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risk in hypercholesterolaemic patients [5], having anti-
oxidant [6] and anticancer [7] properties, and can be used 
as a new health care medicine. All the above effects can 
be attributed to the fact that yerba mate contains a variety 
of bioactive phytochemicals. Due to the complex interac-
tion between multiple components and targets of yerba 
mate, it is difficult to explore the bioactive components, 
potential targets, and pharmacological mechanism of 
action of yerba mate by conventional methods.

With the development of bioinformatics, network 
pharmacology came into being. Network pharmacol-

Introduction

Yerba mate is brewed from the ground, dried leaves and 
twigs of the Ilex paraguariensis A. St.-Hilaire tree, widely 
consumed as an infusion in South American countries 
[1]. Now yerba mate has gained worldwide popularity 
because of its aroma, taste, stimulation, and nutritional 
values [2]. It is considered that yerba mate may have ben-
eficial effects on human health, including inhibiting lipo-
genesis and body fat accumulation [3], preventing type 2 
diabetes mellitus (T2DM) [4], reducing cardiovascular 
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Abstract 
Introduction: Yerba mate is widely consumed in South American countries and is gaining popularity around the world. Long-term consumption 
of yerba mate has been proven to have health-care functions and therapeutic effects on many diseases; however, its underlying mechanism has not 
been clearly elucidated. In this research, we explored the pharmacological mechanism of yerba mate through a network pharmacological approach. 
Material and methods: The bioactive components of yerba mate were screened from published literature and the Traditional Chinese 
Medicine System Pharmacology Database (TCMSP), and the targets and related diseases were retrieved by TCMSP. Furthermore, the 
component-target-disease network and protein-protein interaction (PPI) network were constructed, and combined with gene ontology 
(GO) functional analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis to explore the pharma-
cological mechanism of yerba mate. 
Results: As a result, 16 bioactive components of yerba mate were identified, which acted on 229 targets in total. Yerba mate can be used to 
treat 305 diseases, such as breast cancer, asthma, Alzheimer’s disease, osteoarthritis, diabetes mellitus, atherosclerosis, and obesity. Protein 
kinase B (AKT1), signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 1 (MAPK1), transcription 
factor AP-1 (JUN), cellular tumour antigen (p53) TP53, tumour necrosis factor (TNF), transcription factor p65 (RELA), interleukin-6 (IL6), 
amyloid-beta precursor protein (APP), and vascular endothelial growth factor A (VEGFA) were identified as the key targets of yerba mate 
playing pharmacological roles. The signalling pathways identified by KEGG pathway enrichment analysis that were most closely related 
to the effects of yerba mate included pathways in cancer, fluid shear stress and atherosclerosis, and human cytomegalovirus infection. 
Conclusion: The results of our study preliminarily verify the basic pharmacological action and possible mechanism of yerba mate and 
provide a reference for the further development of its medicinal value. (Endokrynol Pol 2022; 73 (4): 725–735)
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Network construction
In this step, four integrated networks were constructed to show 
the relationships more intuitively between components, targets, 
diseases, and signalling pathways, including (1) component-target 
network, (2) component-target-disease network, (3) PPI network, 
and (4) target-pathway network. All the above networks were 
visualized by Cytoscape3.7.2 (https://cytoscape.org/) [58], and Cy-
toscape’s plug-in, Network Analyzer, was then used to analyse the 
topological properties of these networks. The “degree” indicates the 
number of nodes that directly interact with a node in the network, 
reflecting the local connectivity and importance of a protein [59]. 
The targets with degree > twofold the median in the PPI network 
were considered to be the key genes [60].

Results

Component-target network
The flow of this network pharmacological study is il-
lustrated in Figure 1. In total, 54 chemical components 
were collected from the published literature of Web 
of Science, and 7 of them met the screening criteria of 
OB ≥ 30% and DL ≥ 0.18 after being imported into the 
TCMSP database. Although some chemical components 
did not meet the criteria, there was a great deal of re-
search on their beneficial effects on people. Therefore, 
nine bioactive components were supplemented, in-
cluding caffeine, chlorogenic acid, oleanolic acid, rutin, 
theobromine, ursolic acid, 3,4-dicaffeoylquinic acid, 
3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid 
(Tab. 1). A total of 229 targets were identified for these 
bioactive components in the TCMSP database. To further 
understand the interrelationships between these bioac-
tive components and their corresponding targets from 
a holistic perspective, a component-target network was 
constructed as shown in Figure 1. Through the topol-
ogy analysis of the network, we found that the degree 
of quercetin (flavonoids, degree = 148) was the high-
est, followed by kaempferol (flavonoids, degree = 59), 
luteolin (flavonoids, degree = 54), caffeine (alkaloids, 
degree = 52), ursolic acid (terpenoids, degree = 51), and 
so on. It can be seen from Table 1 that the good biological 
activity of yerba mate was mainly related to polyphenols, 
methylxanthine alkaloids, terpenoids, and flavonoids, 
and the components with more targets might play a criti-
cal role in the pharmacological function of yerba mate. 

Component-target-disease network
Following TCMSP database-based analyses, the diseases 
corresponding to the targets of yerba mate were found 
to speculate the diseases that might be treated by yerba 
mate. In this step, 305 diseases were predicted, and these 
diseases came from 89 targets. The remaining targets had 
no corresponding diseases in the component-target-dis-
ease network, so it could be speculated that there are still 
undiscovered pathways of action in the targets of yerba 
mate. The 305 diseases included cancer, cardiovascular 
diseases (CVD), nervous system diseases, inflammatory 

ogy provides a new strategy to find the potential active 
components and targets of drugs, and it can reveal the 
relationship between drugs and diseases from a com-
prehensive and systematic perspective [8]. Therefore, 
based on the principles and methods of network 
pharmacology, this study aims to comprehensively 
explore the main bioactive components and pharma-
cological mechanism of yerba mate. We first identified 
the bioactive components related to yerba mate and 
matched them to relevant targets and diseases. Then we 
constructed a visual component-target network, com-
ponent-target-disease network, and protein-protein 
interaction (PPI) network. In addition, we performed 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
pathway enrichment analysis and gene ontology (GO) 
functional analysis on the putative targets of yerba mate. 

Material and methods

Collection of chemical components and screening 
of bioactive components
The chemical components of yerba mate were collected from the 
published literature in Web of Science before 6 November 2020 
and then imported into the Traditional Chinese Medicine System 
Pharmacology Database (TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) 
separately [50]. The bioactive components were obtained by adjust-
ing the ADME (absorption, distribution, metabolism, and excretion) 
parameters including oral bioavailability (OB) and drug-likeness 
(DL). Oral bioavailability reflects the percentage of the oral dose 
of the drug entering the systemic circulation [51]. Drug-likeness 
refers to the similarity of a component to a known drug [52]. In 
this study, the bioactive components were screed according to the 
threshold values of OB ≥ 30% and DL ≥ 0.18 [53].

Identification of putative targets and diseases
The screened bioactive components were imported into the TCMSP 
database to search for the corresponding targets. Then the target 
information was further checked using the UniProt database 
(https://www.uniprot.org/) [54] and DrugBank database (https://
go.drugbank.com/) [55]. Subsequently, the target names obtained 
were uploaded to the UniProt database and were uniformly 
standardized into UniProtKB, with the species limited to “Homo 
sapiens”. All putative targets were entered into the TCMSP data-
base separately to further search for diseases associated with them.

PPI analysis
Protein-protein interaction analysis was performed with the 
STRING11.0 platform (https://string-db.org/) [56] to identify the in-
teraction relationship between the targets. The minimum required 
interaction threshold was set with “highest confidence” (> 0.9) and 
the disconnected nodes were hidden. Data from the PPI analysis 
were then used for topological analysis to determine key genes.

