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and phthalates, UV filters, or nicotine. Some of these 
are formed as products during the incineration of mu-
nicipal waste or even in volcanic eruptions (dioxins). 
They can be ingredients in cosmetics or paper, or used 
in plant or animal protection (pesticides). Phthalates 
are components necessary for the production of, for 
example, varnishes or phthalic paints, laminates, or 
adhesives. However, some, such as phytoestrogens, 
alcohol, or marijuana, sometimes have beneficial effects 
but not for male and female gonads [1–3].

The operation of EDCs is still not well understood. 
It is known that they can disturb the endocrine system, 
in both the female and male gonads [1–3]. It has been 

Introduction

Endocrine-disrupting compounds (EDCs) are chemicals 
with properties that interfere with the body’s hor-
monal homeostasis. These compounds may disturb 
the work of the hypothalamic–pituitary–gonadal axis 
(HPG). It has been proven that most EDCs have a wide 
range of effects and, above all, sometimes a significant 
negative effect on the endocrine system [1].

So far, the negative impact of EDCs has been de-
tected in compounds including pesticides, dioxins, 
polychlorinated biphenyls (PCBs), polybrominated 
diethyl ethers (PBDE), plasticisers like bisphenol A (BPA) 
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Abstract 
Various stimulants (VS) are chemicals that disrupt the endocrine system — endocrine homeostasis of the reproductive system — which 
also known as endocrine-disrupting chemicals (EDCs). These substances are found in the human body, in both the blood and urine, 
amniotic fluid, or, among others, the adipose tissue.
This article presents the current state of knowledge of the effect of EDCs and additional factors such as smoking, alcohol consumption, 
and cannabis on the gonads.
The article is an overview of the impact of EDCs and their mechanism of action, with particular emphasis on gonads, based on databases 
such as PubMed, EMBASE and Google Scholar, and Web of Science available until May 2022.
The impact of human exposure to bisphenol A (BPA) is not fully understood, but it has been shown that phthalates show a negative cor-
relation in anti-androgenic activity in the case of men and women for the anti-Müllerian hormone (AMH). Smoking cigarettes and passive 
exposure to tobacco have a huge impact on the effects of endocrine disorders in both women and men, especially during the reproductive 
time. Also, the use of large amounts of cannabinoids during the reproductive years can lead to similar disorders. It has been documented 
that excessive alcohol consumption leads to disturbed function of the hypothalamus–pituitary–gonadal axis (HPG). Excess caffeine con-
sumption may adversely affect male reproductive function, although this is not fully proven. 
Therefore, the following publication presents various stimulants (BPA, phthalates, nicotine, alcohol, cannabis) that disrupt the function 
of the endocrine system and, in particular, affect the function of the gonads. (Endokrynol Pol 2023; 74 (3): 221–233)
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and polycarbonate plastics) [8], and studies conducted 
on women with polycystic ovary syndrome (PCOS) 
showed its significantly increased level compared 
to healthy women. Moreover, in women with PCOS, 
a positive correlation was found between insulin re-
sistance and serum BPA concentration [9], with serum 
BPA levels in those diagnosed with PCOS significant-
ly higher compared to women without PCOS [9–12].

In addition, an association was found between 
body mass index, total testosterone (T), free T, dehy-
droepiandrosterone, and dehydroepiandrosterone 
sulphate (with and without PCOS) and BPA. How-
ever, no correlation between serum BPA and any other 
sex hormone [luteinizing hormone (LH), follicle-stim-
ulating hormone (FSH), and oestradiol (E2)] was con-
firmed [13-14].

It has now been shown that BPA crosses the placen-
tal barrier and has been detected in the foetus (serum) 
and in the amniotic fluid as a potential hazard [15–16]. 
The highest concentration of BPA was found in the am-
niotic fluid in the middle of pregnancy, and it is then 
destroyed during the maturation of the foetal liver [16].

Animal study
In rodents, BPA reduced fertility in the offspring by ex-
posing the uterus and ovaries [17]. The greatest danger, 
however, is in the prenatal period [18–20].

Human study
The effect of human exposure to BPA is not fully 
investigated; however, studies on other EDCs have 
shown that they may influence the development of 
oestrogen-sensitive organs [21].

Future research directions proposed by this field 
include the use of developmental biomarkers, in par-
ticular those involved in reproductive development, 
to investigate this association in infants and female 
children in a longitudinal cohort [18, 22].

Phthalates

Phthalic acid esters (PAEs) are compounds that in-
crease the plasticity of polyvinyl chloride (PVC). PAEs 
are mainly used in cosmetology (cosmetics, toiletries, 
food packaging), medical products (including intrave-
nous tubes), beverage containers, and plastic toys [18, 
23–29]. It has been proven that DBPs (phthalates) have 
anti-androgenic effects [18].

