open access

Vol 75, No 2 (2024)
Original paper
Submitted: 2023-12-12
Accepted: 2024-01-17
Published online: 2024-04-02
Get Citation

Elevated serum irisin levels in boys with central precocious puberty independent of BMI

Dan Zeng1, Yanfei Chen1, Tao Xie1, Wei Qin1, Qi Meng1, Dan Lan1
·
Pubmed: 38646987
·
Endokrynol Pol 2024;75(2):216-221.
Affiliations
  1. Department of Paediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

open access

Vol 75, No 2 (2024)
Original Paper
Submitted: 2023-12-12
Accepted: 2024-01-17
Published online: 2024-04-02

Abstract

Introduction: Central precocious puberty (CPP) is a prevalent endocrine disorder. Research has indicated that pubertal development is linked to nutritional metabolism. Irisin, a novel myokine/adipokine, has been identified as a potential predictor of CPP in girls. This study aims to examine the relationship between serum irisin levels and CPP in boys.

Material and methods: An enzyme-linked immunosorbent assay (ELISA) was used to measure serum irisin levels in 32 boys diagnosed with CPP and 33 prepubertal age-matched boys as normal controls (NC). To assess the impact of body mass index (BMI) on irisin levels, both the CPP and NC groups were divided into overweight/obese and normal-weight subgroups. Spearman correlation analysis was employed to assess the connection between irisin and clinical and biochemical parameters. Additionally, a receiver operating characteristic curve was utilised to determine the optimal threshold value for irisin.

Results: In the normal-weight subgroups, boys with CPP exhibited elevated irisin levels compared to controls, but not in the overweight/obese subgroups. The optimal cut-off value for irisin levels to predict CPP in the normal-weight groups was 93.09 ng/mL, yielding a sensitivity of 47.6% and a specificity of 100%. Furthermore, a positive correlation was noted between irisin levels and bone age (BA), bone age advancement (BA-CA), and BMI.

Conclusions: Serum irisin levels correlate with BMI and pubertal development. Given its limited sensitivity, irisin level can only be utilised as a supplementary rather than a standalone diagnostic indicator for CPP.

Abstract

Introduction: Central precocious puberty (CPP) is a prevalent endocrine disorder. Research has indicated that pubertal development is linked to nutritional metabolism. Irisin, a novel myokine/adipokine, has been identified as a potential predictor of CPP in girls. This study aims to examine the relationship between serum irisin levels and CPP in boys.

Material and methods: An enzyme-linked immunosorbent assay (ELISA) was used to measure serum irisin levels in 32 boys diagnosed with CPP and 33 prepubertal age-matched boys as normal controls (NC). To assess the impact of body mass index (BMI) on irisin levels, both the CPP and NC groups were divided into overweight/obese and normal-weight subgroups. Spearman correlation analysis was employed to assess the connection between irisin and clinical and biochemical parameters. Additionally, a receiver operating characteristic curve was utilised to determine the optimal threshold value for irisin.

Results: In the normal-weight subgroups, boys with CPP exhibited elevated irisin levels compared to controls, but not in the overweight/obese subgroups. The optimal cut-off value for irisin levels to predict CPP in the normal-weight groups was 93.09 ng/mL, yielding a sensitivity of 47.6% and a specificity of 100%. Furthermore, a positive correlation was noted between irisin levels and bone age (BA), bone age advancement (BA-CA), and BMI.

Conclusions: Serum irisin levels correlate with BMI and pubertal development. Given its limited sensitivity, irisin level can only be utilised as a supplementary rather than a standalone diagnostic indicator for CPP.

Get Citation

Keywords

irisin; central precocious puberty; BMI; boys

About this article
Title

Elevated serum irisin levels in boys with central precocious puberty independent of BMI

Journal

Endokrynologia Polska

Issue

Vol 75, No 2 (2024)

Article type

Original paper

Pages

216-221

Published online

2024-04-02

Page views

117

Article views/downloads

37

DOI

10.5603/ep.98509

Pubmed

38646987

Bibliographic record

Endokrynol Pol 2024;75(2):216-221.

Keywords

irisin
central precocious puberty
BMI
boys

Authors

Dan Zeng
Yanfei Chen
Tao Xie
Wei Qin
Qi Meng
Dan Lan

References (36)
  1. Partsch CJ, Sippell WG. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens. Hum Reprod Update. 2001; 7(3): 292–302.
  2. Kim SH, Huh K, Won S, et al. A Significant Increase in the Incidence of Central Precocious Puberty among Korean Girls from 2004 to 2010. PLoS One. 2015; 10(11): e0141844.
  3. Kim YeJ, Kwon A, Jung MoK, et al. Incidence and Prevalence of Central Precocious Puberty in Korea: An Epidemiologic Study Based on a National Database. J Pediatr. 2019; 208: 221–228.
  4. Bräuner EV, Busch AS, Eckert-Lind C, et al. Trends in the Incidence of Central Precocious Puberty and Normal Variant Puberty Among Children in Denmark, 1998 to 2017. JAMA Netw Open. 2020; 3(10): e2015665.
  5. Kang S, Park MiJ, Kim JM, et al. Ongoing increasing trends in central precocious puberty incidence among Korean boys and girls from 2008 to 2020. PLoS One. 2023; 18(3): e0283510.
  6. Pereira A, Busch AS, Solares F, et al. Total and Central Adiposity Are Associated With Age at Gonadarche and Incidence of Precocious Gonadarche in Boys. J Clin Endocrinol Metab. 2021; 106(5): 1352–1361.
  7. Aghaee S, Deardorff J, Quesenberry C, et al. Associations Between Childhood Obesity and Pubertal Timing Stratified by Sex and Race/Ethnicity. Am J Epidemiol. 2022; 191(12): 2026–2036.
  8. Liang X, Huang Ke, Dong G, et al. Current Pubertal Development in Chinese Children and the Impact of Overnutrition, Lifestyle, and Perinatal Factors. J Clin Endocrinol Metab. 2023; 108(9): 2282–2289.
  9. Shi Li, Jiang Z, Zhang Li. Childhood obesity and central precocious puberty. Front Endocrinol (Lausanne). 2022; 13: 1056871.
  10. Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One. 2013; 8(4): e60563.
  11. Maak S, Norheim F, Drevon CA, et al. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocr Rev. 2021; 42(4): 436–456.
  12. Aydin S, Kuloglu T, Aydin S, et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides. 2014; 61: 130–136.
  13. Gençer Tarakçı B, Girgin A, Timurkaan S, et al. Immunohistochemical localization of irisin in skin, eye, and thyroid and pineal glands of the crested porcupine (Hystrix cristata). Biotech Histochem. 2016; 91(6): 423–427.
  14. Gür FM, Timurkaan S, Yalcin MH, et al. Immunohistochemical localization of irisin in mole rats (Spalax leucodon). Biotech Histochem. 2017; 92(4): 245–251.
  15. Gür FM, Timurkaan S, Gençer Tarakçi B, et al. Identification of immunohistochemical localization of irisin in the dwarf hamster (Phodopus roborovskii) tissues. Anat Histol Embryol. 2018; 47(2): 174–179.
  16. Wahab F, Khan IU, Polo IR, et al. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J Endocrinol. 2019; 241(3): 175–187.
  17. Wahab F, Drummer C, Mätz-Rensing K, et al. Irisin is expressed by undifferentiated spermatogonia and modulates gene expression in organotypic primate testis cultures. Mol Cell Endocrinol. 2020; 504: 110670.
  18. Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013; 18(5): 649–659.
  19. Poretsky L, Islam J, Avtanski D, et al. Reproductive effects of irisin: Initial in vitro studies. Reprod Biol. 2017; 17(3): 285–288.
  20. Jiang Q, Zhang Q, Lian A, et al. Irisin stimulates gonadotropins gene expression in tilapia (Oreochromis niloticus) pituitary cells. Anim Reprod Sci. 2017; 185: 140–147.
  21. Kutlu E, Ozgen LT, Bulut H, et al. Investigation of irisin's role in pubertal onset physiology in female rats. Peptides. 2023; 163: 170976.
  22. Ulker N, Yardimci A, Kaya Tektemur N, et al. Irisin may have a role in pubertal development and regulation of reproductive function in rats. Reproduction. 2020; 160(2): 281–292.
  23. Reinehr T, Elfers C, Lass N, et al. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis. J Clin Endocrinol Metab. 2015; 100(5): 2123–2130.
  24. Kutlu E, Özgen İT, Bulut H, et al. Serum Irisin Levels in Central Precocious Puberty and Its Variants. J Clin Endocrinol Metab. 2021; 106(1): e247–e254.
  25. Chen Y, Li M, Liao B, et al. Serum irisin levels increase in girls with central precocious puberty not dependent on BMI: a pilot study. Endocr Connect. 2022; 11(4).
  26. Cheuiche AV, da Silveira LG, de Paula LC, et al. Diagnosis and management of precocious sexual maturation: an updated review. Eur J Pediatr. 2021; 180(10): 3073–3087.
  27. Li H, Ji CY, Zong XN, et al. Body mass index growth curves for Chinese children and adolescents aged 0 to 18 years][J]. Zhonghua Er Ke Za Zhi, 2009, 47(7):493-498. Zhonghua Er Ke Za Zhi. 2009; 47(7): 493–498.
  28. Palacios-González B, Vadillo-Ortega F, Polo-Oteyza E, et al. Irisin levels before and after physical activity among school-age children with different BMI: a direct relation with leptin. Obesity (Silver Spring). 2015; 23(4): 729–732.
  29. Çatlı G, Küme T, Tuhan HÜ, et al. Relation of serum irisin level with metabolic and antropometric parameters in obese children. J Diabetes Complications. 2016; 30(8): 1560–1565.
  30. Jang HB, Kim HJ, Kang JH, et al. Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metabolism. 2017; 73: 100–108.
  31. Binay Ç, Paketçi C, Güzel S, et al. Serum Irisin and Oxytocin Levels as Predictors of Metabolic Parameters in Obese Children. J Clin Res Pediatr Endocrinol. 2017; 9(2): 124–131.
  32. Jia J, Yu F, Wei WP, et al. Relationship between circulating irisin levels and overweight/obesity: A meta-analysis. World J Clin Cases. 2019; 7(12): 1444–1455.
  33. Barnett SM, Jackson AH, Rosen BA, et al. Nephrolithiasis and Nephrocalcinosis From Topiramate Therapy in Children With Epilepsy. Kidney Int Rep. 2018; 3(3): 684–690.
  34. Taş D, Akman Öden A, Akgül S, et al. The Effect of Pubertal Stage on the Concentrations of the Novel Adipomyokine, Irisin, in Male Adolescents. J Clin Res Pediatr Endocrinol. 2020; 12(2): 168–174.
  35. He J, Kang Y, Zheng L. Correlation of serum levels of LH, IGF-1 and leptin in girls with the development of idiopathic central precocious puberty. Minerva Pediatr (Torino). 2023; 75(3): 381–386.
  36. Wahab F, Shahab M, Behr R. Hypothesis: Irisin is a metabolic trigger for the activation of the neurohormonal axis governing puberty onset. Med Hypotheses. 2016; 95: 1–4.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl