.0032
·
Pubmed: 29952420
·
Endokrynologia Polska 2018;69(3):292-303.

open access

Vol 69, No 3 (2018)
Review article
Published online: 2018-06-25
Submitted: 2017-11-07
Accepted: 2017-11-20

Abstract

Hormony tarczycy (thyroid hormones, TH) są zaangażowane w wiele różnych procesów biologicznych, wliczając rozwój układu nerwowego, regulację metabolizmu pośredniego oraz zużycie energii. Aktywnie uczestniczą w podstawowym zużyciu energii i termogenezie adaptacyjnej i z tego względu mogą mieć wpływ na masę ciała w przebiegu chorób tarczycy. Otyłość to niezakaźna, przewlekła, zapalna choroba metaboliczna, która implikuje dodatni bilans energetyczny. Tkanka tłuszczowa produkuje szereg hormonów i adipocytokin, takich jak leptyna, które mogą wpływać na stan tarczycy na różnych poziomach. Istnieją dowody na to, że dysfunkcja tarczycy może predysponować do otyłości i odwrotnie, istnieją dowody sugerujące, że otyłość powoduje zmiany dotyczące tarczycy. Celem tej pracy było opisanie związku między układem tarczycy a otyłością. Ponadto w pracy zaprezentowano hipotetyczny model podkreślający znaczenie obwodowej dejodynacji hormonów tarczycy i jego rolę w ustanowieniu dodatniego bilansu energetycznego. Podsumowując, możemy stwierdzić, że relacja między układem tarczycy a otyłością i nadwagą jest złożona i obejmuje wiele poziomów interakcji. Ponadto, poddając ocenie otyłego pacjenta, powinno się rozważyć ocenę funkcji tarczycy, aby uzyskać lepsze i spersonalizowane efekty leczenia.

Abstract

Hormony tarczycy (thyroid hormones, TH) są zaangażowane w wiele różnych procesów biologicznych, wliczając rozwój układu nerwowego, regulację metabolizmu pośredniego oraz zużycie energii. Aktywnie uczestniczą w podstawowym zużyciu energii i termogenezie adaptacyjnej i z tego względu mogą mieć wpływ na masę ciała w przebiegu chorób tarczycy. Otyłość to niezakaźna, przewlekła, zapalna choroba metaboliczna, która implikuje dodatni bilans energetyczny. Tkanka tłuszczowa produkuje szereg hormonów i adipocytokin, takich jak leptyna, które mogą wpływać na stan tarczycy na różnych poziomach. Istnieją dowody na to, że dysfunkcja tarczycy może predysponować do otyłości i odwrotnie, istnieją dowody sugerujące, że otyłość powoduje zmiany dotyczące tarczycy. Celem tej pracy było opisanie związku między układem tarczycy a otyłością. Ponadto w pracy zaprezentowano hipotetyczny model podkreślający znaczenie obwodowej dejodynacji hormonów tarczycy i jego rolę w ustanowieniu dodatniego bilansu energetycznego. Podsumowując, możemy stwierdzić, że relacja między układem tarczycy a otyłością i nadwagą jest złożona i obejmuje wiele poziomów interakcji. Ponadto, poddając ocenie otyłego pacjenta, powinno się rozważyć ocenę funkcji tarczycy, aby uzyskać lepsze i spersonalizowane efekty leczenia.

Get Citation

Keywords

thyroid hormone metabolism, obesity, iodothyronine deiodinases, thermogenesis, energy balance

About this article
Title

Thyroid hormones and obesity: a known but poorly understood relationship

Journal

Endokrynologia Polska

Issue

Vol 69, No 3 (2018)

Pages

292-303

Published online

2018-06-25

DOI

10.5603/EP.2018.0032

Pubmed

29952420

Bibliographic record

Endokrynologia Polska 2018;69(3):292-303.

Keywords

thyroid hormone metabolism
obesity
iodothyronine deiodinases
thermogenesis
energy balance

Authors

Pablo García-Solís
Olga P. García
Gabriela Hernández-Puga
Ana A. Sánchez-Tusie
Carlos E. Sáenz-Luna
Hebert L. Hernández-Montiel
Juan C. Solis-S

References (70)
  1. Kopp P, Solís JC. Thyroid hormone synthesis. In: Wondisford FE, Radovick S. ed. Clinical management of thyroid disease. Saunders Elsevier, Philadelphia 2009: 19–41.
  2. WHO | Obesity: preventing and managing the global epidemic [Internet]. WHO. 2017. http://www.who.int/entity/nutrition/publications/obesity/WHO_TRS_894/en/index.html (21.03.2017).
  3. Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid. 2008; 18(2): 141–144.
  4. Solís-S JC, Valverde C. Neonatal hypothyroidism. pathophysiogenic, molecular and clinical aspects]. Rev Invest Clin. 2006; 58(4): 318–334.
  5. Valverde R, Orozco A, Solís J, Robles L. Iodothyronine deiodinases: emerging clinical crossroads. In: Conn M, Ulloa A. ed. Cellular endocrinology in health and disease. Elsevier, Massachusetts 2014: 365–377.
  6. Solís-S JC, Orozco A, García C, et al. Bioactivity of thyroid hormones. Clinical significance of membrane transporters, deiodinases and nuclear receptors]. Rev Invest Clin. 2011; 63(3): 287–308.
  7. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, et al. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol. 2016; 6(3): 1387–1428.
  8. Vella KR, Hollenberg AN. The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol. 2017; 458: 127–135.
  9. Zhu X, Cheng SY. Thyroid hormone nuclear receptors and molecular actions. principles of endocrinology and hormone action. Springer International Publishing 2016: 1–25.
  10. Germain P, Staels B, Dacquet C, et al. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006; 58(4): 685–704.
  11. Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014; 10(10): 582–591.
  12. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010; 31(2): 139–170.
  13. Ayers S, Switnicki MP, Angajala A, et al. Genome-wide binding patterns of thyroid hormone receptor beta. PLoS One. 2014; 9(2): e81186.
  14. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001; 81(3): 1097–1142.
  15. Meruvu S, Ayers SD, Winnier G, et al. Thyroid hormone analogues: where do we stand in 2013? Thyroid. 2013; 23(11): 1333–1344.
  16. Somogyi V, Gyorffy A, Scalise TJ, et al. Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin. Nutr Res Rev. 2011; 24(1): 132–154.
  17. Ortiga-Carvalho TM, Oliveira KJ, Soares BA, et al. The role of leptin in the regulation of TSH secretion in the fed state: in vivo and in vitro studies. J Endocrinol. 2002; 174(1): 121–125.
  18. Longhi S, Radetti G. Thyroid function and obesity. J Clin Res Pediatr Endocrinol. 2013; 5 Suppl 1: 40–44.
  19. Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015; 64(1): 24–34.
  20. Yoshida T, Monkawa T, Hayashi M, et al. Regulation of expression of leptin mRNA and secretion of leptin by thyroid hormone in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1997; 232(3): 822–826.
  21. Obregon MJ. Adipose tissues and thyroid hormones. Front Physiol. 2014; 5: 479.
  22. Brent G. Mechanisms of thyroid hormone action. J Clin Invest. 2012; 122(9): 3035–3043.
  23. Delitala AP, Fanciulli G, Pes GM, et al. Thyroid Hormones, Metabolic Syndrome and Its Components. Endocr Metab Immune Disord Drug Targets. 2017; 17(1): 56–62.
  24. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014; 94(2): 355–382.
  25. Lee P, Swarbrick MM, Ho KKY. Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev. 2013; 34(3): 413–438.
  26. McAninch EA, Bianco AC. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci. 2014; 1311: 77–87.
  27. Obregón MJ. [Obesity, thermogenesis and thyroid hormones]. Rev Esp Obes. 2007; 5: 27–38.
  28. López M, Varela L, Vázquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010; 16(9): 1001–1008.
  29. Solinas G. Molecular pathways linking metabolic inflammation and thermogenesis. Obes Rev. 2012; 13 Suppl 2: 69–82.
  30. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011; 378(9793): 804–814.
  31. Lakshman R, Elks CE, Ong KK. Childhood obesity. Circulation. 2012; 126(14): 1770–1779.
  32. Shamah-Levy T, Cuevas-Nasu L, Rivera-Dommarco J, Hernandez-Avila M. Encuesta nacional de salud y nutrición de medio camino. Resultados nacionales. Instituto Nacional de Salud Pública, Cuernavaca, México (MX) 2016.
  33. Baudrand R, Arteaga E, Moreno M. El tejido graso como modulador endocrino: Cambios hormonales asociados a la obesidad. Rev Med Chile. 2010; 138(10).
  34. Misra M. Obesity pharmacotherapy: current perspectives and future directions. Curr Cardiol Rev. 2013; 9(1): 33–54.
  35. Álvarez-Castro P, Sangiao-Alvarellos S, Brandón-Sandá I, et al. [Endocrine function in obesity]. Endocrinol Nutr. 2011; 58(8): 422–432.
  36. Samaan SH. [TSH levels in obese children without thyroidal pathology]. Rev Horiz Med. 2012; 12: 23–28.
  37. Gallagher EJ, LeRoith D. Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality. Physiol Rev. 2015; 95(3): 727–748.
  38. Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev. 2012; 249(1): 218–238.
  39. Bilir B, Güldiken S, Tunçbilek N, et al. The effects of fat distribution and some adipokines on insulin resistance. Endokrynologia Polska. 2015.