Animal study
Rodent studies have shown that PAEs lower fertility 
and thus increase visceral obesity [30]. Dibutyl phthalate 
(DBP) is more dominant during prenatal exposure than 
in mature animals [31]. In rodents, it was found that 

proven that in the case of female gonads, changes may 
occur, including oestrogen (E) signalling pathways 
and interact via oestrogen receptors (ER). The same 
is true of the male gonads, where EDCs can disrupt 
“healthy” hormones via androgen (A) and the andro-
gen receptor (AR). It has been shown that EDCs can act 
as agonists or “mimic” a natural hormone. In addition, 
they also bind and activate various hormonal recep-
tors, such as 1. AR; 2. ER; 3. oestrogen-related receptor 
(ERR); or 4. aryl hydrocarbon receptor AhR), chimeric 
antigen receptor (CAR), or pregnane X receptor (PXR). 
EDCs can be antagonistic by binding to these various 
receptors without activating them. In addition, EDCs 
significantly affect the concentration of hormones, their 
transport, synthesis, metabolism, or elimination [4–7].

The publication presents the current state of 
knowledge on how BPA, phthalates, androgenic EDCs, 
alcohol, nicotinism, marijuana, and UV light affect 
both male and female fertility. The authors of this work 
discuss the issues related to the influence of the dose of 
these agents, and the duration of use on the occurrence 
of changes at the gonadal and hormonal levels. The in-
fluence of abstinence on changes caused by the chronic 
use of alcohol, cigarettes, or marijuana is also discussed. 
Understanding the mechanisms leading to the develop-
ment of sexual dysfunctions at the cellular, hormonal, 
and psychosocial levels may contribute to the improve-
ment of diagnostic methods and the implementation 
of preventive and therapeutic measures. Compulsive 
consumption of various substances is one of the modifi-
able risk factors for infertility in both women and men. 
The publication additionally presents the impact of 
coffee consumption on the fertility process and, above 
all, the current state of knowledge regarding, inter alia, 
magnesium and calcium.

The purpose of this review is to discuss the influence 
of various stimulants and UV filters on the reproductive 
system. The article is an overview of the impact of repro-
ductive disruptors on the male and female reproductive 
systems based on the medical databases PubMed, Web 
of Science, EMBASE, and Google Scholar, available until 
28 May 2022. Publications in Polish and English were 
considered. During the search of the relevant literature, 
the following keywords and their combinations were 
used: “endocrine disruptors”, “bisphenol A”, “phthal-
ates”, “male gonads”, “female gonads”, “UV filters”, “to-
bacco and e-cigarettes”, “alcohol”, “cannabis”, and “cof-
fee”. Original research papers and review papers related 
to the presented topic were qualified for the review.

Bisphenol A

Bisphenol A (BPA) is an oestrogenic monomer (it oc-
curs in the formation of, among others, epoxy resins 
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the concentrations of DBP, BPA, and di(2-ethylhexyl)
phthalate (DEHP) increased significantly during preg-
nancy, which resulted in significantly more PCOS [32].

Human study
Recent studies have shown that DEHP is highly toxic, 
especially during reproduction and growth, both in 
animals and humans [33–34]. On the other hand, 
recent studies have shown that exposure to DEHP 
causes impaired ovarian steroidogenesis as well as 
low levels of progesterone (P) [35–36]. Phthalates also 
show a reversely proportional (negative correlation) 
anti-androgenic effect, related in particular to the con-
centration of testosterone (T) [37]. Moreover, it was also 
shown that the phthalate metabolite was negatively 
correlated with the concentration of AMH [38].

Prenatal androgen exposure 
and environmental androgens 

Prenatal androgen exposure

Human study
A foetus that is exposed to excess androgens develops 
PCOS during adolescence. Additional studies on female 
offspring showed an increase in AMH levels in female 
offspring [39]. However, paradoxically, in the cohort 
study, the same researchers did not confirm this increase.

Animal study
Prenatal studies on rats (Wistar breed) showed cystic 
ovarian follicles, an increased number of preantral 
and antral follicles  [40], and therefore ovulation 
and menstrual disorders, i.e. PCOS (increased levels of 
androgens and LH) [41]. Prenatal androgen exposure in 
female monkeys demonstrated the presence of PCOS 
and insulin resistance even in infancy [42–43].

Environmental androgens

The environmental androgens include triclocarban 
(TCC), i.e. 3,4,40-trichlorocarbanilide. TCC is often 
used as an antimicrobial agent. It can be found in toys, 
pacifiers, school supplies, brooms, clothes, and plastics 

[44]. Pycke et al. [45] detected TCC in umbilical cord 
plasma. TCC itself has almost no androgenic effect, but 
in the presence of T via the AR, increased transcription 
of AR occurs and, as a result, bioactivity of endogenous 
T is increased [46].

UV filters and gonads

UV filters are a heterogeneous group of chemical 
compounds that can be divided into 2 main types: 

physical filters which include, among others, zinc ox-
ide and titanium dioxide, and chemical filters, such as 
3-benzophenone (BP-3), 3-benzylidene camphor (3-BC), 
4-methylbenzylidene camphor (4-MBC), 2-ethylhexyl 
4-methoxycinnamate (OMC), octocrylene (OCT), 
2-ethylhexyl 4-dimethylaminobenzoate (OD-PABA), 
and 4-aminobenzoic acid (PABA) [47-48].

Modern filter compositions contain substances to 
block or absorb UV-B and UV-A radiation, and conse-
quently they largely protect against the development 
of basal and squamous cell carcinomas of the skin 
and melanoma, the development of which is associ-
ated with exposure to UV-A radiation [49-52]. Together 
with the spread of public awareness of the dangers of 
exposing the skin to radiation and the ever-increasing 
incidence of melanoma, the use of sunscreen has be-
come common [51].

Mechanistic studies
It has been shown that chemical filters, in particular, 
have a significant effect on the reproductive system [47]. 
One of the findings was the oestrogenic properties of 
BP-3, which has the ability to stimulate oocytes through 
the ER. Under the influence of BP-3, follistatin mRNA 
expression was induced, stopping oocyte maturation, 
which may be a compensatory mechanism in response 
to the disruptive action of BP-3. Also, the percentage 
of p27 molecules inhibiting primordial vesicle activa-
tion was decreased by the low concentration of BP-3 
(5.8 nM), which is an example of the induction of an im-
balance between follicle maturation and BP-3-induced 
activation of early oocyte forms [53].

Human studies	
The effect of BP-3 on the male reproductive system was 
successfully assessed in humans, where the concentra-
tion of these compounds in the urine was determined 
and compared to the tested blood and semen samples. 
It transpired that in 97% of healthy volunteers, the pres-
ence of compounds from the BP-3 group was detected 
in the urine. A positive relationship has been demon-
strated between the concentration of benzophenones in 
the urine and the concentration of FSH. The concentra-
tion of benzophenone-1 was positively related to the T/E 
ratio and negatively related to the inhibin b/FSH ratio. 
However, the influence of compounds from the benzo-
phenone group on changes in the quantity and qual-
ity of male sperm [54] has not been demonstrated. 
Extremely interesting conclusions can be drawn from 
the study of the influence of 3-benzophenone on female 
fertility. BP-3 was also found in 98% of the urine samples 
from the female group. It turned out that the higher 
concentration of BP-3 in women was associated with 
a higher probability of implantation and pregnancy, 
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and successful labour than in women with lower con-
centrations of BP-3. However, such surprisingly positive 
results of the effect of BP-3 were limited to the group 
of women declaring they spend more time outdoors 
and perform moderately hard work. Due to the in-
ability to properly isolate the effect of physical activity 
on fertility in these women, there is a need to continue 
research into the isolated effect of BP-3 on fertility [55].

Tobacco and e-cigarette smoking

Smoking cigarettes and passive exposure to tobacco has 
a huge impact on the endocrine disruption effects in 
women of reproductive age, both in the menstrual 
and luteal phases, and most importantly it has a nega-
tive effect on female fecundity [56–61]. However, 
the Oxford Family Planning Association presents in-
teresting observations that demonstrate the return to 
normal fertility of ex-smokers [62]. Studies by Barbieri et 
al. [63] suggest that smoking inhibits a major steroido-
genic pathway, including the inhibition of granulosa cell 
aromatase and the induction of the oxidative metabo-
lism of Es [64]. In smokers, significantly reduced levels 
of AMH were found, especially in patients prepared 
for in vitro fertilisation (IVF) [65–67].

Since the 1980s, many meta-analyses and cohort 
studies have been conducted related to the number 
of cigarettes smoked and the menstrual cycle, which 
showed increased nicotinism in the luteal phase [67]. 
Apart from nicotine addiction, Craig et al. [68] observed 
an additional problem which also appeared in our 
research, namely that female smokers tended to drink 
alcohol before menstruation, which probably increased 
the number of cigarettes smoked in the luteal phase.