Enrichment analysis
To further elucidate the potential pharmacological mechanism of 
yerba mate, we utilized the Metascape database (https://metascape.
org/) [57] to conduct KEGG pathway enrichment analysis and GO 
functional analysis, with the screening criteria of p < 0.01. Based 
on the p value, major biological processes and metabolic pathways 
were selected to visualize using the EHBIO Gene Technology Plat-
form (http://www.ehbio.com/ImageGP/) and bioinformatics online 
tools (http://www.bioinformatics.com.cn/).
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Figure 1. Flowchart of investigating the pharmacological mechanism of yerba mate. PPI — protein-protein interaction

Table 1. Bioactive components of yerba mate

Mol ID Molecule Name Molecular formula OB (%) DL Network degree

MOL000098 Quercetin C15H10O7 46.43 0.28 148

MOL000422 Kaempferol C15H10O6 41.88 0.24 59

MOL000006 Luteolin C15H10O6 36.16 0.25 54

MOL003973 Caffeine C8H10N4O2 89.46 0.08 52

MOL000511 Ursolic acid C30H48O3 16.77 0.75 51

MOL002773 Beta-carotene C40H56 37.18 0.58 21

MOL000415 Rutin C27H30O16 3.20 0.68 20

MOL001002 Ellagic acid C14H6O8 43.06 0.43 10

MOL000492 Catechin C15H14O6 54.83 0.24 10
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diseases, and so on. To more clearly show the relation-
ship between the bioactive components, targets, and 
predicted diseases, we selected highly correlated bioac-

tive components, targets, and diseases to construct a net-
work, which contained 125 nodes (10 component nodes, 
69 target nodes, and 46 disease nodes) (Fig. 2). In the 

Table 1. Bioactive components of yerba mate

Mol ID Molecule Name Molecular formula OB (%) DL Network degree

MOL006527 Theobromine C7H8N4O2 69.29 0.06 9

MOL005190 Eriodictyol C15H12O6 71.79 0.24 8

MOL000263 Oleanolic acid C30H48O3 29.02 0.76 6

MOL003871 Chlorogenic acid C16H18O9 13.61 0.31 1

MOL003118 4,5-Dicaffeoylquinic acid C25H24O12 1.78 0.69 1

MOL001875 3,5-Dicaffeoylquinic acid C25H24O12 1.79 0.69 1

MOL001877 3,4-Dicaffeoylquinic acid C25H24O12 1.78 0.69 1

OB — oral bioavailability; DL — drug-likeness

Figure 2. Component-target network of yerba mate. Purple V-shape nodes represent the bioactive components of yerba mate, and pink 
circle nodes represent the corresponding targets of the components (for the List of abbreviations, see the Supplementary File)
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network, only disease nodes whose degree was higher 
than or equal to the mean value of 3 were displayed. 
The results of topological analysis of the network indi-
cated that some diseases, such as breast cancer, asthma, 
Alzheimer’s disease, osteoarthritis, diabetes mellitus, 
atherosclerosis, and obesity were associated with more 
targets, suggesting that yerba mate might have greater 
therapeutic potential for these diseases. 

PPI network
The PPI network was constructed to explore the in-
teractions between candidate targets and their roles 
in complex diseases (Fig. 3). After hiding the discon-
nected nodes, the network contained 195 nodes and 
945 edges. According to the degree value from high 

to low, 195 nodes were arranged into three concentric 
circles. The innermost circle consisted of 44 key genes, 
which were targets with degree > twofold the median, 
including protein kinase B (AKT1) (degree = 45), signal 
transducer and activator of transcription 3 (STAT3) 
(degree = 44), mitogen-activated protein kinase 1 
(MAPK1) (degree = 42), transcription factor AP-1 (JUN) 
(degree = 41), cellular tumour antigen p53 (TP53) (de-
gree = 38), tumour necrosis factor (TNF) (degree = 36), 
transcription factor p65 (RELA) (degree = 32), interleu-
kin 6 (IL6) (degree = 30), amyloid-beta precursor pro-
tein (APP) (degree = 29), vascular endothelial growth 
factor A (VEGFA) (degree = 28), etc. These key genes 
were of great significance in the treatment of yerba mate 
for various diseases.

Figure 3. Component-target-disease network. V-shaped nodes represent the bioactive components of yerba mate, the diamond nodes 
represent targets, and circle nodes represent diseases. The size of disease nodes is in descending order of degree values (for the List of 
abbreviations, see the Supplementary File)
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GO and KEGG pathway enrichment analysis
Enrichment analysis can be used to preliminarily under-
stand the biological processes and cell components in 
which genes are enriched, and to predict the metabolic 
pathways significantly changed under experimental 
conditions, which is particularly important in the 
study of the pharmacological mechanism of drugs. GO 
enrichment analysis generated 2532 biological pro-
cesses, 133 cellular components, and 208 molecular 
functions. Biological processes were mainly involved 
in positive regulation of nitrogen compound metabolic 
process and regulation of cell death; cellular components 
were mainly involved in membrane-enclosed lumen, 
extracellular space, and cytoplasm; and molecular func-
tions were mainly involved in regulation of molecular 

function. As far as pathway enrichment analysis was 
concerned, the targets were enriched in 202 pathways, 
including pathways in cancer (hsa05200), fluid shear 
stress and atherosclerosis (hsa05418), human cytomega-
lovirus infection (hsa05163), prostate cancer (hsa05215), 
AGE-RAGE signalling pathway in diabetic complications 
(hsa04933), PI3K-Akt signalling pathway (hsa04151), 
TNF signalling pathway (hsa04668), proteoglycans in 
cancer (hsa05205), MAPK signalling pathway (hsa04010), 
IL-17 signalling pathway (hsa04657), and so on. The 
results of above enrichment analysis were arranged in 
ascending order according to Log p value. We selected 
the top 10 items of biological processes, cell components, 
and molecular functions, respectively, and the top 20 
KEGG pathways, which are shown in Figure 4. After 

Figure 4. Protein-protein interaction (PPI) network of the putative targets of yerba mate. The node sizes change from large to small and 
the colours change from red to yellow in descending order according to the degree values of nodes. The circle at the centre of the network 
is composed of key genes (for the List of abbreviations, see the Supplementary File)
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sorting out the pathways and the targets enriched in 
these pathways, we constructed a target-pathway net-
work to show the specific relationship between targets 
and pathways (Fig. 5).

Discussion

Visualization analysis of the network model is one of 
the main methods of network pharmacology, which can 
predict the pharmacological mechanisms of drugs by in-
terpreting the complex biological network relationships 

among drugs, active components, targets, and diseases 
[9]. In the present research, we constructed a compo-
nent-target network and component-target-disease 
network based on TCMSP database. By constructing 
a component-target network, it could be seen that 
yerba mate exerted its biological activity mainly through 
polyphenols, methylxanthine alkaloids, terpenoids, and 
flavonoids. Among them, polyphenols, such as chloro-
genic acid and ellagic acid, and methylxanthine alka-
loids, represented by caffeine and theobromine, are the 
main sources of the antioxidant property of yerba mate 

Figure 5. Enrichment analysis of putative targets. A. Gene ontology (GO) enrichment analysis. The top 10 items of biological process, 
cellular component and molecular function are shown in the figure. B. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway 
enrichment analysis. The size of the bubbles represents the gene counts enriched in the pathway, and the colour of the bubbles from red 
to blue indicates that the absolute value of the p value changes in descending order
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[1, 10]. Regular consumption of yerba mate tea, which 
provides the body with abundant relatively stable an-
tioxidants, may help prevent oxidative stress-related 
diseases [11]. Oleanolic acid and ursolic acid are typical 
pentacyclic triterpenes with preventive and anti-cancer 
activities, which are regarded as lead compounds in the 
development of new anti-cancer drugs [12–14]. Simi-
larly, flavonoids, including rutin, quercetin, kaempferol, 
etc., also have antioxidant, anti-inflammatory, antiviral, 
and other pharmacological effects [15–18].

As revealed in the topology data of the compo-
nent-target-disease network, yerba mate had its main 
regulatory effects on breast cancer, asthma, Alzheimer’s 
disease, osteoarthritis, diabetes mellitus, atherosclerosis, 

and obesity, which was consistent with previous stud-
ies. For instance, a case-control study conducted by 
Ronco et al. confirmed the protective effects of yerba 
mate, high intakes of which reduced the risk of breast 
cancer in Uruguayan women [19]. Cross-sectional 
studies indicated that people who regularly drank 
high excess free fructose beverages could increase their 
likelihood of developing asthma and (in young people) 
were more likely to develop osteoarthritis [20–22]. An in 
vitro study demonstrated that phenolics (mainly chlo-
rogenic acids and caffeic acid) in yerba mate could exert 
a potent antiglycation effect and inhibit the formation 
of advanced glycation end products, which might ex-
plain to some extent how excessive consumption of free 

Figure 6. Target-pathway network. The diamond nodes represent the top 20 pathways in the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) pathway enrichment analysis. The rectangular nodes represent the targets enriched in the top 20 pathways, and the key genes 
are highlighted in yellow (for the List of abbreviations, see the Supplementary File)
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fructose could lead to asthma and osteoarthritis, and 
had guiding significance for treatment [23]. Yerba mate 
was perceived as a promising agent for the prevention 
and treatment of diabetes; many animal experiments 
demonstrated that yerba mate could not only improve 
metabolic disturbances and insulin resistance, but also 
help reduce obesity [24, 25]. In addition, yerba mate can 
also prevent atherosclerosis through multiple ways, 
which effectively protect against cardiovascular and 
cerebrovascular diseases. Yerba mate treatment has been 
shown to reduce the production of reactive oxygen 
species and enhanced endothelial nitric oxide synthase 
concentration [26, 27]. This result indicated that yerba 
mate could regulate blood fat and endothelial function, 
thereby inhibiting the occurrence of atherosclerosis. On 
the other hand, Balsan et al. [28] compared the effects 
of yerba mate and green tea on paraoxonase-1 (PON-1) 
levels in obese and dyslipidaemic patients, and found 
that the consumption of yerba mate could increase the 
level of PON-1, an enzyme with antioxidant effects in 
serum, and increased cholesterol in high-density lipo-
protein, once again confirming the protective effect of 
yerba mate on atherosclerotic diseases. 

Based on the results of topological analysis of the 
PPI network, AKT1, STAT3, MAPK1, JUN, TP53, TNF, 
RELA, IL6, APP, and VEGFA were identified as the key 
genes of yerba mate playing pharmacological roles. Some 
of the key genes have been representatively validated 
in extensive studies. For example, AKT1 is a proto-on-
cogene whose amplification is present in most cancers 
[29]. It not only affects the proliferation and apoptosis 
of tumour cells, but also plays a significant role in tu-
mour invasion and metastasis [30]. Prior studies have 
demonstrated that the overexpression and activation of 
AKT1 has an important influence on the occurrence of 
various malignant tumours such as breast cancer, gastric 
cancer, lung cancer, and head and neck squamous cell 
carcinoma [30–33]. In recent years, targeted therapy 
of inhibiting AKT1 has become a focus of anti-cancer 
research. STAT3 is an important signalling protein that 
is engaged in regulating cell proliferation, survival, and 
apoptosis under normal physiological conditions [34]. 
When overexpressed or overactivated, STAT3 can lead 
to human diseases, such as cancer and inflammatory 
diseases. Strikingly, STAT3 is overexpressed and/or 
constitutively activated in approximately 70% of human 
solid and haematological tumours [35]. In inflamma-
tory diseases, pro-inflammatory cytokines such as IL-6, 
IL-10, TNF-a, and other cytokines are effective drivers 
of STAT3 activation, thus affecting the occurrence and 
pathological process of inflammatory diseases. Research 
showed that phosphorylated STAT3 was significantly 
increased in chondrocytes using IL-6 to simulate the in-
flammatory conditions that initiated osteoarthritis, and 

