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Abstract 

Introduction: We designed 5 convolutional neural network (CNN) models and ensemble 

models to differentiate malignant and benign thyroid nodules on CT, and compared the 

diagnostic performance of CNN models with that of radiologists. 

mailto:shibb154@21cn.com


Material and methods: We retrospectively included CT images of 880 patients with 986 

thyroid nodules confirmed by surgical pathology between July 2017 and December 2019. 

Two radiologists retrospectively diagnosed benign and malignant thyroid nodules on CT 

images in a test set. Five CNNs (ResNet50, DenseNet121, DenseNet169, SE-ResNeXt50, 

and Xception) were trained-validated and tested using 788 and 198 thyroid nodule CT 

images, respectively. Then, we selected the 3 models with the best diagnostic performance 

on the test set for the model ensemble. We then compared the diagnostic performance of 2 

radiologists with 5 CNN models and the integrated model.  

Results: Of the 986 thyroid nodules, 541 were malignant, and 445 were benign. The area 

under the curves (AUCs) for diagnosing thyroid malignancy was 0.587–0.754 for 2 

radiologists. The AUCs for diagnosing thyroid malignancy for the 5 CNN models and 

ensemble model was 0.901–0.947. There were significant differences in AUC between the 

radiologists' models and the CNN models (p < 0.05). The ensemble model had the highest 

AUC value. 

Conclusions: Five CNN models and an ensemble model performed better than radiologists 

in distinguishing malignant thyroid nodules from benign nodules on CT. The diagnostic 

performance of the ensemble model improved and showed good potential. 

Key words: deep learning; convolutional neural network (CNN); thyroid nodule 

classification; computed tomography (CT) 

 

Introduction 

Thyroid nodules are a common disease in clinical practice. The incidence is about 65% 

in the general population, and most are benign [1]. However, in patients with thyroid 

nodules, approximately 10% of nodules tend toward malignancy [2], and the incidence of 

thyroid cancer is on the rise worldwide.  

Early diagnosis of thyroid nodules is essential for successful treatment. The 

development of imaging technology and image processing provides an objective basis for 



diagnosing thyroid nodules [3–5]. Currently, ultrasonography (US) is the first choice for 

the examination of thyroid nodules. However, US features of benign and malignant nodules 

show considerable overlap. In previous studies, the sensitivity and specificity of diagnosing 

thyroid cancer with US have shown some variation, ranging from 27% to 63% and 78.0% 

to 96.6%, respectively [6–8]. This is probably due to different examiners, different US 

instruments, and different definitions of US features. US remains highly subjective and 

depends on clinical experience. Magnetic resonance imaging (MRI) is often used as a 

supplementary examination to evaluate thyroid disease. Positron emission tomography 

(PET) plays a role in evaluating thyroid cancers with dedifferentiated tumours [9]. 

Computed tomography (CT) has unique advantages in the diagnosis of retrosternal goitres, 

malignant cases with suspicion of extracapsular extension [10, 11], and multiple punctate 

calcifications [12]. Also, CT scans can help to detect incidental thyroid cancers [13]. In 

clinical practice, visual examination of many CT images is a tedious and error-prone task 

for radiologists. The diagnosis of incidental thyroid nodules (ITNs) varies depending on 

the radiologist's experience, type of practice, and training [14]. Furthermore, some subtle 

CT features, such as calcification, might be neglected in visual inspection.  

Fine-needle aspiration (FNA) biopsy has been considered the gold standard for the 

definitive diagnosis of benign and malignant thyroid nodules. However, the average 

diagnostic accuracy is approximately 83%, and there is a proportion of false positives. 

Patients are at risk of secondary biopsy due to limitations in specimen collection and 

operator experience [15]. 

Deep convolutional neural networks (CNNs), an emerging form of computer-aided 

diagnostic (CAD) analysis, are used to form quantitative decisions by automatically 

extracting features and through the supervised learning of large amounts of data. A growing 

number of studies have shown that deep learning algorithms have been widely used to solve 

detection/classification problems, potentially replacing conventional handcrafted 

methodologies [16–19]. Ko et al. [20] showed that CNNs and experienced radiologists had 

comparable diagnostic performances to differentiating thyroid malignancy on US. 

However, to our knowledge, CNN models for the differential diagnosis of benign and 



malignant thyroid nodules on CT images are infrequent. In this study, we designed 5 CNN 

models and an ensemble model to differentiate malignant and benign thyroid nodules on 

CT and compared the diagnostic performance of CNN models with that of radiologists. 

