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Introduction

Thyroid nodules are a common disease in clinical prac-
tice. The incidence is about 65% in the general popula-
tion, and most are benign [1]. However, in patients with 
thyroid nodules, approximately 10% of nodules tend 
toward malignancy [2], and the incidence of thyroid 
cancer is on the rise worldwide. 

Early diagnosis of thyroid nodules is essential for 
successful treatment. The development of imaging 
technology and image processing provides an objec-
tive basis for diagnosing thyroid nodules [3–5]. Cur-
rently, ultrasonography (US) is the first choice for the 
examination of thyroid nodules. However, US features 
of benign and malignant nodules show consider-
able overlap. In previous studies, the sensitivity and 
specificity of diagnosing thyroid cancer with US have 
shown some variation, ranging from 27% to 63% and 

78.0% to 96.6%, respectively [6–8]. This is probably due 
to different examiners, different US instruments, and 
different definitions of US features. US remains highly 
subjective and depends on clinical experience. Magnetic 
resonance imaging (MRI) is often used as a supplemen-
tary examination to evaluate thyroid disease. Positron 
emission tomography (PET) plays a role in evaluating 
thyroid cancers with dedifferentiated tumours [9]. 
Computed tomography (CT) has unique advantages 
in the diagnosis of retrosternal goitres, malignant cases 
with suspicion of extracapsular extension [10, 11], and 
multiple punctate calcifications [12]. Also, CT scans 
can help to detect incidental thyroid cancers [13]. In 
clinical practice, visual examination of many CT images 
is a tedious and error-prone task for radiologists. The 
diagnosis of incidental thyroid nodules (ITNs) varies 
depending on the radiologist’s experience, type of 
practice, and training [14]. Furthermore, some subtle 
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enrolled 880 patients with CT images of 986 nodules. These nodules 
were then randomly split into training-validation and test sets. 

Image acquisition and preprocessing
A GE LightSpeed VCT 64 CT scanner was used for routine thyroid 
scanning. The tube voltage was 120 kV, and the tube current was 
210 mAs. The scanning range was from the skull base to the upper 
margin of the aortic arch. The layer thickness was 1.25 mm, and 
the layer spacing was 1.25 mm. The examinations were performed 
in helical mode, and the helical pitch was 0.984:1 for the CT image. 
The gantry rotation time was 0.5 seconds for CT scanners. CT im-
ages were exported in DICOM format.
CT images of all included patients were exported in DICOM format 
to the Darwin Intelligent Scientific Research Platform. Two radiolo-
gists drew regions of interest (ROIs) (Fig. 1) manually at the edge 
of the nodule on a layer-by-layer basis on the axial images. They 
were also involved in the diagnosis of thyroid nodules. Radiolo-
gist A (7 years of experience in diagnostic radiology) sketched CT 
images twice over 2 weeks, while Radiologist B (26 years of experi-
ence in diagnostic radiology) performed only 1 feature extraction. 
Inter- and intra-class correlation coefficients (ICCs) were used to 
assess the inter- and intra-observer agreement of feature extraction, 
with an ICC greater than 0.75 indicating good agreement. The 
ROIs drawn by Radiologist A were entered into the CNN models 
for subsequent analysis.
A total of 986 cases were marked ROI and were randomly divided 
into 788 cases of a training-verification set. The test set included 198 
cases. For the ROI of the training set, random horizontal flipping 
and random rotation were performed as image augmentation. All 
ROI images were adjusted to a window width of 350 and a window 
level of 40 and scaled to a size of 224 × 224 × 3 (Xception network 
of 299 × 299 × 3), normalized to pixels between 0 and 1.

