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selective toxicity of STZ contributes to the pathogenesis 
of diabetes mellitus. In this research, a simple model of 
STZ-induced T2DM was constructed to study curcum-
in’s anti-diabetic activity. Curcumin, a kind of natural 
phenol extracted from Curcuma longa plants, possesses 
a wide range of pharmacological properties, including 
antioxidant, anti-inflammatory, and anticancer [12, 13]. 
It was reported to counter the tissue injury of alkylating 
agents with decreased oxidative stress [11]. The ability 
of curcumin to suppress oxidative stress may contribute 
to its anti-diabetic activity. 

Both GPX and SOD are major antioxidant enzymes 
in cells. SOD enzymes are indispensable and ubiquitous 
antioxidant defences maintaining the steady-state 
levels of O2·

– [14], while GPXs are important enzymes 
in the glutathione-ascorbate cycle for catalysing 
the reduction of H2O2 or organic hydroperoxides to 
water [15]. However, MDA is one of the final prod-
ucts of lipid peroxidation. An increase in free radicals 
causes overproduction of MDA. The malondialdehyde 
level is commonly used as a marker of oxidative stress 
and the antioxidant status in cancerous patients [16]. 

Introduction

Diabetes mellitus (DM), which is characterized by hy-
perglycaemia and insufficiency of secretion or action 
of endogenous insulin, is a chronic metabolic disorder 
with a rapidly increasing prevalence [1, 2]. Diabe-
tes mellitus was classified as type 1 (T1DM), type 2 
(T2DM), and other specific types of DM, and gestational 
diabetes. One subtype of T2DM occurs due to insulin 
resistance coupled with insufficient production of 
insulin [3]. However, obesity, physical inactivity, viral 
infection, autoimmune disease,s and environmental 
factors are known to be major risk factors for DM [4–8]. 
It is widely accepted that increased oxidative stress 
participates in the process of DM development and its 
complications [9]. Hence, antioxidants are proposed 
to have a beneficial effect on reducing the oxidative 
injury derived from the above risk factors. In addition, 
chemical induction of DM by streptozotocin (STZ) 
administration is one of the most frequently used ani-
mal models for experimental type 1 [10] and type 2 [11] 
diabetes mellitus. DNA alkylating activity and beta cell 
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Abstract 
Introduction: Streptozotocin (STZ)-induced diabetes rodent models are widely used to study the pathogenesis and metabolic function 
in diabetes (DM). The aim of this study was to assess the antioxidant effect of curcumin in STZ-induced type 2 diabetes mellitus (T2DM). 
Material and methods: In this research, rats were randomly divided into 3 groups (8 in each group): a nondiabetic group (Control), 
a diabetic group (DM), and a curcumin treatment group (DM + Cur 200 mg/kg group). 
Results: after intraperitoneal injection (i.p.), associated-oxidative stress parameters were observed, malondialdehyde (MDA) was decreased, 
and glutathione peroxidase (GPX) and super oxide dismutase (SOD) were restored in pancreatic tissues of curcumin-treated DM rats. 
In addition, curcumin improved the survival and function of islet cells with decreased cell apoptosis in Langerhans islet and increased 
insulin secretion in the STZ-induced T2DM rat model. 
Conclusion: Our findings suggest that curcumin is a potent candidate for the prevention and therapy of DM. (Endokrynol Pol 2022; 73 (6): 942–946)
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Detection of blood glucose and serum insulin levels
Blood glucose levels were detected by a blood sugar instrument 
(ACCU-CHEK® Aviva, Roche). Serum insulin levels were measured 
using a mouse/rat insulin enzyme-linked immunosorbent assay 
(ELISA) kit (Cat. Number EZRMI-13K, Merck Millipore, Germany) 
following the protocols provided by the company.  

Detection of oxidative associated factors
Pancreatic tissue was harvested and homogenized in 50 mmol/L 
phosphate buffer and then centrifuged at 3000 rpm at 4°C for 15 min. 
The levels of superoxide dismutase (SOD), malondialdehyde (MDA, 
a product of lipid peroxidation), and glutathione peroxidase (GPX) 
in the resultant supernatant were measured according to the pro-
tocol provided by corresponding detection kits (Nanjing Jiancheng 
Bioengineering Institute, Nanjing China).

Terminal deoxynucleotidyl transferase dUTP 
nick end labelling (TUNEL) assays
TUNEL assays were performed following the manufacturer’s in-
structions (Roche Applied Science, USA). Briefly, tissue slides were 
dewaxed, rehydrated, and then incubated with 1% Triton X-100 at 
room temperature (RT) for 15 min. The endogenous peroxidase was 
blocked with 3% H2O2-methanol solution at RT for 10 min. Subse-
quently, the sections were digested by 20 mg·mL−1 proteinase K at 
37°C for 15 min and then incubated with TdT-enzyme at 37°C for 
1 h. After washing with phosphate-buffered saline (PBS) 3 times, 
the sections were incubated with 100 μL of digoxigenin (conjugated 
to horseradish peroxidase, POD). 3,3’-diaminobenzidine (DAB) was 
used as a chromogen. The nuclei of apoptotic cells were stained 
brown and randomly counted under a microscope at 400× mag-
nification (Leica DM2500, Germany).

