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Abstract
Introduction: Fasting proinsulin (FPI) and fasting insulin (FI) have been demonstrated to be associated with impaired b-cell function, T2DM, 
and insulin resistance. This genome-wide association study (GWAS) was performed to contribute to our understanding of the genetic basis of FPI, 
FI, 2-hour postprandial proinsulin (2hPI), and 2-hour postprandial insulin (2hI) of the pathophysiology of prediabetes in the Chinese population.
Material and methods: The levels of fasting plasma glucose (FPG), FPI, FI, 2hPI, and 2hI were examined by an automatic biochemical 
analyser. The Applied BiosystemsTM AxiomTM Precision Medicine Diversity Array, the Gene Titan Multi-Channel instrument, and Axiom 
Analysis Suite 6.0 Software were used for genotyping. Imputation was performed with IMPUTE 2.0 software from HapMap, 1000 Genomes 
Phase 3 as a reference panel.
Results: Six single nucleotide polymorphisms (SNPs) in DLG1-AS1, SORCS1, and CTAGE11P for FPI, and 27 SNPs in ZNF718, MARCHF2, 
and HNRNPM for 2hPI reached genome-wide significance. Genome-wide significance was reached for associations of 6 SNPs in KRT71 
to FI. Also, 14 SNPs in UBE2U, ABO, and GRID1-AS1 were genome-wide significant in their relationship with 2hI. Among these, the genetic 
loci of CTAGE11P, MARCHF2, KRT71, and ABO have the strongest association with FPI, 2hPI, FI, and 2hI.
Conclusions: The genetic variants of CTAGE11P, MARCHF2, KRT71, and ABO are significantly correlated with FPI, 2hPI, FI, and 2hI, 
respectively, in Chinese Han people. These genetic variants may serve as new biomarkers for the prevention of prediabetes. (Endokrynol 
Pol 2022; 73 (5): 856–862)
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Introduction

Diabetes mellitus (DM) is a chronic metabolic disease 
caused by abnormal glucose metabolism, which is mainly 
characterized by hyperglycaemia. There are approxi-
mately 382 million people affected with DM worldwide, 
and type 2 diabetes mellitus (T2DM) accounts for 90% 
of DM patients [1, 2]. Prediabetes refers to blood glucose 
levels above normal but below diabetes thresholds. 
The prevalence of prediabetes is increasing worldwide, 
and it is estimated that 470 million people will suffer 
from prediabetes in 2030 [3]. In China, it is reported that 
the overall prevalence of diabetes is 10.9% and that for 
prediabetes it is 35.7% [4]. It has been demonstrated that 
prediabetes is a high-risk state of diabetes, and it also in-
creases the risk of myocardial infarction, stroke, and car-
diovascular death [5]. There is accumulating evidence 
to demonstrate that prediabetes could cause damage to 
the kidneys and the nervous system [6, 7]. Additionally, 

prediabetes imposes a huge economic burden on indi-
viduals and society [8]. Therefore, effective prevention 
strategies for prediabetes are increasingly important.

Proinsulin (PI), the precursor form of insulin (I), is 
synthesized and secreted in pancreatic b-cells. PI only 
accounts for 10–20% of fasting insulin (FI) under physio-
logical conditions. However, some research indicates that 
the level of PI was highly expressed in glucose-intolerant 
and insulin-resistant individuals [9, 10]. Also, fasting pro-
insulin (FPI) has been demonstrated to be associated with 
impaired b-cell function, T2DM and insulin resistance, 
and it could be used as a specific predictor of T2DM [10, 
11]. Insulin is a well-known hormone to reduce the level 
of blood glucose via the stimulation of glucose uptake 
into muscle cells and adipocytes, etc. by binding to its 
receptor in the target cells. It has been shown that elevated 
fasting insulin (FI) is a hallmark of T2DM [12]. Our previ-
ous study demonstrated that FPI, 2-hour postprandial 
proinsulin (2hPI), FI, and 2-hour postprandial insulin (2hI) 
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As presented in Table 2, we found that 6 loci in 
3 genes (DLG1-AS1, SORCS1, CTAGE11P) reached 
genome-wide significance associated with FPI, and 27 
SNPs in 3 genes (ZNF718, MARCHF2, and HNRNPM) 
were associated with 2hPI. In addition, the correla-
tion of 6 SNPs in the KRT71 gene with FI reached 
genome-wide significance. Also, 14 SNPs in 3 genes 
(UBE2U, ABO, and GRID1-AS1) were genome-wide 
significant in their relationship with 2hI. The distribu-
tions of association p-values for FPI, 2hPI, FI, and 2hI 
are presented in Figure 1 (the quantile-quantile plots 
and Locus zoom are shown in Fig. S1 and Fig. S2). 
Among these, the genetic loci of CTAGE11P, MARCHF2, 
KRT71, and ABO have the strongest association with 
FPI, 2hPI, FI, and 2hI, respectively.

Discussion

The current study illustrated that the genetic variants of 
CTAGE11P, MARCHF2, KRT71, and ABO were signifi-
cantly correlated with FPI, 2hPI, FI, and 2hI in Chinese 
Han people, respectively. Our research will provide 
scientific methods and ideas for the prevention and diag-
nosis of prediabetes, and it will contribute to controlling 
and reducing the progression of prediabetes to T2DM.

Recently, GWAS was performed by Strawbridge et 
al., which found that 9 SNPs in 8 genes were associ-
ated with FPI levels in the European population [16]. 
Subsequently, Huyghe et al. also identified low-fre-
quency coding variants associated with FPI at SGM2 
and MADD gene in Finnish males [17]. Moreover, it is 
suggested that IGF-1 genetic variants were associated 
with FI in European ancestry [18]. Manning et al. also 
observed that 6 SNPs in COBLL1-GRB14, IRS1, PPP1R3B, 
PDGFC, UHRF1BP1, and LYPLAL1 are correlated with 
the FI level [19]. However, those SNPs explained only 

were associated with an increased risk of prediabetes [13]. 
Despite these findings, it is still unclear how these com-
mon phenotypes affect T2DM.

In this study, we performed a genome-wide asso-
ciation study (GWAS) of FPI, 2hPI, FI, and 2hI in 451 
prediabetes subjects from the Chinese Han popula-
tion. The BiosystemsTM AxiomTM Precision Medicine 
Diversity Array (PMDA) was used to identify single 
nucleotide polymorphisms (SNPs) associated with FPI, 
2hPI, FI, and 2hI. Our study will provide an effective 
diagnostic method for early screening of people who are 
susceptible to T2DM, and for controlling and prevent-
ing the development of prediabetes to T2DM.

Material and methods

Participants
In this study, we recruited 451 prediabetes subjects aged ≥ 18 years 
from the Hainan Affiliated Hospital of Hainan Medical University. 
Participants with 100 mg/dL (5.6 mmol/L) ≤ fasting plasma glucose 
< 125 mg/dL (6.9 mmol/L) or 5.7% ≤ glycated haemoglobin (HbA1c) 
< 6.4% were defined as prediabetes [14]. Individuals without a his-
tory of diabetes and malignant tumours, or severe liver and kidney 
diseases were included in this research. This study was conducted 
with ethical approval from the Hainan Affiliated Hospital of Hainan 
Medical University Ethics Committees, and was performed in line 
with the Declaration of Helsinki. We also obtained consent forms 
signed by each participant.

Metabolic variables
Fasting blood samples were collected from all subjects after an over-
night fast. The levels of fasting plasma glucose (FPG), FPI, FI, 2hPI, 
and 2hI were examined by an automatic biochemical analyser.

Genotyping and imputation
Genomic DNA was isolated from a whole blood sample using 
a DNA Extraction Kit (GoldMag Co. Ltd., Xi’an, China), as de-
scribed previously [15]. The Applied BiosystemsTM Axiom TM Pre-
cision Medicine Diversity Array (PMDA, Thermo Scientific, USA), 
the Gene Titan Multi-Channel instrument, and Axiom Analysis 
Suite 6.0 Software were used for genotyping.
Genotype data in subjects was cleaned using standard thresholds 
(HWE p > 5 × 10-6, call rate > 95%). Imputation for chromosomes 
1 to 22 was performed with IMPUTE 2.0 software from HapMap 
1000 Genomes Phase 3 as a reference panel.

Statistical analyses
The association analysis was conducted using Gold Helix SNP 
and Variation Suite 8.7 software. The association between SNPs 
and FPI, 2hPI, FI, and 2hI was evaluated using linear regression 
assuming an additive genetic model. The 4 traits were analysed 
with adjustments for age and sex. A p < 5.0 × 10-6 was used as 
the threshold of genome-wide significance.

Results

A total of 451 prediabetes individuals aged ≥ 18 years 
(216 men and 235 women) were included and geno-
typed in the present study. The average age of the sub-
jects was 51.78 ± 14.49 years. The clinical parameters of 
participants are summarized in Table 1.