Model training-validation and testing, ensemble 
model 
Figure 2 shows the basic architecture of CNN. Five deep learning 
CNN models were selected to differentiate benign and malignant 
thyroid nodules based on preoperative CT images. The CNN models 
used were ResNet50, DenseNet121, DenseNet169, SE-ResNeXt50, 
and Xception. All networks adopted the pre-trained models on 
ImageNet. ImageNet  is an image database organized according 
to the WordNet hierarchy, in which each node of the hierarchy is 
depicted by hundreds or thousands of images. ImageNet is larger in 
scale and diversity than the other image classification datasets [21]. 
All models performed 5-fold cross-validation on the training-
validation set. The maximum number of iterations in training was 
50. The batch size was 4, the optimizer was Adam, the initial learn-
ing rate was 5e-5, and the learning rate decayed to the 9th power 
of the number of iterations. For the 5-fold cross-validation of each 
model, the model with the highest AUC on the validation set was 
selected and tested on the test set.

CT features, such as calcification, might be neglected 
in visual inspection. 

Fine-needle aspiration (FNA) biopsy has been con-
sidered the gold standard for the definitive diagnosis of 
benign and malignant thyroid nodules. However, the 
average diagnostic accuracy is approximately 83%, and 
there is a proportion of false positives. Patients are at 
risk of secondary biopsy due to limitations in specimen 
collection and operator experience [15].

Deep convolutional neural networks (CNNs), 
an emerging form of computer-aided diagnostic 
(CAD) analysis, are used to form quantitative deci-
sions by automatically extracting features and through 
the supervised learning of large amounts of data. 
A growing number of studies have shown that deep 
learning algorithms have been widely used to solve 
detection/classification problems, potentially replacing 
conventional handcrafted methodologies [16–19]. Ko 
et al. [20] showed that CNNs and experienced radi-
ologists had comparable diagnostic performances to 
differentiating thyroid malignancy on US. However, 
to our knowledge, CNN models for the differential 
diagnosis of benign and malignant thyroid nodules on 
CT images are infrequent. In this study, we designed 
5 CNN models and an ensemble model to differenti-
ate malignant and benign thyroid nodules on CT and 
compared the diagnostic performance of CNN models 
with that of radiologists.

Material and methods

Patient data
The institutional review board approved the protocol of this retro-
spective study. A total of 1527 patients with thyroid nodules were 
retrospectively enrolled between July 2017 and December 2019 from 
Northern Jiangsu People’s Hospital. The inclusion criteria were as 
follows: (1) no previous surgical treatment and FNA biopsy, (2) 
conventional CT examination before the biopsy, and (3) CT image 
quality meets the diagnostic requirements and calibration analysis. 
The exclusion criterion was histology with ambiguous diagnostic 
findings. Demographic information, imaging examination, and clini-
cal baseline characteristics were collected from the hospital PACS 
(version 4.0.11) workstation. After the screening, we successfully 

Figure 1. Regions of interest (ROIs). Figure A shows benign nodules, and Figure B shows malignant nodules. The regions in the red 
circle are the regions of interest
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We selected 3 models with better diagnostic performance, inte-
grated the predicted results of each model’s folds on the test set, 
and finally obtained the ensemble model of the 3 models. 

Performance evaluation
The performances of the 5 CNN models and the ensemble model 
were measured by the area under the receiver operating characteris-
tic curve (ROC), sensitivity, specificity, accuracy, positive predictive 
value (PPV), and negative predictive value (NPV) of the test dataset. 
Comparison between CNN models and radiologists
Two radiologists, who were blind to the FNA histological results, 
diagnosed each thyroid nodule as benign or malignant on the CT 
images of the test set. Their diagnostic performances were com-
pared with the 5 CNN models and the ensemble model. 
Attention heat map and lesion detection
In order to understand how CNN interprets CT images for thyroid 
nodule classification, we extracted the last convolution layer before 
classification of the fully connected layer of the trained model, used 
a Class Activation Map (CAM) [22] to calculate the gradients of 
this layer, and visualized it as a heat map. Then the heat map was 
overlaid on the original CT image to show the region of interest 
for the CNN algorithm. In the view of CNN, red and yellow pixel 
areas correlated more strongly with nodule classification.