Statistical analysis
Data are presented as the mean ± SD. Statistical analysis was per-
formed using one-way analysis of variance (ANOVA). Differences 
were considered statistically significant at a P value <0.05.

Results

Curcumin increased insulin secretion 
and decreased blood glucose in DM Rats
To investigate the protective effects of curcumin on 
the function of islet in DM rats, serum insulin was detected 
by ELISA, and insulin expressed by islet cells was detected 
by IHC. As shown in Figure 1A, serum insulin significantly 
decreased in the DM group, and curcumin partially re-
stored the serum insulin levels. Meanwhile, blood glucose 
was decreased by curcumin treatment in DM rats (Fig. 1B). 
Insulin expression data in situ on tissue slides were con-
sistent with the data in sera (Fig. 1C). The data imply that 
curcumin partially restored the secretion function of beta 
cells that had been injured by STZ treatment.

Curcumin inhibited the oxidative status 
of the pancreas induced by STZ treatment
To investigate the oxidative status of the pancreas, 
the antioxidant defence system parameters GPX 
and SOD, and the oxidative stress parameters MDA 
in pancreatic tissue homogenates were detected. As 
shown in Figure 2, curcumin partially restored the GPX 

In the present study, a rat model of T2DM, which 
was established by STZ induction, was used to inves-
tigate the protective effects of curcumin on the patho-
genesis of DM. Taken together, curcumin showed po-
tential antidiabetic effects (which may be partially due 
to its antioxidant functions) in STZ induced T2DM rats. 
The study showed that curcumin decreased oxidative 
injury and retarded the development of DM.

Material and methods

Ethics statement
Four-week-old male Wistar rats, weighing 60–80 g, were obtained 
from the Laboratory Animal Centre of Guilin Medical University. 
Experimental design and handling procedures were performed 
in accordance with the National Institutes of Health guidelines 
and were approved by the Institutional Animal Care and Use 
Committee of Guilin Medical University. All efforts were made to 
reduce the animals’ suffering and the number of animals used for 
this experiment.

Establishment of rat T2DM model
Rats were randomly divided into 3 groups (8 each group): 
a nondiabetic group (Control), a diabetic group (DM), and a cur-
cumin treatment group (DM + Cur 200 mg/kg group). Curcumin 
and streptozotocin (STZ) were all obtained from Sigma-Aldrich 
China (Shanghai, China). All rats were fed with normal chow for 8 
weeks and then received single intraperitoneal injection of vehicle 
(0.1 mol/L citrate buffer) or 100 mg/kg STZ (dissolved in 0.1 mol/L 
citrate buffer, pH 4.5). Curcumin (200 mg/kg/day) was given in-
tragastrically the day after STZ injection for one week. The DM 
and control groups were intragastrically given vehicle (CMC-Na) 
only. At the end of the experimental period, after 12 h fasting, 
the rats were anesthetized with 5 mg/kg urethane and sacrificed. 
Blood samples were collected via cardiac puncture and then centri-
fuged at 4000 rpm, 4°C for 15 min to obtain the serum. Pancreas were 
immediately removed and divided into 2 parts for histopathological 
detection and stored at −80°C for subsequent assays. Effective doses 
for curcumin were selected similarly to an earlier work reported 
in a previous study [17]. 

Histopathological examination
Pancreases were fixed in 4% paraformaldehyde overnight at 
4°C, embedded in paraffin, and sectioned into 4-μm thick slides. 
The slides were dewaxed, hydrated, and then stained with hae-
matoxylin and eosin (HE). The morphology of the pancreas was 
evaluated under a light microscope.

Immunohistochemistry (IHC) assays for insulin 
expression in Langerhans islet
Slides were dewaxed and hydrated and then underwent antigen 
retrieval by high-temperature induced epitope retrieval (HIER) 
in citrate buffer (0.1 M, pH 6.0) in a high-pressure cooker for 
3 minutes. Then the endogenous peroxidases were blocked 
by 3% H2O2 for 10 minutes. The mouse monoclonal primary 
antibody of insulin (SC-8033, Santa Cruz Biotechnology) with 
a dilution of 1:100 were incubated with the slides for one hour. 
The secondary antibody, MaxVisionTM HRP-Polymer anti-Mouse 
antibody (KIT-5001, Maxim Biotechnology), was incubated for 
20 minutes. Then DAB was incubated for 5 minutes. Between each 
of the above steps, the slides were washed with PBS (0.1M, PH 
7.2) 3 times for 3 minutes. After DAB coloration, the slides were 
counterstained with haematoxylin, dehydrated, and mounted 
with resinene. 
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and SOD (2 major antioxidant enzymes) levels in 
STZ-treated pancreatic tissues. Lipid peroxidative prod-
ucts, MDA, were significantly decreased by curcumin. 
These data imply that curcumin could decrease oxida-
tive injury in pancreatic tissues.

Curcumin decreased cell apoptosis 
in the Langerhans islet of DM rats
To detect the protective effects of curcumin on islet 
cells, apoptotic cells were detected by TUNEL assays on 
pancreatic tissue slides. As shown in Figure 3, apoptotic 

cells were drastically decreased by curcumin treatment 
in DM rats. The data suggest that curcumin could pro-
tected islet cells from STZ-induced apoptosis.

Discussion

Injury factor-induced pancreatic b-cell apoptosis is 
a major contributor to the pathogenesis of diabetes 
[18]. In the present study, we investigated the protec-
tive effects of curcumin on pancreatic b-cells that were 
damaged in STZ-induced T2DM rats. Our data showed 

Figure 1. Curcumin restored insulin expression and decreased blood glucose levels in streptozotocin (STZ)-induced diabetes mellitus 
(DM) rats. A. Curcumin restored serum insulin levels; B. Curcumin decreased blood glucose levels. C. Immunohistochemistry showed 
that curcumin partially restored the expression of insulin in pancreatic Langerhans islets. **p < 0.01; #p < 0.001

A B

C

Figure 2. Curcumin decreased oxidative stress in the pancreases of streptozotocin (STZ)-induced diabetes mellitus (DM) rats. 
A. Curcumin restored the glutathione peroxidase (GPx) levels in pancreatic tissue homogenates; B. Curcumin restored the superoxide 
dismutase (SOD) levels in pancreatic tissue homogenates; C. Curcumin decreased the malondialdehyde (MDA) levels in pancreatic 
tissue homogenates. **p < 0.01; #p < 0.001

A B C
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that curcumin improved pancreatic beta cell function, 
and decreased oxidative stress and pancreatic b-cell 
death in STZ-induced DM rats. These data imply that 
curcumin had an antidiabetic property through de-
creasing oxidative stress-mediated injury of pancreatic 
beta cells and retarding the development of DM.

Rodent models are commonly used to study 
the pathogenesis and metabolic function in diabetes 
[19]. The STZ-induced DM rat model has long been 
used for the study of diabetes [20]. STZ, a glucos-
amine-nitrosourea compound, is used clinically as 
an alkylating antineoplastic agent that is particularly 
toxic to the beta cells of the pancreas in mammals [21]. 
STZ damages pancreatic cells as an alkylating agent 
and contributes to declining in quantity of cells [22]. Af-
ter i.p. administration, STZ, as a pancreatic b-cell-specific 
cytotoxin, enters pancreatic beta cells via the glucose 
transporter type 2 (Glut-2) inducing DNA alkylation 
and fragmentation [23]. Despite its low bioavailability, 
curcumin proved to be safe and has good tolerability 
and effectiveness in various human diseases, includ-
ing diabetes [24]. STZ preferentially accumulates in 
pancreatic beta cells via the low-affinity Glut-2 glucose 
transporter in the plasma membrane [25]. It is generally 
accepted that the toxicity of streptozotocin depends 
upon the DNA alkylating activity of its methyl-nitro-
sourea moiety [26]. Therefore, STZ also methylates 
proteins and DNA methylation is ultimately responsible 
for beta cell death, while protein methylation con-
tributes to the functional defects of the beta cells [27]. 
Meanwhile, generation of ROS, including superoxide 
and hydroxyl radicals originating from hydrogen per-
oxide dismutation during hypoxanthine metabolism, 
may accelerate the process of beta cell destruction 
induced by STZ treatment [28]. In this study, curcumin 
partially restored the insulin levels and volume of beta 
cells in STZ-induced DM rats. Curcumin is reported to 
counter the cytotoxic effects of alkylating agents, which 
increase tissue oxidative stress and histological damage 
[29]. However, Adriana Bulboacă’s [11] study groups 

suggested that curcumin treatment can reduce lipid 
peroxidation, demonstrated by the decrease of MDA in 
both curcumin pre-treatment groups [11]. The change of 
MDA in STZ-induced diabetes mellitus with curcumin 
pre-treatment was consistent with our data. This study 
showed that curcumin improved the survival and func-
tion of beta cells, which increased insulin secretion 
and decreased apoptosis of islet cells. Meanwhile, de-
creased MDA (a product of lipid peroxidation) and re-
stored GPX and SOD (2 major antioxidant enzymes) 
were observed in pancreatic tissues of curcumin-treated 
DM rats. These data imply an improved oxidant status 
in STZ-treated rats. 

Taken together, curcumin showed potential anti-
diabetic effects (which may be partially through its 
antioxidant functions) in STZ-induced DM rats. Our 
findings suggested that curcumin is a potent candidate 
for the prevention and therapy of T2DM.
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Figure 3. Curcumin decreased apoptotic cells in Langerhans islets of streptozotocin (STZ)-induced diabetes mellitus (DM) rats. 
Curcumin decreased apoptosis of islet cells (arrow — apoptotic)
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