Table 1. Participants characteristics 

Variable Subjects

Number of individuals 451

Age (years, mean ± SD) 51.78 ± 14.49

Gender

Male 216 (47.9%)

Female 235 (52.1%)

FPG [mmol/L] 5.88 ± 1.42

FPI [mU/L] 15.74 ± 12.18

2hPI [mU/L] 63.42 ± 44.10

FI [mU/L] 72.10 ± 43.08

2hI [mU/L] 578.22 ± 435.40

FPG — fasting plasma glucose; FPI — fasting proinsulin; 2hPI — 2-hour 
postprandial proinsulin; FI — fasting insulin; 2hI — 2-hour postprandial insulin; 
SD — standard deviation
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a small percentage of the total variation in FPI and FI. 
In the present study, we found 6 SNPs in DLG1-AS1, 
SORCS1, and CTAGE11P for FPI, 27 SNPs in ZNF718, 
MARCHF2, and HNRNPM for 2hPI, 6 SNPs in KRT71 
for FI, and 14 SNPs in UBE2U, ABO, and GRID1-AS1 for 
2hI. Among these, the genetic variants of CTAGE11P, 
MARCHF2, KRT71, and ABO have the strongest associa-
tion with FPI, 2hPI, FI, and 2hI.

The E3 ubiquitin ligase membrane-associated 
ring-CH-type finger 2 (MARCHF2) is a member of 
the membrane-associated RING-CH E3 ubiquitin ligase 
family (MARCH) and localizes to the endoplasmic retic-
ulum and Golgi [20]. The known substrate of MARCHF2 
includes cystic fibrosis transmembrane conductance 
regulator (CFTR) [21]. Some studies have indicated that 
patients with CFTR gene variants show an insufficiency 
of insulin secretion, leading to the development of DM 

[22, 23]. Moreover, Khan et al. found that inhibition of 
CFTR decreased the concentrations of plasma insulin 
and pancreatic insulin in CFTR-inhibited animals [24]. 
Another study demonstrated that the mutation of CFTR 
is associated with insulin resistance and decreased 
b-cell mass in mice [25]. This evidence led us to believe 
that MARCHF2 is involved in the development of pan-
creas and DM by interacting with CFTR.

Keratin 71 (KRT71) is a member of the keratin 
family and is located on chromosome 12q13.13. 
Keratin constitutes the intermediate filament pro-
teins of epithelial cells. It is documented that the loss 
of keratin 8 decreased fasting blood glucose levels, 
and increased glucose uptake and glycogen synthesis 
[26, 27]. The abnormal expression of keratin 1 and 10 
reduced insulin secretion, thus leading to the devel-
opment of DM [28]. 

Figure. 1 Manhattan plot for loci associated with fasting proinsulin (FPI) (A), 2-hour postprandial proinsulin (2hPI) (B), 
fasting insulin (FI) (C), and 2-hour postprandial insulin (2hI) (D)

A
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The ABO gene encodes glycosyltransferases that 
catalyse the transfer of nucleotide donor sugars to 
the H antigen to form the A and B antigens. Variation 
in the ABO gene is the basis of the ABO blood group. 
Meo et al. found that blood group “B” is associated 
with a higher risk of T2DM, while blood group “O” has 
a weak correlation with T2DM [29]. Also, a GWAS re-
ported that ABO variants are associated with increased 
levels of plasma lipid and soluble intercellular adhe-
sion molecule 1 and tumour necrosis factor 2 (TNF-2). 
These molecules could affect insulin and its receptors 
and contribute to the development of DM [30].

CTAGE family member 11 pseudogene (CTAGE11P) 
belongs to the cutaneous T-cell lymphoma-associated 
antigen (CTAGE) family and is located on 13q22.2. It is 
reported that the mutation of family members reduces 
cholesterol and triglyceride levels in mice [31]. Another 
family member can regulate the plasma low-density 
lipoprotein-cholesterol concentration and is associated 
with coronary artery disease [32]. Our study found for 
the first time that CTAGE11P genetic variants are as-
sociated with FPI in the Chinese people.

Conclusions

We found that the genetic variants of CTAGE11P, 
MARCHF2, KRT71, and ABO are significantly correlated 
with FPI, 2hPI, FI, and 2hI in Chinese Han people, 
respectively. These genetic variants may serve as new 
biomarkers for the prevention of prediabetes.
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