Statistical analysis
Based on the prediction results, the sensitivity, specificity, accuracy, 
PPV, and NPV were calculated to evaluate the diagnostic perfor-
mances of the different CNN models and radiologists on benign 
and malignant thyroid nodules. At the same time, the AUC and the 
95% confidence interval (CI) were calculated. Additionally, AUCs 
were compared between each other using DeLong’s method. For 
subject-based comparisons of demographics, the independent 
2-sample T-test and chi-square test were used. For nodule-based 
comparison of nodule characteristics, the generalized estimating 
equations method was used. p < 0.05 was considered statistically 
significant. All statistical analyses were conducted using SPSS soft-
ware (version 19.0, IBM Corporation, Armonk, NY) and MedCalc 
for Windows (version 15.0, MedCalc Software, Ostend, Belgium). 

Results

Patient characteristics
There were 541 (53.2%) malignant nodules and 445 
(46.8%) benign nodules. These nodules were randomly 
split into a training-validation set (359 benign and 
429 malignant nodules) and a test set (86 benign and 

112 malignant nodules). The histopathological results 
are listed in Table 1. A summary of demographics 
features can be seen in Table 2. The mean size of the 
nodules, the female-to-male ratio, and the age of the 
patients were not significantly different between the 
benign and malignant thyroid nodules (p > 0.05). 

Diagnostic performances of 5 CNN models  
for malignant and benign thyroid nodules,  
and pairwise comparisons  
between the 5 CNN models
Table 3 presents the diagnostic performances of the 5 
CNN models of ResNet50, DenseNet121, DenseNet169, 
SE-ResNeXt50, and Xception in differentiating malig-
nant and benign thyroid nodules. The AUCs of the 
5 models on the test set were 0.945 (95% CI: 0.90–0.97), 
0.943 (95% CI: 0.90–0.97), 0.936 (95% CI: 0.89–0.97), 
0.920 (95% CI: 0.87–0.95), and 0.901 (95% CI: 0.85–0.94), 
respectively. ROC curves are shown in Figure 2. The 
results of pairwise comparisons between all models are 
shown in Table 4. There were significant AUC differences 
between ResNet50 and SE-ResNeXt50 (0.945 vs. 0.920; 

Figure 2. Basic architecture of convolutional neural network (CNN) for image classification problems

Table 1. Histopathological results of surgically resected 
nodules 

Histopathologic result Number
Be
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 =
 4

45
)

Nodular goitre 247

Follicular thyroid adenoma 161

Subacute thyroiditis 25

Hashimoto’s thyroiditis 12

M
al

ig
na

nt
  

(n
 =

 5
41

)

Papillary thyroid carcinoma 499

Medullary thyroid carcinoma 19

Follicular carcinoma 12

Anaplastic carcinoma 6

Primary thyroid lymphoma 5
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Table 2. Summary of demographic features

Features Benign nodules 
(n = 445)

Malignant nodules 
(n = 541)    p value 

No. of patients 408 472

Age, years, x ± s 50.6 ± 12.3 44.3 ± 12.6 < 0.001

Sex (%) 0.358 

Male 118 (29.0%) 150 (31.7%)

Female 290 (71.0%) 322 (68.3%)

Size [cm] 2.06 ± 1.40 1.81 ± 1.20 < 0.001

≤ 0.5 49 (11.0%) 90 (16.9%)

0.5-2.0 134 (30.1%) 173 (32.1%)

≥ 2.0 262 (58.9%) 278 (51.0%)

Table 3. The diagnostic performances of 5 convolutional neural network (CNN) models, an ensemble model, and 2 radiologists 
on the test set