Material and methods 

Patient data 

The institutional review board approved the protocol of this retrospective study. A 

total of 1527 patients with thyroid nodules were retrospectively enrolled between July 2017 

and December 2019 from Northern Jiangsu People’s Hospital. The inclusion criteria were 

as follows: (1) no previous surgical treatment and FNA biopsy, (2) conventional CT 

examination before the biopsy, and (3) CT image quality meets the diagnostic requirements 

and calibration analysis. The exclusion criterion was histology with ambiguous diagnostic 

findings. Demographic information, imaging examination, and clinical baseline 

characteristics were collected from the hospital PACS (version 4.0.11) workstation. After 

the screening, we successfully enrolled 880 patients with CT images of 986 nodules. These 

nodules were then randomly split into training-validation and test sets.  

 

Image acquisition and preprocessing 

A GE LightSpeed VCT 64 CT scanner was used for routine thyroid scanning. The 

tube voltage was 120 kV, and the tube current was 210 mAs. The scanning range was from 

the skull base to the upper margin of the aortic arch. The layer thickness was 1.25 mm, and 

the layer spacing was 1.25 mm. The examinations were performed in helical mode, and the 

helical pitch was 0.984:1 for the CT image. The gantry rotation time was 0.5 seconds for 

CT scanners. CT images were exported in DICOM format. 

CT images of all included patients were exported in DICOM format to the Darwin 

Intelligent Scientific Research Platform. Two radiologists drew regions of interest (ROIs) 

(Fig. 1) manually at the edge of the nodule on a layer-by-layer basis on the axial images. 

They were also involved in the diagnosis of thyroid nodules. Radiologist A (7 years of 



experience in diagnostic radiology) sketched CT images twice over 2 weeks, while 

Radiologist B (26 years of experience in diagnostic radiology) performed only 1 feature 

extraction. Inter- and intra-class correlation coefficients (ICCs) were used to assess the 

inter- and intra-observer agreement of feature extraction, with an ICC greater than 0.75 

indicating good agreement. The ROIs drawn by Radiologist A were entered into the CNN 

models for subsequent analysis. 

A total of 986 cases were marked ROI and were randomly divided into 788 cases of 

a training-verification set. The test set included 198 cases. For the ROI of the training set, 

random horizontal flipping and random rotation were performed as image augmentation. 

All ROI images were adjusted to a window width of 350 and a window level of 40 and 

scaled to a size of 224 × 224 × 3 (Xception network of 299 × 299 × 3), normalized to pixels 

between 0 and 1. 

 

Model training-validation and testing, ensemble model  

Figure 2 shows the basic architecture of CNN. Five deep learning CNN models were 

selected to differentiate benign and malignant thyroid nodules based on preoperative CT 

images. The CNN models used were ResNet50, DenseNet121, DenseNet169, SE-

ResNeXt50, and Xception. All networks adopted the pre-trained models on ImageNet. 

ImageNet is an image database organized according to the WordNet hierarchy, in which 

each node of the hierarchy is depicted by hundreds or thousands of images. ImageNet is 

larger in scale and diversity than the other image classification datasets [21].  

All models performed 5-fold cross-validation on the training-validation set. The 

maximum number of iterations in training was 50. The batch size was 4, the optimizer was 

Adam, the initial learning rate was 5e-5, and the learning rate decayed to the 9th power of 

the number of iterations. For the 5-fold cross-validation of each model, the model with the 

highest AUC on the validation set was selected and tested on the test set. 

http://wordnet.princeton.edu/


We selected 3 models with better diagnostic performance, integrated the predicted 

results of each model's folds on the test set, and finally obtained the ensemble model of the 

3 models.  

 

Performance evaluation 

The performances of the 5 CNN models and the ensemble model were measured by 

the area under the receiver operating characteristic curve (ROC), sensitivity, specificity, 

accuracy, positive predictive value (PPV), and negative predictive value (NPV) of the test 

dataset.  

Comparison between CNN models and radiologists 

Two radiologists, who were blind to the FNA histological results, diagnosed each 

thyroid nodule as benign or malignant on the CT images of the test set. Their diagnostic 

performances were compared with the 5 CNN models and the ensemble model.  

Attention heat map and lesion detection 

In order to understand how CNN interprets CT images for thyroid nodule 

classification, we extracted the last convolution layer before classification of the fully 

connected layer of the trained model, used a Class Activation Map (CAM) [22] to calculate 

the gradients of this layer, and visualized it as a heat map. Then the heat map was overlaid 

on the original CT image to show the region of interest for the CNN algorithm. In the view 

of CNN, red and yellow pixel areas correlated more strongly with nodule classification. 

 

Statistical analysis 

Based on the prediction results, the sensitivity, specificity, accuracy, PPV, and NPV 

were calculated to evaluate the diagnostic performances of the different CNN models and 

radiologists on benign and malignant thyroid nodules. At the same time, the AUC and the 

95% confidence interval (CI) were calculated. Additionally, AUCs were compared 



between each other using DeLong's method. For subject-based comparisons of 

demographics, the independent 2-sample T-test and chi-square test were used. For nodule-

based comparison of nodule characteristics, the generalized estimating equations method 

was used. p < 0.05 was considered statistically significant. All statistical analyses were 

conducted using SPSS software (version 19.0, IBM Corporation, Armonk, NY) and 

MedCalc for Windows (version 15.0, MedCalc Software, Ostend, Belgium).  