STAT3 signalling was involved in the production and ac-
tivation of IL-6-induced extracellular matrix degrading 
enzymes, resulting in cartilage degradation [36]. STAT3 
binds to the promoter, encodes proteins according to 
intracellular inflammatory genes, and then releases 
them to the outside of the cell, thereby amplifying the 
inflammatory response and playing an important role 
in airway inflammation and remodelling in asthma 
[37]. VEGFA, a member of the VEGF family, has at-
tracted extensive attention due to its role in regulating 
angiogenesis in homeostasis and disease processes. Ac-
cording to a recent study by Saukkonen et al., serum 
VEGFA levels were significantly higher in prediabetic 
and diabetic individuals than in individuals with nor-
mal blood glucose [38]. Similarly, a cross-sectional study 
by Sun et al. revealed that serum VEGF levels were 
elevated in patients with impaired glucose tolerance 
and in those with T2DM, and increased serum VEGFA 
levels were positively correlated with insulin resistance 
[39]. Obesity and dyslipidaemia are both risk factors for 
atherosclerosis. Studies have found that VEGFA levels 
are increased in overweight and obese people, and 
anti-VEGFA antibodies can inhibit fat formation while 
inhibiting angiogenesis, suggesting that VEGFA is ben-
eficial to regulate fat production and control obesity [40, 
41]. Furthermore, higher circulating VEGFA levels may 
supplement atherosclerotic ischaemia by promoting 
neovascularization in target organs, thereby contribut-
ing to reducing the risk of CVD [42]. 

Combined with the key genes obtained in the PPI 
network and the subsequent GO enrichment analysis 
results, we speculated that the bioactive components 
of yerba mate may affect the cytological components of 
membrane-enclosed lumen, extracellular space, and 
cytoplasm by regulating these key genes, thereby regu-
lating molecular functions and ultimately influencing 
the disease processes. Among the signalling pathways 
presented in KEGG pathway enrichment, the three 
prominent pathways with top significance were path-
ways in cancer, fluid shear stress, and atherosclerosis, 
human cytomegalovirus infection. Pathways in cancer 
are ranked first among KEGG pathways and are consid-
ered to be specifically related to tumours [43]. This sug-
gests again that yerba mate may have positive therapeutic 
implications for tumours, and genes in these pathways 
may be potential targets for yerba mate in the treatment of 
tumours. Fluid shear stress and atherosclerosis pathway 
is strongly associated with oxidative stress, inflammatory 
response, atherosclerosis, and cell migration. The action 
pattern of the fluid shear stress and atherosclerosis path-
way is similar to that of biological signals. Shear stress 
acts on the mechanoreceptors on endothelial cells and 
activates a series of related signalling pathways, result-
ing in vascular deformation in areas of unstable blood 
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flow or low shear stress [44]. Human cytomegalovirus 
is by far the most complex human herpesvirus, which 
establishes a lifetime incubation period in the host after 
primary infection [45]. A growing body of data suggests 
that life-long persistent infection of human cytomega-
lovirus is a potential and critical risk factor for cancer 
and CVD [45–49]. Recognizing yerba mate’s regulation 
of the human cytomegalovirus pathway may increase 
preventive approaches and therapeutic measures for 
virus-related diseases.

Despite these findings, there were still some limita-
tions in our study. Due to the limited databases used in 
this study, further pharmacokinetic tests are necessary 
to verify the pharmacological mechanism of yerba mate 
in the future.

Conclusions

Taken together, this study is the first to explore and ob-
tain the bioactive components, key pathogenic targets, 
and regulatory signal pathways of yerba mate by utilizing 
the network pharmacology method and preliminarily 
verifying the basic pharmacological effects and related 
mechanisms of yerba mate, which lays a good founda-
tion for further research. We found that the bioactive 
components of yerba mate play a potential therapeutic 
role in cancer, cardiovascular and cerebrovascular 
diseases, nervous system diseases, and inflammatory 
diseases by regulating AKT1, STAT3, MAPK1, and other 
key genes. Thus, it can be inferred that yerba mate has 
high medicinal value. It is expected that our study will 
provide reference for the development and clinical ap-
plication of yerba mate as a medicinal resource.
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