The research was further confirmed in a study by 
Sakai and Ohashi [69], which showed that the num-
ber of cigarettes smoked by young Japanese women 
and the CO level in their exhaled air increased signifi-
cantly in the luteal phase.

The study was additionally confirmed by Hughes et 
al. [70], who showed that quitting smoking significantly 
improved fertility. This method included research involv-
ing several minutes of consultation, education, and en-
couragement at each clinical visit, according to the pa-
tient’s individual readiness to stop smoking cigarettes.

Electronic cigarettes
Electronic cigarettes (e-cigarettes, e-cigs) are nowadays 
an alternative that can help in reducing the number of 
cigarettes smoked or in cessation of smoking.

Male reproductive system
Research by Wetendorf et al. [71] on sham mice showed 
a negative impact on the success of implantation 

and the future health of a foetus exposed to nicotine 
contained in e-cigarettes. It should be noted that ex-
posure to e-cigarettes in the uterus reduces weight 
(p = 0.006).

Despite the scarcity of existing literature on 
the subject, very interesting observations were made 
by Golli et al. [72] in the testis of Wistar rats, in which 
it was proven that e-cigarette refill liquid (e-liquid) 
containing nicotine disturbed the oxidative balance 
and reduced the 2 main enzymes of steroidogenesis: 
1. P450 side-chain cleavage (scc) (cytochrome 450 scc), 
and 2. 17b-hydroxysteroid dehydrogenase (17b-HSD) 
mRNA level. Experimental studies were carried out on 
sperm collected from the tail epididymis, which showed 
a significant decrease in the number and viability of 
sperm. Nicotine-free e-cigarette fluid (low voltage 
steam) disrupted the enzymes involved in steroido-
genesis (3b-HSD and 17b-HSD) and those related to 
the activity of the seminal epithelium, which can lead 
to impairment of the reproductive system.

Inhibition of the expression of 2 key enzymes 
contained in the synthesis of steroids, 3b-HSD 
and 17b-HSD, was observed after exposure to e-vapour. 
As a result, the activity of the marker nuclei of sorbitol 
dehydrogenase (SDH) and the enzyme glucose-6-phos-
phate dehydrogenase (G6PDH) was significantly 
impaired, whereas the marker tissue damaging lactate 
dehydrogenase (LDH) increased slightly. There are 
currently no data on the effects of e-cigarette use on 
sperm [73]. Nevertheless, Helen O’Neill [74] showed 
that e-cigarettes may impair male fertility through toxic 
chemicals (flavourings). She presented the results of 
an experiment in which male sperm were exposed to 
the aromas of cinnamon and chewing gum introduced 
into the medium. The concentration of the aromas 
used in the experiment was similar to the average 
consumption of occasional and heavier e-cigarette us-
ers. The results indicated that cinnamon flavours can 
significantly reduce sperm motility by causing slower 
cell movement.

Wawryk-Gawdy et al. [75] showed that in male rats, 
exposure to smoke and e-vapour caused morphologi-
cal and functional changes in the seminal epithelium 
(including vacuolisation, decreased spermatogenesis) 
and increased apoptosis of spermatogonia and sper-
matocytes. Additionally, slight changes in sperm mor-
phology were found.

Female reproductive system
The effect of smoking on female fertility has already 
been studied, and it has been proven that active, 
prolonged smoking with high intensity significantly 
reduces fertility and has harmful effects during preg-
nancy [76–77]. Currently, there are no precise data on 
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the influence of the inhalation and exhalation of e-ciga-
rette vapours on folliculogenesis and gamete efficiency. 
There are also a lack of detailed data on the prenatal 
exposure of pregnant women and the embryo/foetus 
to e-cigarettes [78].

Transcriptome analysis by Wetendorf et al. [71] 
showed that exposure to e-cigarettes modulated 
the gene expression necessary for uterine receptivity 
(pathway: integrin, prostanoid biosynthesis, prolifera-
tion, Janus kinase (JAK), and chemokine signalling). 
The protein claudin 10 (CLDN10) was overexpressed 
in the superficial and glandular epithelium of the uteri 
in women exposed to e-cigarettes, with elevated RNA 
levels. The role of CLD10 in the uterus is not well es-
tablished; it is known to play a pivotal role in the kid-
ney and is related to epithelial ion transport. Hence, 
maternal inhalation of e-cigarette vapour regulates 
the pathways crucial for uterine receptivity, which 
includes the genes responsible for ion transport. In 
contrast, in utero exposure of female mice resulted in 
a reduction in body weight gain. The results clearly 
showed a negative impact of e-cigarettes. It has been 
shown that embryo implantation led to an abnormal 
pregnancy, affecting the health of the offspring. When 
applied to women, these results would indicate that 
e-cigarette use when of reproductive age may directly 
influence conception and have a detrimental effect on 
the embryo and the foetus.

Research by Smith et al. [79] was carried out on preg-
nant mice (C57BL/6J) that had been exposed to nicotine 
fumes from e-cigarettes. The experimental results 
showed that exposure of mice to nicotine-containing 
fumes during a period of rapid brain development may 
cause permanent behavioural changes. Studies in ani-
mal models have shown that the exposure of the foetus 
during intrauterine life, or of puppies after birth, to 
e-cigarette fumes containing nicotine led to weight 
and body length reduction. However, there are no 
evaluative studies yet on the reproductive impact of 
e-cigarette use by pregnant women [80]. Despite this, 
the use of e-cigarettes can deliver levels of nicotine 
and its metabolites similar to, or even higher than, those 
provided by traditional cigarettes with a similar sys-
temic retention [82]. The literature results indicate that 
the use of electronic nicotine delivery systems (ENDS) 
by pregnant women is not safe for foetuses [80-84].

Cannabis and the endocrinal-gonadal 
system

The hemp plant is one of the oldest herbs in Central 
Asia. It has been used since antiquity for therapeu-
tic, recreational, and even religious purposes. There 
are 2 types of this plant: indica and sativa. Both 

types have many different forms; they can be dried 
as seeds, flowers, stems, or leaves. Currently, in ad-
dition to alcohol and tobacco, marijuana is one of 
the most common psychotropic drugs [85], and its 
prevalence has grown significantly. According to 
the World Health Organization, the annual preva-
lence of cannabis use is around 2.5% of the world’s 
population [86].

A ‘cannabinoid’ is a compound of the cannabis 
plant or its derivatives (phytocannabinoids, endocan-
nabinoids, and synthetic cannabinoids) [87]. The most 
abundant phytocannabinoids are D-9 tetrahydro-
cannabinol (THC) and cannabidiol (CBD) [88]. On 
the other hand, cannabis is divided into 3 chemical 
variants depending on the cannabinoid content: Type 
I (THC dominance), Type II (CBD and THC), and Type 
III (CBD dominance) [89]. Endogenous cannabinoids 
(eCBs) are substances produced naturally in the body 
that work through cannabinoid receptors. eCBs contain 
lipophilic neurotransmitters: arachidonoylethanol-
amine (anandamide, AEA), 2-arachidonoyl glycerol 
(2-AG), 2-arachidonoyl glyceryl ether (noladin ether), 
virodhamine, and N-arachidonoyl glycerol (NADA). 
Contrary to eCBs, there are synthetic cannabinoids 
(THC analogues) [90].

The influence of cannabis on the female and male 
hypothalamic–pituitary–gonadal axis
Adolescents often use cannabinoids in their reproduc-
tive years, so the influence of marijuana on the repro-
ductive system, especially on fertility, should be taken 
into account [91–93].

Animal study
Chronic administration of cannabinoids to rodents 
resulted in a reduction in gonadotropin-releas-
ing hormone (GnRH) release in female animals. THC 
reduced the release of GnRH which was stimulated 
by norepinephrine and dopamine [94–96]. Similar 
reactions occurred with chronic cannabis adminis-
tration, where GnRH receptors were expressed in 
the pituitary gland [97].

High levels of cannabinoids not only affect the hy-
pothalamus, but also may disturb both the Graafian 
follicle maturation process and ovulation (the level of 
vascular cells) [98–99]. It has been shown that endo-
cannabinoids negatively affect the male reproductive 
system. Endocannabinoids have CB1Rs receptors in 
the hypothalamus, pituitary gland, testis, Leydig cells, 
and sperm [91, 100, 101]. It has been shown that the ad-
ministration of THC results in a reduction in plasma LH, 
T, and FSH [102]. THC has direct and indirect multiple 
effects on the inhibition of GnRH release, which causes 
an inhibition in LH pulsatility [96, 103].



226

The role of stimulants in reproductive disruption	 Agata Czarnywojtek et al.

R
EV

IE
W

Moreover, it has been found that CBD can inhibit 
the 7a‐hydroxylase enzyme, which is necessary in 
the synthesis of androgen in the rat testis. The dys-
function of this enzyme leads to a decrease in testos-
terone production by the Leydig cells in the testis [91]. 
An experiment on mice resulted in a 47% decrease in 
sperm motility after administering 1 mM of THC for 
15 min and a 67% decrease after administering 10 mM of 
THC for 15 min [104]. Testicular atrophy and a decrease 
in the seminiferous tubule diameter were also seen after 
the administration of AEA and THC [103-104].

Human data
Cannabinoids exert a negative effect on the female re-
productive system [103]. During pregnancy, THC may 
cross the placental barrier, which may lead to the birth 
of a child with low birth weight or even premature 
delivery [105–106], and an increased risk of pregnancy 
loss has also been observed [107]. Continuous consump-
tion of marijuana (during conception, throughout 
pregnancy) has even resulted in sudden infant death 
syndromes [108].

CB1R agonists significantly reduce the concentration 
of prolactin, and cannabinoids increase the release of 
dopamine in the hypothalamus, and as a result the re-
lease of prolactin is inhibited [109]. But in the case of 
chronic marijuana use, there is a ‘rebound phenom-
enon’, leading to significant hyperprolactinaemia [110]. 
Research by Crume et al. [111] showed that the use 
of marijuana during lactation was associated with its 
shortening.

There is currently a lack of accurate data related 
to PCOS and cannabinoid consumption. Currently, 
the relationship between the endocannabinoid sys-
tem and the development of PCOS has been proven, 
and this is also found in non-obese people. Moreover, 
an increased level of AEA has been shown in PCOS 
patients [112]. It has also been postulated that ECS 
activation and CB1R overexpression is associated with 
insulin resistance in women with PCOS. Research by 
Juan et al. [113] showed increased expression of AEA, 
2-AG, CB1R, and CB2R mRNA in those with PCOS 
compared to healthy patients.

The latest research by Lammert et al. [114] showed 
that women who use cannabis and tobacco have 
a shortened luteal phase, in comparison to females 
who only use tobacco. A very interesting and inno-
vative study (a randomised, placebo-controlled trial 
test) was conducted by Sherman [115] in a group of 
8 heavy cannabis users, 3 of whom received micronised 
progesterone (200 mg; n = 3), while the rest received 
a matching placebo (n = 5), in the early follicular phase 
of their menstrual cycle during cannabis withdrawal. 
Among the women receiving progesterone, all tests 

were negative, which was further confirmed by can-
nabis abstinence.

Cannabinoids exert a negative effect on the human 
reproductive system [103]. Recent studies have shown 
that the human sperm expresses both cannabinoid 
receptors: CB1RS and CB2RS [101]. Cannabinoids 
and eCBs have been shown to negatively affect sperm 
function. THC activates CB1RS on sperm and results 
in a reduction in the lifespan and motility of the sperm 

[103]. In addition, THC hinders the induction of capac-
itation by the acrosome reaction inhibiting penetration 
to the zona pellucida and inhibiting the fertilisation 
capacity [116–118]. An association between marijuana 
use and a decrease in sperm count and concentra-
tion has been made based on the results of  these 
studies [119, 120]. Men who use marijuana have shown 
a poor sperm morphology when presented for infertil-
ity evaluation [121]. Long-term use of marijuana can 
lead to disturbances in erectile function [122]. The lat-
est studies have shown that there is an association 
between the use of cannabis and an increase in testicu-
lar germ cell tumours, especially non-seminomatous 
tumours [123–124].

Effects of alcohol on the genitals

Excessive and continuous consumption of alcohol leads 
to multifactorial and polygenic disorders that can result 
in various phenotypic addictions [125–126]. Alcohol, 
in addition to its influence on the liver, cardiovascular 
system [127], immune disorders, mental disorders, 
and some neoplasms [128], causes numerous hormonal 
disorders [126, 129].

The influence of alcohol on the hypothalamic-
pituitary-adrenal axis
Alcohol activates the hypothalamic–pituitary–adrenal 
(HPA) axis, which results in an increase in the con-
centration of adrenocorticotropic hormone (ACTH) 
and glucocorticoids [126].

Animal study
In rats, acute administration of ethanol increases 
the levels of ACTH and corticosterone in the plasma, 
and it has additionally been proven that females 
show a greater response after the administration of 
ethanol than males [130]. Rivier et al. [131] showed 
that under the influence of ethanol the concentra-
tion of corticotrophin-releasing hormone (CRH) from 
the hypothalamus increases. It has been noted that 
the paraventricular nucleus (PVN) is damaged signifi-
cantly, but this does not abolish the stimulating effect 
of ethanol on ACTH release [131]. Hence, additional 
regions of PVN and/or, for example, vasopressin have 



227

Endokrynologia Polska 2023; 74 (3)

R
EV

IE
W

been shown to mediate the stimulation of ACTH re-
lease by ethanol [132]. In the case of chronic alcohol 
administration, the response to cortisol and ACTH is 
reduced [133]. Additionally, the CRH system has been 
proven to play an important role in alcoholism, limiting 
the expression of CRH mRNA in the PVN [134] and re-
ducing the pituitary response to CRH [135]. It has also 
been shown that mice lacking the CRH1 receptor show 
an increase in alcohol consumption, even for the rest 
of their lives [136, 137].

Human study
Alcohol produces both sedating and stimulant effects 
in humans. Several studies have shown a stimulating 
effect of alcohol on the HPA axis [138] and increased uri-
nary cortisol levels in men [139]. In alcoholics, the HPA 
axis function is disturbed [133, 140–141].

In addition, it has been shown that decreased opioid 
activity as a result of alcoholism or genetically associ-
ated with the risk of alcoholism can induce hypercor-
tisolaemia alter mesolimbic dopamine (DA) production 
and lead to inappropriate ethanol enhancement [140, 
142].

Alcohol and the hypothalamic-pituitary-gonadal 
axis
Alcohol abuse and alcoholism are associated with im-
paired reproductive function in both men and women. 
The HPG axis and its hormones are essential for 
the proper functioning of the reproductive system. 
It has been shown that in people with excessive alco-
hol consumption, HPG dysfunction is associated with 
decreased libido, infertility, and gonadal atrophy. Sev-
eral studies have clearly documented that alcohol has 
a detrimental effect on all 3 components of the HPG 
axis: the hypothalamus, pituitary, and gonads. We will 
review some of these studies on the acute and chronic 
effects of alcohol on the male and female reproduc-
tive systems [126]. Dysregulation of the HPG axis can 
therefore lead not only to reproductive dysfunction, 
but also to other serious health problems such as mood 
and memory disorders, osteoporosis, and muscle atro-
phy [126, 143, 144].

The influence of alcohol on the hypothalamic-
pituitary-gonadal axis in puberty
Moderate alcohol consumption in puberty girls causes 
low E levels [145]. Boys also experience hormonal 
changes when consuming alcohol. First, there is a sig-
nificant reduction in the levels of testosterone and pi-
tuitary hormones (LH and FSH) [146]. Under the influ-
ence of alcohol, alcohol-induced HPG axis activity is 
disturbed, which results in reproductive and growth 
disorders [147].

Animal study
Studies in rodents and monkeys have shown that 
alcohol reduces hypothalamic LHRH secretion 
and increases the concentration of growth hormone 
releasing hormone (GRH) [148], which was associated 
with a decrease in circulating growth hormone (GH) 

[147]. The decrease in GH under the influence of al-
cohol was associated with the decrease in insulin-like 
growth factor 1 (IGF-1), i.e. with disturbed growth in 
animals [149].

In female monkeys, alcohol caused a significant 
reduction in LH, E, and IGF-1 but did not affect FSH 
and leptin levels [150].

Alcohol and the female and the male 
hypothalamic-pituitary-gonadal axis
Premenopausal alcohol consumption leads to men-
strual disorders, reproductive disorders (decreased 
ovarian reserve), anovulatory cycles, increased risk 
of spontaneous abortions, and early menopause 
or hyperprolactinaemia [151–155]. In the case of hor-
mone replacement therapy, oestradiol metabolism 
disorders (decreased oestradiol conversion to oes-
trone) occurred in women who consumed alcohol 

[156]. Dysregulation of the HPG axis may therefore 
lead not only to reproductive dysfunction, but also 
to other serious health problems, such as mood 
and memory disorders, osteoporosis, and muscle 
wasting [126, 143, 144].

Consuming ethanol, both acute and chronic, causes 
a decrease in testosterone and progesterone levels, 
and an increase in FSH, LH, and E, which results in 
a decrease in semen, sperm count, and motility [157]. In 
the case of cirrhosis of the liver caused by alcoholism, 
hypogonadism (increase of oestradiol and oestrone) is 
observed [158].

Animal study
Studies conducted on young rats subjected to acute 
and chronic exposure to ethanol showed a decrease in 
testosterone levels and abnormalities in LH and FSH 
levels [159–160].

Alcohol and prolactin
Alcohol consumption has been shown to induce hy-
perprolactinaemia in animals and in humans. Animal 
studies (in female macaques) have shown an increased 
concentration of prolactin (PRL) during chronic alco-
hol administration [161, 162]. It has also been shown 
in rats that ethanol increases plasma PRL levels 
and pituitary weight in cyclic female rats and ovari-
ectomised rats [163], and leads to the formation of 
a prolactinoma tumour induced by elevated oestradiol 
(alcohol induction) [164].
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The effect of caffeine (found in coffee, tea, 
and cocoa drinks) on the female and male 
reproductive system

It was observed during the pandemic that there was 
a decrease in ready-to-eat meals (25%) and alco-
hol (12%) compared to what was consumed before 
the pandemic. Increased consumption of vegetables 
and fruits may result from greater care for the supply 
of essential vitamins for fear of viral infection [165]. 
Retrospective studies by Silva et al. [166] and Salman et 
al. [167] confirmed the increase in fruit and vegetable 
consumption during the pandemic.

Excess caffeine consumption may adversely af-
fect male reproductive function, possibly through 
DNA damage (aneuploidy, DNA breakage) of sperm, 
although these studies are not entirely consistent. As 
a result, it was proven that in most studies, caffeine 
consumption had no effect on sperm parameters [165, 
168, 169]. It is true that some studies have shown that 
drinking coffee by women was associated with a longer 
time required to become pregnant [165].

A study by Rivera-Calimlim in a 6-week-old infant 
who was breastfed by a mother drinking 4–5 cups of 
coffee and about 480  ml of cola daily showed hand 
tremors and an increase in muscle tone in this child. 
These symptoms were significantly reduced when 
the mother stopped the caffeine consumption [170–172]. 
The authors concluded that a limit of 300 mg of caffeine 
per day is reasonable [173].

Breastfeeding mothers who consumed a lot of 
coffee (more than 450 mL per day), delivered infants 
with lower birth weight and decreased haemoglobin 
and haematocrit at birth. Iron levels in breast milk were 
also lower among coffee drinkers, and their infants’ 
haemoglobin and haematocrit values were lower up 
to one month after delivery [174].

A review of studies conducted from 2000 to 2020 by 
Olechno et al. based on PubMed and Google Scholar 
showed that drinking coffee, from 3 to 4 cups a day, is 
a source of magnesium and potassium, as opposed to 
calcium, sodium, and phosphorus [175].

Conclusions

Certain chemicals in modern living environments have 
been shown to significantly disrupt EDCs [18, 176].

EDCs are found, in particular in PCBs, flame retar-
dants, perfluorinated compounds, and, primarily, in 
phthalates and phenols. Mitro et al. [177] proved that 
these compounds cross the placental barrier. These 
compounds are especially dangerous in the prenatal 
period [178, 179]. Studies conducted on pregnant 
rats exposed to EDCs (a mixture of phthalates, BPA 

[32], jet fuel [180], vinclozolin [181], or a mixture of N, 
N-diethyl-meta-toluamide (DEET), and permethrin 

[182]) lead to the development of PCOS in both the first 
and third generations. On the other hand, disorders 
of the menstrual cycle and in vitro implantation (IVF) 
disorders have been shown in humans [24].

Stimulants, such as cannabis, cigarettes, alcohol, 
coffee, and UV filters, are disruptive regardless of 
the endocrine system, especially gonads. However, 
these factors are subject to constant modification. In 
this publication, particular attention was paid to their 
frequent or constant consumption (e.g. habitual alcohol 
or marijuana consumption). Demographic and socio-
economic factors affect fertility in women and men. 
The problem of infertility results from many factors, 
including those related to lifestyle: smoking, alcohol 
consumption, use of other psychoactive substances, 
obesity, mental stress, improper diet, and caffeine in-
take [159, 160, 175, 183]. Expanding knowledge about 
changes in the reproductive system due to the effect of 
chronic alcohol consumption, as well as other modifi-
able risk factors for infertility, will allow for the imple-
mentation of early prophylaxis.

However, it has been observed that the use of 
e-cigarettes rises sharply in pregnant women, as well as 
in women of childbearing age, because it is believed that 
it is healthier than smoking regular cigarettes and useful 
as an aid in reducing and quitting smoking. The current 
effects of e-cigarettes on human development are com-
pletely unknown [184]. So, promoting awareness among 
the public and service providers about the risks and ben-
efits of the use of e-cigarettes by pregnant women [185] 
has been suggested. Guidelines and evidence-based re-
search on the use of e-cigarettes during pregnancy must 
also be prepared by global healthcare organisations. 
Animals that were exposed to e-vapours at critical devel-
opmental periods, as in the research conducted by Lee 
et al., showed this can interfere with the development 
of the genital organs, leading to damage [186].

It is important to spread this knowledge not only 
among patients of infertility treatment clinics or addic-
tion centres, but also among family doctors, who are 
usually the first point of contact for the patient. Aware-
ness in the Polish population of the interrelationship of 
these important issues should enable implementation of 
comprehensive treatment, not only directed at the prob-
lem with which the patient presents to the doctor, but 
also at what can cause it to be reversed.
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