AUC Accuracy Sensitivity Specificity PPV NPV

ResNet50 0.945 0.874 0.837 0.911 0.877 0.872

DenseNet121 0.943 0.869 0.884 0.866 0.833 0.898

DenseNet169 0.936 0.859 0.837 0.884 0.845 0.868

SE-ResNeXt50 0.920 0.859 0.872 0.857 0.822 0.889

Xception 0.901 0.808 0.872 0.768 0.740 0.878

ensemble model 0.947 0.859 0.919 0.821 0.796 0.920

Radiologist A 0.587 0.586 0.593 0.580 0.520 0.644

Radiologist B 0.754 0.748 0.802 0.705 0.677 0.705

PPV — positive predictive value; NPV — negative predictive value, ensemble model: ResNet50, DenseNet121, and DenseNet169; Radiologist A — inexperienced 
radiologists; Radiologist B — experienced radiologists

Table 4. Comparisons of diagnostic performances between 5 convolutional neural network (CNN) models and an ensemble 
model for malignant and benign thyroid nodules

AUC Accuracy Sensitivity Specificity PPV NPV

RN50 vs. DN121 0.839 0.881 0.219 0.125 0.425 0.537

RN50 vs. DN169 0.234 0.658 0.453 0.453 0.562 0.939

RN50 vs. SE-RN50 0.035* 0.685 0.508 0.109 0.323 0.693

RN50 vs. Xception 0.005* 0.074 0.581 0.000* 0.022* 0.899

RN50 vs. IM 0.680 0.685 0.016* 0.006* 0.151 0.250

DN121 vs. DN169 0.365 0.770 0.118 0.727 0.831 0.491

DN121 vs. SE-RN50 0.051 0.770 1.000 1.000 0.844 0.825

DN121 vs. Xception 0.002* 0.101 0.250 0.007* 0.118 0.693

DN121 vs. IM 0.489 0.770 0.250 0.063 0.510 0.585

DN169 vs. SE-RN50 0.155 1.000 0.453 0.453 0.684 0.641

DN169 vs. Xception 0.015* 0.178 0.453 0.002* 0.082 0.842

DN169 vs. IM 0.007* 1.000 0.016* 0.016* 0.389 0.224

SE-RN50 vs. Xception 0.173 0.178 1.000 0.021* 0.173 0.800

SE-RN50 vs. IM 0.009* 1.000 0.219 0.344 0.674 0.447

Xception vs. IM 0.001* 0.178 0.289 0.238 0.352 0.322

PPV — positive predictive value; NPV — negative predictive value; RN50 — ResNet50; DN121 — DenseNet121; DN169 — DenseNet169; SE-RN50 — SE-ResNeXt50, 
IM — ensemble model; * represent statistically significant (p < 0.05) 
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p = 0.035), and there were significant AUC differences 
among ResNet50, DenseNet121, DenseNet169, and 
Xception (0.945, 0.943, 0.936, vs. 0.901, respectively; 
p = 0.005, 0.002, and 0.015, respectively). In terms of 
sensitivity, pairwise comparisons between all models 
showed no statistically significant differences (p > 0.05), 
but DenseNet121 had the highest sensitivity. For specific-
ity, there were significant differences among ResNet50, 
DenseNet121, DenseNet169, SE-ResNeXt50, and Xcep-
tion (0.911, 0.866, 0.884, 0.857 vs. 0.768, respectively; 
p = 0.000, 0.007, 0.002, and 0.021, respectively). For PPV, 
there were significant differences between ResNet50 and 
Xception (0.877 vs. 0.740; p = 0.022). Among the 5 CNN 
models, ResNet50, DenseNet121, and DenseNet169 
exhibited better diagnostic performances.

Comparisons of diagnostic performances between 
the ensemble model and CNN models  
for malignant and benign thyroid nodules
The prediction of 3 models (Resnet50, Densenet121, and 
Desnent169) with better effect were further integrated. 
In the test set, the AUC was 0.947 (95% CI: 0.906–0.974), 
sensitivity was 0.919, specificity was 0.821, accuracy was 
0.859, PPV was 0.798, and NPV was 0.920 (Tab. 3). ROC 
curves are shown in Figure 3. The comparison results 
between the ensemble model and the 5 models are 
shown in Table 4. In terms of AUC, there were signifi-
cant differences among DenseNet169, SE-ResNeXt50, 
Xception, and the ensemble model (0.936, 0.920, 0.901, 
vs. 0.947, respectively; p = 0.007, 0.009, and 0.001, 

respectively). For sensitivity, there were significant 
differences among ResNet50, DenseNet169, and the 
ensemble model (0.837, 0.837, vs. 0.919, respectively; 
p = 0.016, and 0.016). For specificity, there were signifi-
cant differences among Resnet50, DenseNet169, and 
the ensemble model (0.911, 0.884, vs. 0.821, respectively; 
p = 0.006, and 0.016, respectively). For accuracy, PPV, 
and NPV, there were no significant differences between 
the 5 models and the ensemble model (p > 0.05). The 
ensemble model had the highest AUC value, although it 
was not statistically significant compared with Resnet50 
and Densenet121.

Comparisons of diagnostic performances between 
the 2 radiologists and CNN models for malignant 
and benign thyroid nodules
The inter- and intra-class correlation coefficients (ICCs) 
were 0.878 and 0.961, respectively, indicating good 
agreement. The diagnosis results of the 2 radiologists 
for the CT images from the test set are shown in Table 3. 
Unsurprisingly, the experienced radiologist (Radiologist 
B) showed significantly better results than the inexperi-
enced radiologist (Radiologist A) (Tab. 5, p > 0.05). The 
comparison results of the 5 models and ensemble model 
with Radiologist A and Radiologist B are shown in Table 
5. ROC curves are shown in Figure 4. The 5 models 
and the integrated model showed significantly better 
results than Radiologist A in the diagnosis of benign and 
malignant thyroid nodules (p > 0.05). In terms of AUC, 
there were significant differences among the 5 models, 
the ensemble model, and Radiologist B (p < 0.05). For 
specificity, there were significant differences among 
Resnet50, Densenet121, DenseNet169, SE-ResNeXt50, 
and Radiologist B (0.911, 0.866, 0.884, 0.857 vs. 0.705, re-
spectively; p = 0.000, 0.005, 0.001, and 0.009, respectively). 
For accuracy, there were significant differences among 
Resnet50, Densenet121, DenseNet169, SE-ResNeXt50, 
the ensemble model, and Radiologist B (0.874, 0.869, 
0.859, 0.859, 0.859 vs. 0.7475, respectively; p = 0.001, 
0.002, 0.005, 0.005, and 0.005, respectively). For PPV, 
there were significant differences between the ensemble 
model and Radiologist B (0.920 vs. 0.705; p = 0.042). For 
NPV, there were significant differences among Resnet50, 
Densenet121, DenseNet169, SE-ResNeXt50, and Radiolo-
gist B (0.877, 0.833, 0.845, 0.822 vs. 0.677, respectively; 
p = 0.002, 0.012, 0.008, and 0.021, respectively). In con-
clusion, the 5 CNN models and the ensemble model 
performed better than the radiologists. 

Attention heat map and lesion detection
We generated an attention heat map by a deep learning 
visualization technique (Fig. 5). By analysing the heat 
map images, we learned that the CNN model focuses 
not only on the internal regions of the nodule but also 

Figure 3. Receiver operating characteristic curves. The receiver 
operating characteristic curves of the 5 convolutional neural 
network (CNN) models and the ensemble model on the test 
set. Different CNN models are represented by 6 dotted lines, 
respectively.
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the external parenchyma adjacent to the nodule bound-
ary. Both benign and malignant nodules focus on the 
external parenchyma adjacent to the nodule boundary. 
However, unlike benign nodules, malignant nodules 
also focus on the internal areas.

Discussion

In this study, 5 models and an ensemble model showed 
favourable diagnostic performances for differentiating 

malignant and benign thyroid nodules on CT, demon-
strating AUCs of 0.901–0.947, sensitivities of 0.837–0.919, 
specificities of 0.768–0.911, accuracies of 0.808–0.874, 
PPVs of 0.740–0.877, and NPVs of 0.868–0.920 in the 
test set. Among the 5 models, the AUC of ResNet50, 
DenseNet121, and DenseNet169 was significantly 
better than that of Xception. In this study, we selected 
3 models with better AUC for integrating. The AUC 
of the ensemble model was the best of all the models 
despite no statistical significance with ResNet50 and 
DenseNet121. The sensitivity of the ensemble model 
was noticeably better than ResNet50, but its specificity 
was not as good as ResNet50. 

Compared with the 2 radiologists, all the data of 
the 5 models and the ensemble model were noticeably 
better than the inexperienced radiologist (Radiologist 
A). The AUC of the 5 models and the ensemble model 
was significantly better than the experienced radiologist 
(Radiologist B), and the specificity and PPV of ResNet50, 
DenseNet121, DenseNet169, and SE-ResNeXt50 were 
significantly better than Radiologist B. In terms of ac-
curacy, the models, except for Xception, all performed 
better than Radiologist B. The NPV of the ensemble 
model was significantly better than Radiologist B. The 
results showed that the diagnostic performances of 
the 5 models and the ensemble model were noticeably 
better than that of Radiologist A and somewhat better 
than that of Radiologist B.

This result is especially important for China. Due 
to the large gap between eastern and western China 
and the varying levels of diagnosis and treatment in 
primary and secondary hospitals, the 5-year survival 

Table 5. Comparisons of diagnostic performances between 2 radiologists and convolutional neural network (CNN) models 
for malignant and benign thyroid nodules

AUC Accuracy Sensitivity Specificity PPV NPV

RN50 vs. Radiologist A < 0.001* < 0.001* 0.001* < 0.001* < 0.001* < 0.001*

DN121 vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*

DN169 vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*

SE-RN50 vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*

Xception vs. Radiologist A < 0.001* < 0.001* < 0.001* 0.002* < 0.001* < 0.001*

IM vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*

RN50 vs. Radiologist B < 0.001* 0.001* 0.839 < 0.001* 0.002* 0.321

DN121 vs. Radiologist B < 0.001* 0.002* 0.263 0.005* 0.012* 0.119

DN169 vs. Radiologist B < 0.001* 0.005* 0.824 0.001* 0.008* 0.361

SE-RN50 vs. Radiologist B < 0.001* 0.005* 0.359 0.009* 0.021* 0.125

Xception vs. Radiologist B < 0.001* 0.147 0.359 0.360 0.321 0.286

IM vs. Radiologist B < 0.001* 0.005* 0.064 0.053 0.056 0.042*

Radiologist A vs. Radiologist B < 0.001* 0.001* < 0.001* 0.001* 0.624 0.006*

DN169 — DenseNet169; SE-RN50 — SE-ResNeXt50; IM — ensemble model; Radiologist A — inexperienced radiologists; Radiologist B — experienced radiologists; 
*represent statistically significant (p < 0.05)

Figure 4. Receiver operating characteristic curves. The receiver 
operating characteristic curves of 2 radiologists and the 2 solid 
lines, respectively, represent the radiologists
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rate of thyroid cancer is only 67.5%, compared with 
98.2% and 77.6% in the USA and European countries, 
respectively [23, 24]. In this study, 5 CNN models and 
an integrated model performed better diagnostically 
than 2 radiologists and showed good application value.

Previous researchers have applied manual image 
feature extraction methods to the classification of 
thyroid nodules. Chang et al. [25] extracted 78 texture 
features from US images of thyroid nodules and created 
a Support Vector Machines (SVMs) model to classify 
the input images into several categories such as nod-
ules and non-nodules, follicles, and fibrosis. However, 
handcrafted image feature extractors are designed and 
selected by the author. They are limited by the author’s 
expertise and can only reflect limited aspects of the 
problem. Therefore, their classification performance 
is restricted.

Deep learning, a branch of artificial intelligence, 
is considered a state of the art image classification 
technique, which analyses the relationships between 
existing data points. It has promising applications in 
clinical diagnosis and risk stratification [26–28]. Un-
like handcrafted feature extraction methods, deep 
learning-based methods, such as CNN, can automati-
cally learn the useful texture features for detection/clas-
sification problems, thus yielding better results. With 
the rapid development of graphic processing units 
(GPUs), algorithms, and the availability of data, deep 
learning-based techniques have been widely used to 
solve image classification problems recently [29, 30].

In a study by Zhu et al. [30], the researchers 
fine-tuned the residual network based on ResNet18 
and obtained good classification results using a public 
dataset. Similar to the above research, Chi et al. [31] 
also used the CNN network to classify benign and 
malignant thyroid nodules on US images. Another 
study used detection networks such as the multiscale 
single-shot detection network (multiscale SSD) or 
Yolo network to differentiate the thyroid nodules by 
detection-and-classification [32]. The results of the 

first step of the detection were used to classify the 
nodules. The method was characterized by the removal 
of noise and non-nodular regions before performing 
the classification. However, the method is difficult to 
use to find small nodules, and the network structure is 
complex. In our study, we included all sizes of nodules 
and obtained better results.

Compared with the above research, this research has 
certain advantages. First, we trained a total of 5 models, 
while the above research only used a single model. 
Second, we not only analysed the diagnostic perfor-
mance of each model for benign and malignant thyroid 
nodules but also made pairwise comparisons between 
all models. All 5 models achieved good results, among 
which ResNet50, DenseNet121, and DenseNet169 had 
better diagnostic performances. Finally, this study also 
selected 3 models with better diagnostic performances 
for the ensemble model. The advantage of an ensemble 
model is that it can collect each CNN model’s archi-
tecture and learn characteristics of the input image 
features, resulting in richer information than can be 
obtained using individual models. The ensemble model 
had the highest AUC, sensitivity, and NPV values and 
improved diagnostic performance, among which the 
improvement in terms of sensitivity is favourable for 
clinical screening of malignant nodules. Nguyen et al. 
[33] integrated the classification results of 2 trained 
network models, ResNet50 and Inception, to investigate 
whether the diagnostic performance of the ensemble 
network for thyroid nodules was better than that of the 
individual models. This is similar to the present study. 
After observing its analytical pattern on the heatmaps, 
we recognized that the internal area was vital for clas-
sification. This deep learning visualization technique 
may help radiologists interpret thyroid CT images 
more effectively.

This study has several limitations. First, approxi-
mately 92.2% of the malignant thyroid nodules in this 
study were papillary thyroid carcinoma, which may 
cause the CT presentation of malignant thyroid nodules 

Figure 5. Attention heatmap. A, B. Heatmaps based on 2 benign thyroid nodule images; C, D. Heatmaps based on 2 malignant thyroid 
nodule images

A B

C D
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to be too homogeneous. Follow-up studies are needed 
to increase the number of various types of malignant 
thyroid nodules. Second, this study was based on a sin-
gle centre and had a small total sample size, requiring 
an external validation study and an expanded sample 
size to validate its diagnostic performance and gener-
alizability. Finally, the sketch of regions of interest in 
this study was a manual sketch, which is not automatic 
enough and has limitations in clinical application. In 
the next stage, it will be further improved to carry out 
an automatic or semi-automatic sketch.

Conclusions

In conclusion, 5 models and the ensemble model 
performed better than radiologists in distinguishing 
malignant thyroid nodules from benign nodules on CT. 
Compared with the single model, the diagnostic perfor-
mance of the ensemble model improved and showed 
good potential. Therefore, CNN can be employed as 
a useful method for distinguishing malignant thyroid 
nodules from benign ones.
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