  40. Pazaitou-Panayiotou K, Panagiotou G, Polyzos SA, et al. Serum adiponectin and insulin-like growth factor 1 in predominantly female patients with thyroid cancer: association with the histologic characteristics of the tumor. Endocr Pract. 2016; 22(1): 68–75.
  41. Marwaha RK, Tandon N, Garg MK, et al. Impact of body mass index on thyroid functions in Indian children. Clin Endocrinol (Oxf). 2013; 79(3): 424–428.
  42. de Moura Souza A, Sichieri R. Association between serum TSH concentration within the normal range and adiposity. Eur J Endocrinol. 2011; 165(1): 11–15.
  43. Ambrosi B, Masserini B, Iorio L, et al. Relationship of thyroid function with body mass index and insulin-resistance in euthyroid obese subjects. J Endocrinol Invest. 2010; 33(9): 640–643.
  44. Agnihothri RV, Courville AB, Linderman JD, et al. Moderate weight loss is sufficient to affect thyroid hormone homeostasis and inhibit its peripheral conversion. Thyroid. 2014; 24(1): 19–26.
  45. Rumińska M, Witkowska-Sędek E, Majcher A, Pyrżak B. Thyroid function in obese children and adolescents and its association with anthropometric and metabolic parameters. In: Pokorski M. ed. Prospect in pediatric diseases medicine. advances in experimental medicine and biology. Springer, Cham 2016: 33–41.
  46. Bjergved L, Jørgensen T, Perrild H, et al. Thyroid function and body weight: a community-based longitudinal study. PLoS One. 2014; 9(4): e93515.
  47. Witkowska-Sędek E, Kucharska A, Rumińska M, et al. Thyroid dysfunction in obese and overweight children. Endokrynol Pol. 2017; 68(1): 54–60.
  48. Mohammad MS, Farage AH, Abdullah AA. Influence of primary hypothyroidism on serum leptin level. Iraqi Postgrad Med. 2010; 9: 120–124.
  49. Pearce EN. Thyroid hormone and obesity. Curr Opin Endocrinol Diabetes Obes. 2012; 19(5): 408–413.
  50. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015; 38(12): 1249–1263.
  51. Galofre JC, Frühbeck G, Salvador J. Obesity and thyroid function: pathophysiological and therapeutic. Hot Thyroidol. 2010; 6: 1–22.
  52. Rinaldi S, Lise M, Clavel-Chapelon F, et al. Body size and risk of differentiated thyroid carcinomas: findings from the EPIC study. Int J Cancer. 2012; 131(6): E1004–E1014.
  53. Gierach M, Junik R. The effect of hypothyroidism occurring in patients with metabolic syndrome. Endokrynol Pol. 2015; 66(4): 288–294.
  54. Rotondi M, Leporati P, Rizza MI, et al. Raised serum TSH in morbid-obese and non-obese patients: effect on the circulating lipid profile. Endocrine. 2014; 45(1): 92–97.
  55. Santini F, Marzullo P, Rotondi M, et al. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014; 171(4): R137–R152.
  56. Santini F, Galli G, Maffei M, et al. Acute exogenous TSH administration stimulates leptin secretion in vivo. Eur J Endocrinol. 2010; 163(1): 63–67.
  57. Liu G, Liang L, Bray GA, et al. Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial. Int J Obes (Lond). 2017; 41(6): 878–886.
  58. Soriguer F, Valdes S, Morcillo S, et al. Thyroid hormone levels predict the change in body weight: a prospective study. Eur J Clin Invest. 2011; 41(11): 1202–1209.
  59. Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie. 2017; 134: 86–92.
  60. Arrojo E Drigo R, Fonseca TL, Werneck-de-Castro JP, et al. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta. 2013; 1830(7): 3956–3964.
  61. Pan H, Guo J, Su Z. Advances in understanding the interrelations between leptin resistance and obesity. Physiol Behav. 2014; 130: 157–169.
  62. Araujo RL, Carvalho DP. Bioenergetic impact of tissue-specific regulation of iodothyronine deiodinases during nutritional imbalance. J Bioenerg Biomembr. 2011; 43(1): 59–65.
  63. Araujo RL, Andrade BM, Padrón AS, et al. High-fat diet increases thyrotropin and oxygen consumption without altering circulating 3,5,3'-triiodothyronine (T3) and thyroxine in rats: the role of iodothyronine deiodinases, reverse T3 production, and whole-body fat oxidation. Endocrinology. 2010; 151(7): 3460–3469.
  64. Duntas LH, Biondi B. The interconnections between obesity, thyroid function, and autoimmunity: the multifold role of leptin. Thyroid. 2013; 23(6): 646–653.
  65. Sari R, Balci MK, Altunbas H, et al. The effect of body weight and weight loss on thyroid volume and function in obese women. Clin Endocrinol (Oxf). 2003; 59(2): 258–262.
  66. Yadav A, Deo N. Influence of leptin on immunity. Curr Immunol Rev. 2013; 9(1): 23–30.
  67. Marzullo P, Minocci A, Tagliaferri MA, et al. Investigations of thyroid hormones and antibodies in obesity: leptin levels are associated with thyroid autoimmunity independent of bioanthropometric, hormonal, and weight-related determinants. J Clin Endocrinol Metab. 2010; 95(8): 3965–3972.
  68. Rotondi M, Magri F, Chiovato L. Thyroid and obesity: not a one-way interaction. J Clin Endocrinol Metab. 2011; 96(2): 344–346.
  69. Witting V, Bergis D, Sadet D, et al. Thyroid disease in insulin-treated patients with type 2 diabetes: a retrospective study. Thyroid Res. 2014; 7(1): 2.
  70. Biondi B. Thyroid and obesity: an intriguing relationship. J Clin Endocrinol Metab. 2010; 95(8): 3614–3617.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl