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Introduction 

There are at least two reasons to presume that the 
novel viral pandemic infection COVID-19 presents 
important relations with the endocrine system. Firstly, 
the virus SARS-CoV-2 responsible for the COVID-19 
infection uses an important renin-angiotensin system 
element — angiotensin–converting enzyme 2 (ACE2) 
— as a receptor protein for entry into target cells and, 
in consequence, disturbs the function of the renin–an-
giotensin-aldosterone system (RAAS) [1–3]. The same 
mechanism of entry was previously shown for earlier 
recognized coronaviruses [4, 5]. Moreover, the poor 
outcome of COVID-19 is linked with advanced age 
and metabolic comorbidities, e.g. obesity, metabolic 
syndrome, and 2 type diabetes [6]. 

The role of the renin–angiotensin–aldosterone 
system

Angiotensins form the tissular hormonal cascade in-
volved in several vital processes, of which the best known 
is blood pressure regulation. This regulation depends, in 
part, on the direct stimulation of the vasoconstriction by 
angiotensin II (AII). On the other hand, AII stimulates 

the secretion of aldosterone from adrenal cortical zona 
glomerulosa, increasing the sodium retention together 
with potassium excretion. In relation to COVID-19, the 
most important finding is that SARS-CoV-2, the virus 
responsible for this infection, uses angiotensin–con-
verting enzyme 2 (ACE2) as its tissue receptor [4, 5, 7]. 
Thus, it was hypothesized that higher amounts of ACE2 
increased the risk of the infection with SARS-CoV-2 [for 
review see 8]. However, bound with the viral particles, 
ACE2 becomes less active, which results in the decreased 
breakdown and increased accumulation of AII [7, 8]. 
The low ACE2 activity leads to higher levels of AII and 
lower levels of angiotensin 1–7 (A1-7), the product of 
AII conversion by ACE2 [9]. Thus, COVID-19 may itself 
contribute to arterial hypertension, which is one of the 
comorbidities linked with severe outcomes of COVID-19. 
In addition, the oversecretion of aldosterone under the 
influence of AII not only causes high blood pressure but 
also exerts a proinflammatory effect in various tissues 
[for review see: 10]. Aldosterone not only stimulates so-
dium retention, but also enhances potassium excretion. 
It is worth recalling that 54.28% of COVID-19 patients 
studied by Chen et al. [11] showed hypokaliaemia. Be-
sides the main circulating RAS, there are numerous local 
RAS localized in different organs and tissues; among 
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bidities, mostly by obesity, metabolic syndrome, and 
type 2 diabetes [6]. These three conditions are linked 
together, because obesity, mostly central, leads to 
insulin resistance, the key factor of metabolic syn-
drome and type 2 diabetes. Stefan et al. [24] showed 
that high body mass index (BMI) is an important risk 
factor for severe course of COVID-19. The patho-
physiological mechanisms of these effects are yet not 
fully elucidated. Obesity, from a purely mechanistic 
point of view, leads by itself to poor ventilation. On 
the other hand, we know that adipose tissue con-
tains a local RAS [for review see: 25–28]. This system 
is responsible for a large proportion of synthesized 
AII, e.g. in rodents, adipose tissue RAS contributes 
to approximatively one third of circulating AII [25]. 
Under the SARS-CoV-2 invasion the adipose tissue 
RAS might undergo the alterations described above for 
the circulating RAS, resulting in AII and aldosterone 
excess. We can presume that the expected excessive 
amount of AII depends on the adipose tissue mass. In 
obese patients, the fat tissue deposits contain abundant 
local RAAS, and thus the alterations to angiotensin 
and aldosterone levels can be more enhanced than 
in lean subjects. Other metabolic disorders, besides 
obesity itself, have been suggested to exert a negative 
effect on COVID-19 outcome. Diabetes (mostly type 
2) is a frequent comorbidity accompanying severe 
outcome of COVID-19 [6, 29, 30]. COVID-19 patients 
with diabetes mellitus present increased inflammatory 
markers and more rapid progression of CT lesions 
in the lungs in comparison with non-diabetics [31]. 

others, in certain classical endocrine organs, such as the 
anterior and posterior pituitary [12–15], adrenal gland 
[16], pancreatic islets [17, 18], and testis and ovary [19, 
20]. The role of the above-mentioned local RAS in these 
endocrine glands is only partially explored, and their 
dysregulation in COVID-19 may have important but 
as yet partially unknown consequences. Because the 
increase of AII seems to be the most important result 
of COVID-19, available angiotensin receptor 1 blockers 
(ARB), like valsartan, are proposed as adjuvant drugs in 
this infection [21]. On the other hand, the application 
of angiotensin converting enzyme inhibitors (ACEI) 
and ARB increases the biosynthesis of ACE2 [22], and 
it was hypothesized that the administration of these 
drugs might enhance the risk of COVID-19 infectivity. 
However, it has not been proven that treatment with 
ACEI or ARB constitutes an independent risk factor of 
SARS-CoV-2 infection. American and European Societies 
of Cardiology expressed the view that ACEI and ARB 
are safe and should be continued in patients accord-
ing to the established guidelines [AMSC]. It was also 
suggested that irrespective of their effect on COVID-19 
infectivity, in patients once infected, the treatment with 
ACEI or ABR turns out to be beneficial [23]. Alterations 
of the RAAS system due to SARS-CoV-2 infection are 
presented in Figure 1.

The role of obesity and diabetes

Morbidity and mortality in COVID-19 is increased 
not only by advanced age, but also by several comor-

Figure 1. Dysregulation of the renin-angiotensin-aldosterone system in COVID-19. Continuous lines — stimulatory pathways; broken 
line — inhibitory pathways; arrow up — upregulation; arrow down — downregulation
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Chronic hyperglycaemia negatively affects immune 
functions [32]. Because of the occurrence of ACE2 in 
pancreatic islets, COVID-19 may induce worsening or 
onset of diabetes [3].

Age-related hormone alterations 
and COVID-19

As was indicated in the Introduction, the mortality 
rate of COVID-19 is sharply dependent on advanced 
age. For instance, in France the mortality varied from 
0.001% in subjects < 20 years old to 10.1% in persons 
aged over 80 years [33]. Similar data are reported by 
Majewska [34] from Poland: the mortality > 15 years of 
age was absent and rose with advancing age to 23.2% 
over 85 years of age. Aging in humans, like in other 
mammalian species, is associated with deep alterations 
in hormonal secretion. In turn, hormone deficiencies, 
mostly of gonadal steroids, dehydroepiandrosterone 
(DHEA), growth hormone, and melatonin and excess of 
gonadotropins actively contribute to the aging process-
es, including age-related dysfunction of the immune 
system (immunosenescence). For instance, the drop of 
adrenocortical steroid DHEA may be linked with the 
failure of its immunoenhancing effect exerted in oppo-
sition to glucocorticoids [for review see: 35]. Moreover, 
in rodents, DHEA was found to exert an anti-obesity ef-
fect and induce the enhancement of insulin sensitivity 
[36]. In mice DHEA was shown to protect against acute 
lethal viral infection [37]. However, the application of 
exogenous DHEA is suspected to evoke a possible ex-

acerbation of COVID-19. This negative action of DHEA 
can be exerted by glucose-phosphate dehydrogenase 
inhibition [38]. Moreover, DHEA may antagonize the 
anti-inflammatory action of glucocorticoids used in 
the treatment of severe complications of COVID-19. 
One of the remarkable alterations connected with age 
is melatonin deficiency. If we consider the variations 
of melatonin secretion in relation to age, we can see 
that the highest nocturnal peak of melatonin secre-
tion occurs during early childhood, begins to decrease 
at the first pubertal years, and then slowly drops to 
minimal values at over 80 years of age [39, 40]. Interest-
ingly, the curves of mortality of COVID-19 and that of 
melatonin nocturnal secretion in dependence on age 
have almost the reverse shape (see Fig. 2). A question 
arises whether the changes in melatonin secretion may 
explain (at least in part) the age-related differences of 
COVID-19 morbidity/mortality. Numerous papers con-
cern the relations between melatonin and COVID-19 
[41–46]. The quoted authors, on the basis of previous 
findings of anti-inflammatory, immunomodulatory, 
antioxidant, and antiviral (demonstrated in other viral 
infections) actions, suggest the application of melatonin 
as an adjuvant drug in COVID-19. It should be under-
lined that recent studies in silico showed that melatonin 
has the properties of an inhibitor of SARS-CoV-2 main 
protease [47]. Melatonin was also shown to inhibit the 
protein CD147, which is involved in the cytokine storm 
[48]. Some clinical trials evaluating the efficacity and 
safety of melatonin are currently in progress [49–51]. 
In contrast to melatonin, the changes of DHEA levels 

Figure 2. Curves of nocturnal peak of melatonin (MEL) and COVID-19 mortality (broken line) in relation to age
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during the lifespan are correlated with COVID-19 mor-
tality only in older age, when the low DHEA levels are 
accompanied by high COVID-19 mortality. However, 
the same is not true for childhood, when minimal 
mortality [33,34] is accompanied by very low DHEA 
secretion [35]. 

Follicle-stimulating hormone (FSH) and luteinizing 
hormone (LH) excess, in contrast to hormonal defi-
ciencies, was considered meaningless for a long time. 
However, the latest data indicate that gonadotropins, 
by their direct extra-gonadal action, can contribute to 
the aging process [for review see: 52, 53]. Although 
the effect of gonadotropins on immunosenescence 
was still poorly recognized, it is known that inter-
leukin-6 (IL–6) levels are elevated in elderly humans 
and aged mice, and the involvement of this cytokine 
in the aging process is assumed [54, 55]. On the other 
hand, Komorowski and Stepień [56] demonstrated 
that both FSH and LH stimulate IL–6 secretion from 
human monocytes in vitro. IL-6 levels are also elevated 
in COVID-19, mostly in cases of severe outcome, and 
they are an important element of the so-called cytokine 
release syndrome. Moreover, the blockade of IL-6 is 
suggested as a strategy in COVID-19 severe infection 
[57]. Interestingly, the secretion of FSH and LH during 
the lifespan is approximately parallel to the age-related 
COVID-19 mortality. It is known that gonadotropin 
levels are low in both sexes during childhood before 
puberty, become moderate in adulthood, and continu-
ously rise in older people.

Conclusions

The SARS-CoV-2 binding to ACE2 evokes dysregula-
tion of the main RAAS, resulting in an excess of AII and 
aldosterone. The dysregulation concerns also the local 
RAS, including that localized in the adipose tissue. It is 
hypothesized that local RAS dysregulation is the main 
cause of the negative role of obesity as a risk factor for 
severe outcome of COVID-19 infection. The deficiencies 
of melatonin and DHEA and the excess of FSH and LH, 
which occur in older people, may contribute to be the 
risk factor of morbidity/mortality in COVID-19. The 
usefulness of melatonin and ACEI/ARB (the latter only 
in later phases of the infection) is probable but needs 
thorough clinical trials. The considerations presented 
above may also be useful in the future in the case of 
other infections evoked by coronaviruses that use ACE2 
as a means of entry to host cells.
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