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dant status of an organism. For instance, total oxidant 
status (TOS) and total antioxidant status (TAS) reflect 
the general condition of oxidative stress in the body. 
Paraoxonase 1 (PON1) is an enzyme that protects 
low-density lipoprotein (LDL) against oxidative dam-
age and is closely related to high-density lipoprotein 
(HDL) [4]. Thiols are the compounds including sulf-
hydryl groups connected to carbon atoms. Total thiol 
(TT) is an antioxidant that provides protection against 
tissue and cell damage by reacting with free oxygen 
radicals. Oxygen radicals oxidize the thiol groups of the 
proteins consisting of amino acids including sulphur 
and create disulphide (DS) bonds. Such disulphide 
bonds are the earliest indicators of protein oxidation, 
and these bonds are reversible. Reduction of reversible 
disulphide bonds provides the protection of dynamic 
thiol/disulphide homeostasis [5–8]. Homoeostasis of dy-
namic thiol/disulphide plays a key role in cellular activi-
ties including antioxidant defence, signal transmission, 
detoxification, cell proliferation, and apoptosis. When 
thiol/disulphide homoeostasis is disrupted as a result 

Introduction

Subacute thyroiditis (SAT) is a condition presenting 
with local or generalized inflammation of the thyroid 
gland. The main symptoms include fever appearing 
with inflammation, pain, and tenderness of the neck. 
Although the aetiology is not clear, there is a history of 
upper respiratory tract infection, which appears 2 to 8 
weeks before thyroiditis. Therefore, SAT is thought to 
be related to a viral infection or post-viral inflamma-
tion. Autoimmunity does not play a primary role in the 
progress of the disease. However, a strong association 
with HLA-B35 molecules was revealed in many ethnic 
groups. Therefore, some authors suggest that SAT may 
develop due to transmission of viral infection in indi-
viduals with a genetic tendency [1].

Oxidative stress appears as a result of the over-ex-
pression of free oxygen radicals and the deficiency 
of antioxidant defence systems. The reactive oxygen 
radicals that appear cause tissue damage [2, 3]. There 
are many molecules reflecting the oxidant and antioxi-
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of the thyroid compartment), laboratory findings (thyrotoxicosis, 
increased erythrocyte sedimentation rate (ESR), C-reactive protein 
(CRP), and/or leukocyte values), and ultrasound findings (focal 
or diffuse heterogeneous, hypoechoic thyroid parenchyma with 
decreased vascularization) [1].
Venous blood samples of the participants were collected after a fast-
ing period of at least 10 hours. Blood samples of the patient group 
were collected at the time of diagnosis, before the administration 
of any non-steroidal anti-inflammatory drug or steroid treatment. 
The blood samples were centrifuged at 1500 rpm for 10 minutes, and 
serum and plasma were separated. The serum was transferred in 
Eppendorf tubes and stored at –80°C. All oxidative stress parameters 
were analysed once for the same serum sample.
The serum samples collected for CRP were analysed by the 
nephelometric method with a Beckman Coulter device (IMMAGE 
Immunochemistry Systems, Ireland). White blood cell (WBC) and 
neutrophil (Neu) counts were analysed with an LH 750 Analyzer 
(Beckman Coulter, UK). Thyroid-stimulating hormone (TSH) (nor-
mal range: 0.6–4 mIU/mL), free T4 (fT4) (normal range: 0.8–1.7 ng/
dL), and free T3 (fT3) (normal range: 2–3.9 ng/dL) were measured 
by electroluminescence immunoassay method with a Cobas e 601 
analyser (Roche Diagnostics Corp., USA).
Serum TOS level was measured with a commercial kit (Rel Assay 
Diagnostics, Turkey; Ref. No: RL0024, Lot No: JE 14048Og) via colo-
rimetric method with CV% of 10 and linearity of 0–33.5 mmol/L. 
The results are expressed in micromolar H2O2 equivalents per litre 
(mmol/L H2O2 equivalent/L) (normal range: 0–4 IU/mL).
Serum TAS level was measured with a commercial kit (Rel Assay 
Diagnostics, Turkey; Ref. No: RL0017, Lot No: JE 14042A) via colo-
rimetric method with CV% of 10 and linearity of 0–2.75 mmol/L. 
The results are expressed in mmol Trolox equivalents/L (mmol 
Trolox equivalent/L).
The oxidative stress index (OSI) value was calculated according 
to the following formula: OSI (arbitrary unit) = TOS (mmol H2O2 
equivalent/L)/TAS (mmol Trolox equivalent/L) [4].
Serum PON1 level was measured with a commercial kit (Rel Assay 
Diagnostics, Turkey; Ref. No: RL0031, Lot No: JE14028P) via colo-
rimetric method with CV% of 5 and linearity of 0–750 U/L. PON1 
activity was expressed as U/L of serum.
Thiol/disulphide homeostasis tests were performed as described 
by Erel and Neselioglu [11]. Briefly, disulphide bonds were first 
reduced to form free functional thiol groups. Unused reducer 
sodium borohydride was consumed and removed with formal-
dehyde, including reduced and native thiol (NT); all thiol groups 
were determined after reaction with 5,5’-dithiobis-2-nitrobenzoic 
acid. The dynamic disulphide (DS) amount was calculated by de-
termining half of the difference between the total thiol (TT) and 
the native thiol. After the native thiol, total thiol, and disulphide 
amounts were determined, the ratios of disulphide/total thiol (DS/
TT), native thiol/total thiol (NT/TT), and disulphide/native thiol 
(DS/NT) were calculated [11].

of oxidative stress and the balance slides towards di-
sulphide, functional disorders appear in the aforesaid 
cellular activities. Therefore, abnormal thiol/disulphide 
homoeostasis is expected to be associated with the ae-
tiopathogenesis of many acute or chronic diseases [9].

The most important mechanisms in aetiopathogen-
esis appear to be genetic predisposition and viral infec-
tions; however, the exact cause has not been revealed 
yet. New hypotheses and studies are therefore needed 
to clarify the causes and risk factors for SAT. In a previ-
ous study performed within this scope, selenium levels 
were detected to be lower [10]. This outcome suggests 
that the oxidant-antioxidant system may play a role in 
the aetiopathogenesis of SAT, as is the case for many 
other diseases.

However, to the best of our knowledge, no previ-
ous study has indicated the association between SAT 
and oxidative stress directly. We therefore planned the 
present study to detect whether any association exists 
between SAT and oxidative stress and the determinant 
factors that affect such a possible association.

Materials and methods

The study was approved Ethics Committee of Clinical Research at 
Keçiören Education and Research Hospital, University of Health 
Sciences (Project No: 2012-KAEK-15/1701) before the onset of the 
study. The study was carried out in accordance with the Helsinki 
Declaration, and verbal and written consent was obtained from 
all participants.
Forty-three patients who had been referred as endocrinology 
outpatients between 15 June  2018 and 1 May 2019, and had been 
diagnosed with SAT were enrolled in the study. The exclusion 
criteria were diabetes mellitus, hypertension, cardiovascular or 
cerebrovascular disease, acute or chronic kidney or liver disease, 
any findings for acute or chronic infection, any rheumatologic 
disease or malignancy, and the use of any antioxidants, lipid-
lowering drugs, vitamin supplements, tobacco, or alcohol. A total 
of 18 individuals with at least one exclusion criterion were excluded. 
The present study was thus completed with 25 patients who were 
newly diagnosed and had not received any treatment, as well as 
30 healthy volunteers (Fig. 1).
SAT was diagnosed by history (pain on the anterior side of the 
neck, pain radiating to the ear, fever), physical exam (tenderness 

Patient group

Application of selection 
and exclusion criteria

Screening of the patients 
to be included

43 patients diagnosed with subacute 
thyroiditis disease between 

15 June 2018 and May 2019

25 patients meeting criteria

18 patients excluded from the study:
Diabetes mellitus — 4

Cardiovascular disease — 2
Acute or chronic infection — 2
Smoking or alcohol intake — 10

Figure 1. Determination of patient groups
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Statistical analysis
Data obtained from the present study were evaluated with the IBM 
SPSS Statistics 22 program (IBM Corp., USA). Kolmogorov-Smirnov/
Shapiro-Wilk tests and distributions of the data in histogram graph-
ics were used to decide whether the data were distributed normally. 
Normally distributed data were expressed as mean ± standard 
deviation, whereas non-normally distributed data were expressed 
as median (minimum–maximum). Categorical variables were 
expressed as percentages, and statistical analyses were conducted 
with the chi-square test. Student’s t-test and the Mann-Whitney 
U test were used to assess the differences between the groups. 
Analysis of the associations between the variables was conducted 
with Spearman and Pearson correlation tests as well as partial cor-
relation analysis. In the case of p < 0.05, a statistically significant 
difference/association was considered.

Results

The SAT and control groups were similar in terms of age 
and sex. The WBC count, Neu level, CRP, ESR, and fT3 

and fT4 levels were significantly higher in the patient 
group, whereas the TSH level was significantly lower 
in the patient group (p < 0.05) (Tab. 1). 

Evaluation of the patient and control groups in 
terms of oxidative stress parameters revealed no sig-
nificant difference between the groups in terms of 
TAS, TOS, OSI, and PON1 levels. However, TT and NT 
levels were lower in the SAT group than in the control 
group (p < 0.001). DS levels were similar. DS/NT and 
DS/TT levels were significantly higher in the SAT group, 
whereas NT/TT levels were lower. A comparison of both 
groups for oxidative stress parameters is presented in 
Table 2.

In the correlation analysis performed on the whole 
study population, age was negatively correlated with 
TT and NT; however, a positive correlation was detected 
between age and PON1. Furthermore, NT and TT were 

Table 1. Demographic characteristics and laboratory findings of the study population

Control (n=30) Subacute Thyroiditis (n=25) p

Gender, n (%) NS

Female 24 (80) 20 (80)

Male 6 (20) 5 (20)

Age [years] 35 (21–59) 38 (29–55) NS

WBC [n/mm3] 6885 (4500–10300) 8440 (4000–14,000) 0.003

Neu [n/mm3] 3945 (2190–6690) 5280 (2510–9760) < 0.001

CRP [mg/L] 0.14 (0.01–0.49) 4.5 (0.5–13.47) < 0.001

ESR [mm/h] 11.5 (2–29) 37 (9–62) < 0.001

fT3 [ng/dL] 2.76 (2.08–3.85) 5.09 (2.96–12.12) 0.001

fT4 [ng/dL] 1.1 (0.85–1.6) 2.24 (1.07–3.78) < 0.001

TSH [mIU/mL] 1.82 (0.67–3.95) 0.01 (0–0.59) < 0.001

WBC — white blood cell; Neu — neutrophil; CRP — C-reactive protein; ESR — erythrocyte sedimentation rate; fT3 — free triiodothyronine; fT4 — free thyroxine;  
TSH — thyroid-stimulating hormone; NS — nonsignificant

Table 2. Oxidative stress parameters of the study population

Control (n = 30) Subacute thyroiditis (n = 25) p

TAS [mmol Trolox equivalent/L] 1.54 (1.3–2.24) 1.58 (1.18–1.88) NS

TOS [mmol/L H2O2 equivalent/L] 8.76 (3.41–18.43) 8. 83 (4.91–14.55) NS

OSI [arbitrary unit] 5.9 (2.76–11.46) 5.95 (2.91–11.3) NS

PON1 [U/L] 292.3 (76.5–1019.1) 241.6 (105.7–664.3) NS

NT [µmol/L] 419.45 (332.8–522.5) 366 (239.4–501.9) < 0.001

TT [µmol/L] 447.5 (367.3–549.8) 384.1 (258.2–538.3) < 0.001

DS [µmol/L] 15.47 (8.25–21.75) 15.45 (9.05–28) NS

DS/NT (%) 3.6 (1.71–5.55) 4.13 (2.41–8.59) 0.02

DS/TT (%) 3.35 (1.66–4.99) 3.82 (2.3–7.33) 0.02

NT/TT (%) 93.28 (90.01–96.69) 92.36 (85.34–95.4) 0.02

TAS — total antioxidant status; TOS — total oxidant status; OSI — oxidative stress index; PON1 — paraoxonase 1; NT — native thiol; TT — total thiol; DS — disulphide; 
NS — nonsignificant
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negatively correlated with WBC count, Neu level, CRP, 
ESR, and fT4 and positively correlated with TSH level 
(Tab. 3). The partial correlation analysis performed by 
adjusting age, WBC count, Neu, ESR, and CRP level 
revealed a negative correlation between fT3 and TOS, 
OSI, DS, DS/NT, and DS/TT and a positive correlation 
between fT3 and NT/TT (Tab. 3).

A significant and negative association was detected 
between age and TT level only in the correlation analy-
sis conducted on SAT patients (r = –0.442, p = 0.027). 
Furthermore, a negative correlation was found between 
CRP level and TAS, whereas a positive correlation was 
detected between CRP level and OSI. There was a nega-
tive association between TSH and TAS only in the partial 
correlation analysis adjusting the age, WBC count, Neu 
level, CRP, and ESR (r = –0.481, p = 0.043) (Tab. 3). 

Discussion

We found that NT, TT, and NT/TT values were sig-
nificantly lower, and DS/NT and DS/TT values were 
significantly higher, in the SAT group when compared 
with the control group. Furthermore, we detected sig-
nificant correlations between thiol levels and inflamma-
tory markers as well as thyroid hormones. We thereby 
demonstrated a possible association between SAT and 
oxidative stress.

The aetiopathogenesis of SAT has not been clarified 
yet. However, it is generally accepted that the disease 
may present a genetic transition [1]. In particular, the 
presence of HLA-B35 was detected in two-thirds of the 
patients, and family series were identified rarely in the 
literature [1, 12, 13]. Another important determinant is 
viral factors. It is thought that the disease may develop 
due to many viral factors such as mumps, rubella, in-
fluenza, adenovirus, coxsackie virus, and severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
lately [1, 14]. One argument claims that both factors are 
responsible in the aetiopathogenesis, and the antigens 
appearing due to viral factors form a complex with 
HLA-B35 and activate cytotoxic T lymphocytes. Ac-
tivated T lymphocytes cause damage in thyroid fol-
licle cells, resulting in inflammation [15]. Hernik et al. 
showed that iron homeostasis and hepcidin also play 
an important role in the aetiology of SAT [16].

It is known that oxidative stress is related to inflam-
mation and increases in inflammation, and it is also 
associated with many acute and chronic diseases [4, 
9, 17–21]. Previous studies demonstrated that oxida-
tive stress increases in autoimmune thyroid diseases 
progressing with chronic inflammation such as Hashi-
moto thyroiditis and Graves’ disease, and there may be 
a cause-and-effect relationship between these diseases 
and oxidative stress [4, 5, 21–23]. These data suggest the 

possible association of SAT involving viral factors and 
immune reactions with inflammation in the pathogen-
esis with oxidative stress. Furthermore, Moncayo et al. 
detected lower levels of selenium, which plays a key 
role in thyroid functions, in patients with SAT [10]. 
Briefly, the oxidative stress process that appears with 
the decrease of antioxidant radicals and/or the increase 
of direct oxidant radicals probably plays a key role in 
the pathogenesis of SAT.     

We did not detect any significant increase in di-
sulphide levels among oxidative stress parameters in 
SAT patients. However, significantly lower levels of 
antioxidant parameters (TT and NT) when compared 
to the control group and significantly higher DS/NT 
and DS/TT ratios indicate that thiol/disulphide ho-
meostasis is disrupted by oxidative stress. Dynamic 
thiol/disulphide homeostasis plays a role in many 
critical mechanisms, and disruption of that balance 
disrupts some vital cell functions [2, 3, 11, 24]. Or-
ganelle pathologies appear due to oxidative stress [5]. 
Thiols are accepted as essential antioxidant buffers 
because they have constant interactions with almost 
all physiological oxidants [20]. One of the major thiol 
components of the body is glutathione. The gluta-
thione peroxidase enzyme converts glutathione into 
glutathione disulphide and protects the thyroid gland 
from oxidative damage by hydrogen peroxide (H2O2), 
which acts during hormone synthesis [25]. Glutathione 
peroxidase is a selenium-dependent selenoprotein. 
Lower selenium levels have already been shown in pa-
tients with SAT [10]. Furthermore, it is also known that 
selenium deficiency increases the virulence of some 
infectious agents [26]. It is suggested that selenium 
deficiency may trigger SAT development after viral 
infection in genetically predisposed individuals. When 
all these mechanisms and study data are evaluated to-
gether, it may be considered that lower thiol levels play 
a role in the aetiopathogenesis of SAT with a similar 
mechanism. The main factor may be glutathione in this 
mechanism. Another finding supporting the hypoth-
esis that dynamic thiol/disulphide homeostasis may 
play a role in the aetiopathogenesis of SAT is the simi-
larity of other oxidant and antioxidant mechanisms 
(TAS, TOS, OSI, and PON1); the oxidative imbalance 
in SAT patients may be caused by inflammation and 
thyrotoxicosis due to the disease. Thyroid hormones 
regulate oxidative metabolism and play a role in free 
radical production [23, 27]. These hormones play a role 
in the synthesis and degradation of some enzymes 
including superoxide dismutase, catalase, glutathi-
one peroxidase, and glutathione reductase, as well as 
some non-enzymatic antioxidants such as vitamins 
E and C, glutathione, uric acid, ferritin, transferrin, 
and ceruloplasmin. The changes in these enzymes 
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and non-enzymatic substances affect the redox bal-
ance of the body. Enzymatic feedback mechanisms 
thereby regulate thyroid functions. One of the most 
important effects of thyroid hormones is increasing 
mitochondrial respiration. This causes up-regulation 
of reactive oxygen radicals and oxidative damage of 
membrane lipids. In other words, oxidative stress is 
known to be associated with thyroid functions both in 
hypothyroidism and hyperthyroidism [23, 27, 28]. The 
increase of free radicals along with increased cellular 
metabolic rate was shown in hyperthyroidism [29, 30]. 
There are different studies addressing the findings 
that antioxidant enzymes both increase and decrease 
[31, 32]. All patients enrolled in the present study had 
thyrotoxicosis. However, there was no increase in oxi-
dative parameters (TOS, OSI, and DS). Furthermore, 
thiol levels, including glutathione, only decreased 
among antioxidant mechanisms. TAS and PON1 levels 
were normal, and there was no association between 
thyroid functions and total and native thiol levels in 
partial correlation analysis conducted by excluding the 
inflammation parameters and age in the patients with 
SAT. These findings suggest that the effect of thyroid 
hormones on oxidative stress is minimal.

Inflammation increases oxidative stress [4]. The 
oxidative balance may be disrupted both in chronic 
and acute inflammation [4,18]. However, an increase 
in levels of oxidative parameters such as TOS and DS 
is expected in oxidative stress appearing due to inflam-
mation [4, 20]. In the present study, a negative correla-
tion of NT and TT was detected with WBC count, Neu 
level, CRP, and ESR level in the whole study population. 
There was no such association in the patients with 
SAT. In other words, there was no association between 
inflammation severity and thiol levels. Maehira et al. 
showed a negative association between selenium levels 
and CRP and such a mechanism appears for NF-kb [33]. 
A negative association was also shown between sele-
nium levels and IL-6 [34]. These data reveal that lower 
thiol levels might be associated with an increase in in-
flammation markers and inflammation in patients with 
SAT. The expected inflammation-induced increase in 
oxidant parameters may not always be detected because 
the patients enrolled in the study were diagnosed early. 
Reversible thiol/disulphide homoeostasis is the earliest 
stage of protein oxidation, and antioxidant parameters 
may start to decrease first with such a balance [5]. 

In consideration of all data obtained in the present 
study as well as the information in the literature, we 
believe that the dynamic thiol/disulphide balance may 
play a role in the aetiopathogenesis of SAT. However, 
we are aware of the necessity of other data to support 
this claim. The present study has some limitations at 
this stage. The most important limitation of our study 

is its cross-sectional design. After complete recovery of 
inflammation and thyrotoxicosis findings, re-evaluation 
of oxidative stress parameters would provide a bet-
ter understanding. Another limitation is the lack of 
glutathione, glutathione peroxidase, and selenium 
analyses. Furthermore, viral factors, HLA, and thyroid 
antibodies, which may act in the aetiopathogenesis of 
SAT, were not evaluated.

Conclusions

The present study has presented for the first time that 
there may be an association between SAT and oxida-
tive stress; thiol levels are significantly decreased and 
thiol/disulphide homoeostasis is disrupted in patients 
with SAT. The possible benefits of antioxidant therapies 
for the treatment and prevention of the disease and 
recurrence in patients with SAT should be considered. 
Large-scale studies are still required to reveal this as-
sociation exactly.
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