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to metabolize iodide, thereby establishing the applica-
bility of stem cell regenerative medicine in the treatment 
of hypothyroidism [3]. In addition to its putative ap-
plication in thyroid regeneration, organoid technology 
also has potential for use in research on the occurrence 
and development of thyroid tumours. The thyroid is 
an organ with a high incidence of malignant tumours, 
among which papillary thyroid carcinoma (PTC) is 
the most common. PTC patients generally have a good 
prognosis, with a 5-year survival rate of 95–97%; how-
ever, approximately 20% exhibit tumour recurrence, 
metastasis, and radioactive iodine-refractory disease 
(RAIRD) within 10 years [4]. In addition, some patients 
with total bilateral thyroid resection experience severe 
side effects during hormone replacement therapy [5]. 
Anaplastic thyroid cancer (ATC) is a very rare and ag-
gressive form of thyroid carcinoma, with a median sur-
vival of only 6 months due to its highly invasive nature 
[6]. Organoids can be utilized to clarify the mechanisms 
underlying tumour occurrence and development as 
well as for the identification of effective intervention 

Introduction

Organoids are three-dimensional (3D) in vitro cultures 
derived from tissue stem cells. They form through 
stem cell-driven self-organization and can simulate 
the structure and function of natural organs [1]. Organ-
oid culture originated from the isolation and culture of 
Lgr5+ intestinal stem cells by Clevers et al. in 2009, who 
constructed intestinal crypt villous organoids that could 
produce a continuously expanding and self-organizing 
epithelial structure similar to the human intestine. 
This novel in vitro model paved the way for regenera-
tive medicine and gene therapy [2]. However, the study 
of thyroid morphogenesis and development lacks 
a stem cell-derived thyroid organoid model system 
that can recapitulate the differentiation and assembly 
of thyroid follicular cells into functional thyroid follicles. 
In 2012, Antonica et al. induced mouse embryonic stem 
cells (ESCs) to produce thyroid organoids displaying 
the morphological and functional properties of thyroid 
follicles for the first time, and demonstrated their ability 
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Abstract 
Organoids are derived from stem cells under three-dimensional culture conditions through self-assembly, and they can recapitulate 
the structural and functional characteristics of organs in vivo during culture. Organoids can be generated from both normal and malignant 
tissues. Those derived from normal tissues are widely used in the field of regenerative medicine. Meanwhile, tumour-derived organoids 
retain the phenotypic heterogeneity and atypia of the primary tumour, thereby providing a reliable in vitro model for the study of tumour 
pathogenesis and treatment. The thyroid gland is one of the most important endocrine organs regulating the body’s energy metabolism 
and growth; however, it is also associated with a high incidence of malignancy. Organoid is an effective tool for thyroid research. Thyroid 
tumour-derived organoids can inherit the histopathological properties of primary tumours, and thyroid tissue-derived organoids can form 
follicular structures and secrete thyroid hormones. The above characteristics of organoids provide a reliable way to study the mechanism 
of thyroid genesis and tumour development in vitro. In this review, we focus on current knowledge and strategies for the establishment 
of thyroid organoids in thyroid regeneration and tumour research aiming to increase our understanding of the pathogenesis of thyroid 
tumours and the regenerative treatment of patients with hypothyroidism. (Endokrynol Pol 2023; 74 (2): 121–127)
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mains [2]. Secondly, organoids can be widely amplified 
during culture while maintaining genomic stability 
[7]. For instance, the number of nephron progenitor 
cells (NPCs) is limited, and these cells are difficult to 
obtain with poor in vitro expansion capacity, such as 
that seen in 2D culture, which hampers research into 
kidney development and diseases. Under organoid 
culture conditions, long-term in vitro expansion of 
NPCs can be achieved, while maintaining genome 
stability, molecular homogeneity, and renogenic po-
tential [8]. Thirdly, compared with animal models, 
organoids better replicate human physiology and have 
a higher degree of operability and experimental flex-
ibility. For example, the microinjection of Helicobacter 
pylori into human gastric organoids can successfully 
recapitulate the typical symptoms of infection by this 
bacterium, whereas H. pylori infection in mice does not 
progress to ulceration and cancer as it does in humans 
[9]. Traditional 2D culture does not have accurate 
cell–cell and cell–extracellular matrix (ECM) interactions 
[10], uniform distribution of cells in the culture dish, 
or a nutritional gradient, which weakens the physi-
ological correlation between cells [11]. Furthermore, 
differences in cell structure and physiology mean that 
animal models cannot accurately reflect the regulato-
ry mechanisms and cell interactions occurring in human 
tissues [12, 13]. Combined, these observations indicate 
that organoids are more suitable for the construction 

targets that can be applied to individualized diagnosis 
and treatment of patients with refractory and highly 
invasive thyroid tumours. In addition, thyroid re-
generation using organoids may help patients with 
congenital hypothyroidism or postoperative patients 
with thyroid cancer, who experience serious side effects 
after hormone replacement therapy. In this review, we 
focus on the difficulties associated with thyroid organ-
oid technology, as well as on the current applications of 
thyroid organoids in regenerative medicine and tumour 
research. We also discuss the limitations and prospects 
of this technology.

Organoid technology

Since Clevers et al. [2] first generated intestinal organ-
oids from Lgr5+ intestinal adult stem cells (ASCs), 
organoid technology has been applied to a variety 
of human organs. Organoids have unique advantages 
over traditional two-dimensional (2D) culture and ani-
mal models (Fig. 1). First, compared with 2D culture, or-
ganoids are complex, 3D, multicellular, self-organizing 
structures with specific tissue organization and func-
tion, which allows for the close connection and frequent 
interaction of multiple cell types. For instance, interac-
tions among a variety of cell types result in intestinal 
crypt villous organoids forming a central lumen lined 
with villous epithelium surrounded by crypt-like do-

Figure 1. Advantages of organoids over traditional 2D culture and animal models
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of biobanks and high-throughput screening, and have 
gradually become a representative tool for studying 
living organs in vitro.

Organoids can be derived from 2 types of stem 
cells: pluripotent stem cells (PSCs), which include 
ESCs and induced PSCs (iPSCs); and ASCs, which are 
resident stem cells specific to differentiated tissues [14]. 
PSCs can form all tissues of the body and will sponta-
neously differentiate in vivo into a disorganized mass 
of differentiated tissue, called a teratoma, through 
the manipulation of factors that control embryonic 
organogenesis [15]. Methods have been developed to 
guide the stepwise differentiation of PSCs into embry-
onic germ layer-restricted organoids, organ-specific 
organoids, and even specific cell types such as hepato-
cytes, neurons, and cardiomyocytes [15]. The induction 
of PSCs for organoid culture requires their differen-
tiation into the 3 germ layers (endoderm, mesoderm, 
and ectoderm) under specific differentiation signals, 
followed by multiple induction steps toward a fully dif-
ferentiated structure, which requires a specific growth 
factor mixture at each step [16]. Gastric organogenesis 
requires the addition of activin to generate endothelial 
progenitor cells from PSCs, followed by the addition of 
Wnt3a and fibroblast growth factor 4 (FGF4) activators 
and bone morphogenetic protein (BMP) inhibitors to 
differentiate these cells into foregut cells, and then 
retinoic acid to yield posterior foregut cells [17]. Fi-
nally, high concentrations of epidermal growth factor 
(EGF) are applied to generate gastric organoids [17]. 
The whole process of organogenesis in the human em-
bryonic period is simulated in PSC-derived organoids, 
rendering them representative of living organs for in 
vitro studies. ASCs are found in differentiated tissues 
and have the capacity for division and self-renewal as 
well as for tissue regeneration [18]. Generating organ-
oids from ASCs does not require transcription factor 
transduction; organoids can be directly induced, mak-
ing them physiologically compatible with the normal 
tissues of the host [19, 20]. Stem cells must grow in a spe-
cialized microenvironment; namely, a stem cell niche, 
composed of fibroblasts, immune cells, endothelial cells, 
perivascular cells or their precursors, ECM, cytokines, 
and growth factors [21]. Additionally, the growth of 
stem cells must be regulated by providing cell-to-cell 
contact and secretory factors [22]. Thyroid organoid 
culture involves an artificially created microenviron-
ment that allows for the formation of stem cell niches 
by providing the corresponding cytokines and ECM. 
The ECM can support cell proliferation, enable cell 
adherence, and allow nutrient and growth factor diffu-
sion [23]. Stem cells must be in strict contact with ECM 
components, such as collagen, laminin, and fibronectin, 
which are important regulators of stem cell behaviour, 

migration, and differentiation [24]. The cytokines re-
quired for thyroid organoid generation include Wnt-3a, 
R-spondin-1, Noggin (a BMP antagonist), EGF, FGF, 
thyroid-stimulating hormone (TSH), and Y-27632, 
a specific ROCK protein inhibitor [25]. Various classes 
of cytokines play different roles during organogenesis. 
Wnt and R-spondin-1 play a key role in the self-renewal 
of multiple types of adult stem or progenitor cells [26]. 
When Wnt proteins bind to members of the Frizzled 
family of receptors, the canonical Wnt pathway is 
activated [27], and this signalling pathway can be fur-
ther enhanced through the activity of the R-spondin 
protein [28]; jointly, these factors drive the differen-
tiation of stem cells in culture. Noggin interferes with 
the binding of BMP to its receptor, thereby antagonizing 
the function of cytokines that limit stem cell prolifera-
tion [29]. EGF is a growth factor for epithelial tissues, 
and its binding to EGF receptors can induce hyperplasic 
changes [30]. Saito et al. exposed thyroid cells to differ-
ent concentrations of TSH for thyroid organoid culture 
and found that TSH could significantly promote organ-
oid formation in a concentration-dependent manner 
[25]. Y-27632 has been reported to inhibit premature 
apoptosis in organoids, enhance the ability of cells to 
form spheroids, and improve the ability of stem cells to 
survive and proliferate in vitro [31]. To date, organoid 
technology has been applied to the in vitro culture of 
a variety of human organs, including the establish-
ment of an organoid culture system for thyroid-related 
research.

Applications of thyroid organoids

Regenerative medicine 
Since its establishment, organoid culture technology has 
experienced rapid development and shown strong ap-
plication value in the field of regenerative medicine, 
including by providing a new graft source. Many 
types of organ models have been applied to regenera-
tive medicine to date, including liver, intestine, pan-
creas, kidney, skin, and, importantly, thyroid models 
[32–37]. Longmire et al. reported the directed differ-
entiation of thyroid cells from mouse ESCs in 2012. To 
achieve this, the authors inhibited bone morphogenetic 
protein (BMP) and transforming growth factor-beta 
(TGF-b) in ESC-derived endodermal cells, yielding 
NK2 homeobox 1 (Nkx2.1)+ endothelial progenitor 
cells. The subsequent combinatorial induction of BMP 
and FGF signalling in these Nkx2.1+ cells promoted 
thyroid lineage specification [37]. This report laid 
the foundation for ensuing studies on the construction 
of thyroid organoids. Later, Antonica et al. reported 
that mouse ESCs could be directed to differentiate into 
thyroid cells through the transient overexpression of 
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the transcription factors Nkx2.1 and paired-box gene 8 
(PAX8) under doxycycline induction, and that these thy-
roid cells formed thyroid organoids with 3D follicular 
structures under thyrotropin treatment [38]. This study 
confirmed for the first time that mouse ESC-derived 
thyroid follicular cells could form thyroid organoids 
in vitro [38]. Moreover, based on the results obtained 
by Longmire et al. with differentiated thyroid cells 
[37], Kurmann et al. differentiated mouse PSC-derived 
endoderm cells into thyroid follicular organoids [39]. 
In the 2 studies [38, 39], the constructed thyroid organ-
oids were transplanted into mice with hypothyroidism 
induced by radioiodine ablation of their thyroid tis-
sue, leading to the generation of follicular-like tissue 
that secreted thyroid hormone and the restoration 
of the level of thyroid hormone to normal; moreover, 
the regenerated thyroid tissue could be regulated by 
TSH. These studies suggest that PSC-derived thyroid 
organoids have a strong regenerative capacity in vivo 
and can compensate for the hypothyroidism caused by 
the lack of thyroid tissue in situ. 

In addition to PSCs, organoids can also be gener-
ated from ASCs derived from differentiated tissues 
(Fig. 2A). Lan et al. isolated a side population of cells 
that can express adenosine triphosphate binding box 
transporter G2 (ABCG2) from differentiated thyroid 
cells [40]. These cells had a high nucleus/cytoplasm 
ratio; they had strong expression of the stem cell mark-
ers ABCG2 and octamer binding transcription factor 
4 (Oct4); and they could proliferate, form spheres, 
and differentiate into thyroid cells under the action of 

TSH [40]. Oct4 is the major transcription factor deter-
mining the fate of ESCs as well as that of some ASCs 
[41]. Although no specific marker of thyroid ASCs has 
been identified, the above-described research suggests 
that ASCs may exist in the thyroid. Thyroid organs 
can be directly cultured from thyroid tissue without 
undergoing cell reprogramming. Saito et al. cultured 
surgically excised mouse thyroid tissue fragments 
after mechanical and enzymatic digestion and estab-
lished mouse thyroid organoids with normal thyroid 
function under the action of TSH [25]. These func-
tions included thyroglobulin synthesis, iodine uptake, 
and the production and release of thyroid hormone [25]. 
The authors transplanted cultured thyroid organoids 
into hypothyroic mice, resulting in the generation of 
thyroid follicle-like tissue capable of iodide uptake [25]. 
In addition to their normal thyroic function, the thyroid 
organoids stably expressed thyroid immune markers 
during both in vitro and in vivo culture [25]. Ogundipe 
et al. used mouse and human thyroid tissue for or-
ganoid culture and found that the thyroid markers 
NKX2.1, PAX8, sodium iodide symporter (NIS), thy-
roglobulin (TG), and thyroxine (T4) were expressed in 
constructed organoids and remained stable in passage 
[42]. The transplantation of organoid-derived cells 
under the renal capsule of hypothyroidic mice led 
to the formation of thyroid follicular structures that 
expressed NKX2.1, TG, and T4 [42]. The above results 
show that thyroid organoids derived from mature 
thyroid tissue also have a strong regenerative ability. 
Furthermore, regenerated thyroid tissue can function 

Figure 2. Culture and application of organoids in thyroid. A. Normal thyroid organoids; B. Thyroid tumour organoids

A

B
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normally in vivo and restore thyroid hormone levels 
in hypothyroic mice.

Congenital hypothyroidism is the most common 
congenital endocrine disease in humans, caused by 
a dysfunctional thyroid gland (15%) or dysplasia (85%) 
[43]. The incidence rate of neonatal hypothyroidism is 
approximately 1/2000 [43]. Patients who have under-
gone bilateral thyroidectomy for thyroid cancer treat-
ment require lifelong hormone replacement therapy 
owing to the absence of thyroid hormone postop-
eratively. However, some patients experience serious 
side effects from hormone replacement therapy after 
total bilateral thyroidectomy [5]. Organoids consist-
ing of PSC-derived thyroid cells or primary thyroid 
gland-derived cells can be transplanted into the body 
and form follicular-like tissue with normal thyroid 
function, and they may represent an effective means 
of treating hypothyroidism. Yang et al. [44] developed 
a method for microencapsulating porcine thyroid 
cells in alginate-poly-L-ornithine-alginate microcap-
sules as a thyroid hormone replacement approach. 
The semipermeable microcapsule membrane allowed 
the diffusion of thyroid hormones, TSH, nutrients, 
oxygen, electrolytes, and wastes while blocking that of 
immunoglobulins, antibodies, and host cells that me-
diate the immune response [44]. Under TSH stimula-
tion, the encapsulated porcine thyroid cells formed 
3D follicular spheres in the inner core of the liquefied 
alginate microcapsules that released thyroid hormone 
[44]. In the future, microencapsulation technology may 
be combined with organoids for in vivo transplantation, 
thereby allowing the transplant recipient to retain nor-
mal thyroid function without immunosuppression. This 
provides a basis for the application of thyroid organoids 
in the field of regenerative medicine.

Organoids and thyroid tumours
Tumour cells have unique mutational and epigenetic 
features, exhibiting heterogeneity in gene expression, 
metabolism, proliferation, and metastatic potential [45]. 
Organoid cultures can recapitulate this heterogeneity 
in vitro while maintaining genomic stability during pas-
saging. Patient-derived organoids (PDOs) can be used 
to enlarge small tumour samples and enable the analysis 
of cancer at any stage in culture, greatly expanding 
the types of tumour samples that can be propagated 
and studied in the laboratory [46]. Studies on thyroid 
cancer organoids are scarce and have mainly focused 
on surgically removed thyroid cancer tissues. Sondorp 
et al. generated patient-derived organoids from 13 
patients with PTC and 3 with RAIRD, and found that 
the marker expression of PTC and RAIRD organoids 
was more like that of the tumour tissue of origin [47]. 
Furthermore, NIS was not expressed in RAIRD organ-

oids, which may explain why postoperative iodine 131 
treatment in patients with PTC is ineffective, leading 
to patient relapse [47]. DNA sequencing of thyroid 
cancer organoids combined with drug screening can 
be applied to individualized treatment in thyroid can-
cer patients. Chen et al. [48] created organoid cultures 
of tumour tissues from PTC patients and carried out 
whole-exome sequencing (WES) in PTC organoids 
and parental tumour tissues to identify significant mu-
tant genes. The results showed that PTC-derived organ-
oids harboured the same mutated genes as the parental 
tumours and remained unchanged in long-term in 
vitro culture [48]. The authors then applied antitumour 
drugs to evaluate the drug sensitivity of PTC organoids, 
and found that there was a correlation between the sen-
sitivity of PTC organoids and their mutation spectrum 
[48]. Although most of the PTC-derived organoids with 
BRAF gene mutation were sensitive to the BRAFV600E in-
hibitors vemurafenib and dabrafenib, a few were resis-
tant to these drugs, despite harbouring BRAF gene mu-
tation [48]. This observation highlights the value of 
the combination of WES and organoid drug screening 
for identifying tumours that are insensitive to targeted 
drugs [48]. Gene editing can also be applied to thyroid 
cancer organoids. For instance, Saito et al. introduced 
the cDNA of NRASQ61R, the main oncogenic driver of 
thyroid cancer, into thyroid organoids established from 
p53 knockout (KO) mice, and then transplanted the re-
sulting NRASQ61R/p53KO thyroid organoids into mice to 
generate poorly differentiated thyroid cancer (PDTC) 
[25]. This study not only enriches the thyroid cancer 
biobank but also reduces the ethical risk and provides 
a reliable model for thyroid cancer research.

The above-mentioned studies indicate that thyroid 
carcinoid organoids cultured in vitro retain the muta-
tional profile and histopathological characteristics of 
the primary tumour [47,48]. Accordingly, they can rep-
resent living tumours, thus allowing the establishment 
of cancer models in vitro for relevant studies (Fig. 2B). 
Additionally, thyroid organoids can produce PDTCs 
in mice through gene editing and transplantation [25], 
indicating that tumour organoids can be xenografted 
and that tumour samples can be enriched for labora-
tory-based analysis. Finally, thyroid cancer organoids, 
combined with DNA sequencing, can be used to predict 
the sensitivity of drugs in the human body [48], sug-
gesting their potential as an effective tool for the indi-
vidualized treatment of patients with thyroid tumours. 
Several studies have been undertaken on organoid 
culture and drug screening for gastrointestinal, liver, 
lung, and breast tumours [49–52]. For example, Vlacho-
giannis et al. tested the effects of anticancer agents on 
ex vivo PDOs, and compared the responses of patients 
in clinical with PDO-based mouse xenograft mod-
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els to anticancer agents, they concluded that PDOs 
can recapitulate drug response of patients and have 
the potential to be executed in personalized medicine 
programs [49]. Research on thyroid cancer organoids 
is currently mainly focused on PTC, while studies on 
poorly differentiated and undifferentiated thyroid can-
cer organoids are lacking. More research on this kind 
of thyroid cancer and its organoids is needed to better 
understand thyroid cancer pathogenesis and identify 
effective intervention targets. Organoids will likely 
become a new tool for physiological and pathological 
research of thyroid cancer.

Discussion

Unlike traditional 2D culture and animal models, organ-
oid culture technology can lead to the establishment of 
an ideal model that highly recapitulates the structure, 
function, and immunophenotype of the thyroid gland 
and thyroid cancer in vitro. Accordingly, organoids 
can play an important role in tumour research and re-
generative medicine. However, the technique is not 
fully mature, and many limitations in thyroid organ-
oid culture remain. First, there is no uniform criterion 
regarding the substances required for the culture of 
thyroid organoids, and the factors used for culture vary 
slightly in a study-dependent manner. The organoid 
formation rate is also relatively low. Sondorp et al. 
reported that the formation efficiency of PTC-derived 
organoids is stable at about 7%, while that of RAIRD 
organoids is approximately 5% [47]. Secondly, organoid 
formation should ideally mimic the development of 
the whole organ; however, differences in the timing 
of the action of the various growth factors involved 
and the concentrations of these growth factors make 
it difficult to produce organoids that perfectly match 
the relevant organs in vivo [53]. There are also minor 
differences in gene expression patterns between estab-
lished organoids and the corresponding tissues in vivo 
[54]. Finally, generated organoids lack vascularization 
[55]. Increasing organoid volume is accompanied by 
increasing levels of hypoxia and metabolic waste, which 
kills the cells; consequently, the organoids currently 
cultured in vitro cannot fully represent the real organs. 
In conclusion, the culture and application of thyroid or-
ganoids require further development. Current research 
is mainly concentrated on thyroid- and PTC-derived 
organoids, and studies on organoids relating to highly 
invasive, high-mortality, poorly differentiated, and un-
differentiated cancers are lacking. Future research on 
thyroid organoids must focus on improving culture 
systems and developing more comprehensive in vi-
tro models, thereby promoting the development of 
precision medicine.
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