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Advantages of OCTA

Compared with fluorescein angiography (FA), the gold 
standard diagnostic criterion of DR, OCTA has advan-
tages in assessing the condition of retinal microvascu-
lature. As a method that requires venipuncture and dye 
infusion, FA is invasive and time-consuming. Moreover, 
FA only provides 2-dimensional images [3, 4]. In addi-
tion, the OCTA image of deep capillary plexuses (DCP) 
is clearer than its FA image. Furthermore, OCTA shows 
less interobserver variability than FA in measuring 
the foveal avascular zone (FAZ) [5].

OCTA has several unique advantages in diagnosing 
DR. It has the ability to detect early signs of microvascular 
abnormality ahead of microaneurysms (MAs), which in-
clude capillary dropout, dilated capillary loops, and tor-
tuous capillary branches [6]. Furthermore, it can detect 
some MAs that are not captured by FA [7, 8] and identify 
the location of MAs and the affected capillary plexus 
[9]. Considering its ability to clearly identify the struc-
tural relationship between the proliferative membrane 
and the posterior hyaloid membrane [10–12], OCTA has 
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As the most common cause of blindness, diabetic 
retinopathy (DR) significantly lowers the quality of 
life of patients with diabetes. In the past, the limita-
tions of screening techniques impeded early diagno-
sis of DR. Currently, optical coherence tomography 
angiography (OCTA) enables us to monitor DR at 
an early stage. As diabetic microvascular diseases, 
DR and diabetic nephropathy (DN) probably share 
similar pathophysiological mechanisms, and the cor-
relation between them has been confirmed by using 
OCTA [1, 2]. OCTA has its own distinctive advantages, 
especially in quantitatively evaluating the blood flow 
condition of the retina and choroid. In this way, OCTA 
enables us to quantitatively analyse the relationship 
between DR and DN. Meanwhile, the sensitive areas 
of OCTA images could be used to detect early signs 
of DR, which is of great clinical significance. Further-
more, because microcirculation abnormality is one of 
the pathophysiological mechanisms of DR, we can use 
OCTA to observe its changes in different DR stages.
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Abstract 
Given the prevalence of diabetes worldwide, diabetic retinopathy (DR) has become the most prominent cause of blindness. However, 
DR can be diagnosed only when it is severe enough to be clinically detectable. Several studies have evaluated the correlation between 
DR and diabetic nephropathy (DN) by utilizing optical coherence tomography angiography (OCTA). Compared with other diagnostic 
techniques, such as fluorescein angiography and fundus photography, OCTA has the ability to directly reflect the condition of the retinal 
and choroidal microcirculation at an early stage. This review focuses on the following aspects: the advantages of OCTA, the pathophysiology 
of DR, changes in OCTA images in patients with DR, and the relationships between OCTA parameters and renal function. (Endokrynol 
Pol 2023; 74 (2): 135–139)
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and the neurosensory retina. The latter is composed 
of 9 layers: the layer containing photoreceptors, 
the external limiting membrane (ELM), the outer 
nuclear layer (ONL), the outer plexiform layer (OPL), 
the inner nuclear layer (INL), the inner plexiform layer 
(IPL), the ganglion cell layer (GCL), the nerve fibre 
layer (NFL), and the internal limiting membrane (ILM). 
The structure of the retina in OCTA images is similar to 
its histological structure except the first layer. In OCTA 
images, the first layer of the retina can be divided into 3 
layers: the inner segment (IS), the inner segment/outer 
segment (IS/OS), and the outer segment (OS).

The macula and optic disc are 2 important parts of 
the retina. Anatomically, the macula can be divided into 
3 parts: the fovea, parafovea, and perifovea. The fovea 
is the centre of the macula. Additionally, the centre of 
the fovea is the foveola, which is the thinnest part of 
the retina and is composed of a layer containing photo-
receptors, ELM, and ILM. The parafovea is located out-
side the macula, and it is the thickest part of the macula, 
which consists of GCL, INL, and ONL. The perifovea is 
located outside the parafovea. In OCTA, the fovea is de-
scribed as a circular area measuring 1 mm in diameter; 
the parafovea is defined as a middle circle area measur-
ing 3 mm in diameter; and the perifovea is described 
as an outer circle area measuring 6 mm in diameter. 
The peripapillary area is defined as a 700-µm-wide 
elliptical annulus extending outward from the optic 
disc borders.

Histological structure of the retina and choroid
The blood supply of the retina is mainly derived from 
2 sources. The retina within the INL is supplied by reti-
nal capillaries. The remaining parts, including the RPE 
and the layer containing photoreceptors, are supplied 
by choroidal capillaries. In particular, the blood supply 
of the FAZ is derived from the choriocapillaris.

The retina contains 2 capillary plexuses: SCP 
and DCP. The SCP is located in the NFL or GCL, while 
the DCP is situated in the INL [22]. In OCTA, the SCP 
is defined as a slab between the ILM and IPL/INL 
interface, and the DCP is defined as a slab between 
the IPL/INL interface and the OPL/ONL interface. In 
addition, between the RPE and choroid is Bruch’s mem-
brane, and these 3 membranes form a crucial complex 
named the RPE–Bruch’s membrane–choroid capillary 
complex.

Pathological changes in the retina
OCTA has clear advantages in quantitatively evaluat-
ing microvascular changes of the retina and choroid. 
Therefore, we can diagnose DR in advance by detect-
ing abnormalities in OCTA parameters. For example, 
the enlargement of the FAZ area indicates abnormality 

clear advantages in studying the mechanism of prolifera-
tive diabetic retinopathy (PDR).

Pathophysiology of DR

Neurodegeneration and microvascular abnormal-
ity are the main pathophysiological mechanisms 
of DR. The authors have shown that neurodegen-
eration precedes microvascular abnormality [13–15]. 
Although retinal neurodegeneration plays a central 
role in the progression of DR, subtle microvascular 
abnormality rather than ganglion cell loss might be as-
sociated with early functional changes in patients with 
non-diabetic retinopathy (NDR) [16, 17]. Furthermore, 
a sequence of microvascular changes has been dis-
covered in patients with DR: microvascular ischaemia 
originates from the choroid, then it extends inward to 
the superficial capillary plexus (SCP) and DCP [18]. 
Moreover, the disruption of the blood–retinal barrier 
(BRB), particularly the inner BRB (iBRB), is critical in 
the pathogenesis of DME [19].

Recently, the American Diabetes Association defined 
DR as a highly tissue-specific neurovascular complica-
tion caused by the impairment of the neurovascular unit 
(NVU) [20]. The NVU is composed of diverse cell types, 
including neurons, glia, immune cells, and vascular 
endothelial cells. The gradual dysfunction of the NVU 
possibly accelerates the progression of DR [21].

Changes in OCTA images of DR

Histological characteristics and OCTA images 
of normal retina
Histologically, the retina can roughly be divided 
into 2 parts: the retinal pigment epithelium (RPE) 

Figure 1. OCT image of the retina and choroid. ILM — internal 
limiting membranes; NFL — nerve fibre layer; GCL — ganglion 
cell layer; IPL — inner plexiform layer; INL — inner nuclear 
layer; OPL — outer plexiform layer; ONL — outer nuclear layer; 
ELM  — external limiting membranes; IS — inner segment; 
IS/OS — inner segment/outer segment; OS — outer segment; 
RPE — retinal pigment epithelium
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of the choriocapillaris and the possibility of macular 
ischaemia, and the decrease of vessel density (VD) 
indicates ischaemia of the retina and choroid.

The VD of the SCP and DCP, mainly in the parafo-
vea and perifovea, is significantly reduced in patients 
with NDR [5, 17, 23–26]. Compared with NDR, the VD 
of the parafovea in the SCP and DCP is significantly 
reduced in mild NPDR, especially in the temporal 
and nasal areas. Compared with mild NPDR, the re-
duction of VD extends to the inferior area in moderate 
NPDR. Compared with moderate NPDR, the progres-
sive reduction of VD in all areas has been found in 
severe NPDR. Compared with severe NPDR, the VD 
in the superior area of SCP is significantly increased in 
PDR [18]. Unlike the reduced perfusion density (PD) in 
the DCP, Karst et al. [27] found a temporary increased 
PD in the SCP in patients without DR.

Parameters related to FAZ are frequently uti-
lized as measures of macular ischaemia [6]. Di et al. 
[28] identified an enlargement of the FAZ area as 
an early marker of the retinal microvascular abnor-
malities in patients with diabetes. Moreover, the FAZ 
area in the SCP and DCP becomes larger in patients 
with type 1 diabetes (T1D) and type 2 diabetes (T2D). 
As DR progresses, the enlargement of the FAZ area 
and the decrease in the VD are severer in the DCP in 
both types of diabetes [29–31].

The thickness of the retina changes greatly in pa-
tients with diabetes. The thickness of the NFL, especial-
ly in the nasal and temporal quadrants, is substantially 
decreased in patients with NDR [13, 17, 23], which is 
later than the loss of ganglion cells [32, 33]. With the oc-
currence of diabetic peripheral neuropathy (DPN) [23], 
the thickness of GCL becomes thinner in patients with 
diabetes [13]. In patients with NPDR, the thickness of 
the GCL/IPL is significantly decreased, the INL/OPL 
thickness is significantly increased [13], and the thick-
nesses of the ONL/ELM and IS/OS RPE is not changed. 
In contrast, Scarinci et al. [34] reported that the ONL 
became thinner.

Pathological changes in the choroid
As a complication involving microcirculation abnor-
malities, DR simultaneously influences the capillaries 
of the choroid [35]. The choroidal thickness is increased 
in patients with diabetes [36, 37]. Furthermore, several 
studies have shown that the subfoveal choroid thickness 
(SFCT) is increased in diabetes [36, 38, 39], especially in 
patients with subretinal detachment (SRD)–type DME 
[37]. In contrast, other studies have shown a significant 
decrease in the choroidal thickness in patients with 
diabetes [40]. The VD of the fovea in the choroid capil-
lary plexus (CCP) is significantly decreased in patients 
with NDR [18]. Furthermore, Kim et al. [37] claimed that 

the choroidal thickness is significantly increased with 
the progression of diabetes from mild/moderate NPDR 
to PDR and significantly decreased in patients treated 
with panretinal photocoagulation (PRP).

Different changes in the retina in T1D and T2D
Changes in microcirculation abnormalities vary accord-
ing to the type of diabetes. Compared with patients 
with T2D, the FAZ area in the DCP is significantly 
larger in patients with T1D. The VD of the fovea in 
the SCP is significantly lower in both types of diabetes. 
The morphological parameters of FAZ, including FAZ 
irregularity and capillary tortuosity, show significant 
differences in different types of diabetes [41]. Further-
more, the speed in the enlargement of the FAZ area is 
fast in the DCP compared with the SCP. The patterns 
of ischaemic changes differ according to the type of 
diabetes. In T1D, the decline rate of VD in the DCP is 
significantly steeper when DR progresses from severe 
NPDR to PDR, while it is more gradual in patients with 
T2D. In conclusion, the damage of DCP is severe when 
DR progresses from severe NPDR to PDR in patients 
with T1D [29].

The relationship between the parameters 
of OCTA and DN

As a common diabetic microangiopathy, DR often 
coexists with DN. Meanwhile, microalbuminuria is 
an early marker of endothelial damage; the risk of DR 
is greatly increased in patients with microalbuminuria 
[42, 43], which indicates that DR and DN share the same 
pathophysiological mechanisms. Based on the advan-
tages of OCTA in the assessment of microcirculation, 
parameters of OCTA can be used as reference indices 
for the individual risk stratification of DN. Moreover, 
numerous studies have shown that the onset of DR pre-
cedes the onset of DN [44–46]. Similarly, Cankurtaran 
et al. [47] showed that the alterations in retinal micro-
circulation are earlier than in microalbuminuria.

Several studies have evaluated the correlation be-
tween DR and DN. The VD of the retina is gradually 
decreased according to the progression of DN [47, 48], 
and the size of the FAZ area in the SCP and DCP is larger 
in patients with clinical albuminuria [49]. The level of 
urinary albumin moderately correlates with the VD 
of the SCP in patients with diabetes, and eGFR is sig-
nificantly correlated with the size of retinal nonperfu-
sion (RNP) area in patients with DN [50]. The VD of 
the retina and choroid is decreased after haemodialysis 
[51, 52], while there is no significant correlation between 
the VD of choriocapillaris and choroidal thickness (CT).

Some scholars have also used OCT to measure 
the thickness of the retina and choroid in patients with 
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DN. After haemodialysis, the thickness of the retina is 
decreased, while the SFCT does not change [51]. To 
date, the effect of haemodialysis on the choroid remains 
unclear. Ulas et al. [53] showed that haemodialysis could 
induce the thinning of the choroid, while Jung et al. [54] 
reported the opposite result.

Conclusion

In terms of screening for and diagnosing DR, OCTA has 
incomparable advantages. By utilizing OCTA, we can 
compare the changes of the retina and choroid between 
different types of diabetes and quantitatively evaluate 
the correlation between DN and DR at the microvascu-
lar level. Even though the choriocapillaris is the most 
sensitive area of microcirculation, studies related to 
choroid changes are scarce. Compared with areas 
closed to the fovea, the areas outside the parafovea 
were more sensitive in reflecting capillary perfu-
sion deficits [27], which indicates the advantages of 
wide-field swept source OCTA (SS-OCTA). Future 
studies need to focus on these points, so that we can 
diagnose DR at an early stage.
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