 

Results 

Patient characteristics 

There were 541 (53.2%) malignant nodules and 445 (46.8%) benign nodules. These 

nodules were randomly split into a training-validation set (359 benign and 429 malignant 

nodules) and a test set (86 benign and 112 malignant nodules). The histopathological 

results are listed in Table 1. A summary of demographics features can be seen in Table 2. 

The mean size of the nodules, the female-to-male ratio, and the age of the patients were 

not significantly different between the benign and malignant thyroid nodules (p > 0.05).  

 

Diagnostic performances of 5 CNN models for malignant and benign thyroid nodules, 

and pairwise comparisons between the 5 CNN models 

Table 3 presents the diagnostic performances of the 5 CNN models of ResNet50, 

DenseNet121, DenseNet169, SE-ResNeXt50, and Xception in differentiating malignant 

and benign thyroid nodules. The AUCs of the 5 models on the test set were 0.945 (95% CI: 

0.90–0.97), 0.943 (95% CI: 0.90–0.97), 0.936 (95% CI: 0.89–0.97), 0.920 (95% CI: 0.87–

0.95), and 0.901 (95% CI: 0.85–0.94), respectively. ROC curves are shown in Figure 2. 

The results of pairwise comparisons between all models are shown in Table 4. There were 

significant AUC differences between ResNet50 and SE-ResNeXt50 (0.945 vs. 0.920; p = 

0.035), and there were significant AUC differences among ResNet50, DenseNet121, 

DenseNet169, and Xception (0.945, 0.943, 0.936, vs. 0.901, respectively; p = 0.005, 0.002, 



and 0.015, respectively). In terms of sensitivity, pairwise comparisons between all models 

showed no statistically significant differences (p > 0.05), but DenseNet121 had the highest 

sensitivity. For specificity, there were significant differences among ResNet50, 

DenseNet121, DenseNet169, SE-ResNeXt50, and Xception (0.911, 0.866, 0.884, 0.857 vs. 

0.768, respectively; p = 0.000, 0.007, 0.002, and 0.021, respectively). For PPV, there were 

significant differences between ResNet50 and Xception (0.877 vs. 0.740; p = 0.022). 

Among the 5 CNN models, ResNet50, DenseNet121, and DenseNet169 exhibited better 

diagnostic performances. 

 

Comparisons of diagnostic performances between the ensemble model and CNN models 

for malignant and benign thyroid nodules 

The prediction of 3 models (Resnet50, Densenet121, and Desnent169) with better 

effect were further integrated. In the test set, the AUC was 0.947 (95% CI: 0.906–0.974), 

sensitivity was 0.919, specificity was 0.821, accuracy was 0.859, PPV was 0.798, and NPV 

was 0.920 (Tab. 3). ROC curves are shown in Figure 3. The comparison results between 

the ensemble model and the 5 models are shown in Table 4. In terms of AUC, there were 

significant differences among DenseNet169, SE-ResNeXt50, Xception, and the ensemble 

model (0.936, 0.920, 0.901, vs. 0.947, respectively; p = 0.007, 0.009, and 0.001, 

respectively). For sensitivity, there were significant differences among ResNet50, 

DenseNet169, and the ensemble model (0.837, 0.837, vs. 0.919, respectively; p = 0.016, 

and 0.016). For specificity, there were significant differences among Resnet50, 

DenseNet169, and the ensemble model (0.911, 0.884, vs. 0.821, respectively; p = 0.006, 

and 0.016, respectively). For accuracy, PPV, and NPV, there were no significant 

differences between the 5 models and the ensemble model (p > 0.05). The ensemble model 

had the highest AUC value, although it was not statistically significant compared with 

Resnet50 and Densenet121. 

 



Comparisons of diagnostic performances between the 2 radiologists and CNN models 

for malignant and benign thyroid nodules 

The inter- and intra-class correlation coefficients (ICCs) were 0.878 and 0.961, 

respectively, indicating good agreement. The diagnosis results of the 2 radiologists for the 

CT images from the test set are shown in Table 3. Unsurprisingly, the experienced 

radiologist (Radiologist B) showed significantly better results than the inexperienced 

radiologist (Radiologist A) (Tab. 5, p > 0.05). The comparison results of the 5 models and 

ensemble model with Radiologist A and Radiologist B are shown in Table 5. ROC curves 

are shown in Figure 4. The 5 models and the integrated model showed significantly better 

results than Radiologist A in the diagnosis of benign and malignant thyroid nodules (p > 

0.05). In terms of AUC, there were significant differences among the 5 models, the 

ensemble model, and Radiologist B (p < 0.05). For specificity, there were significant 

differences among Resnet50, Densenet121, DenseNet169, SE-ResNeXt50, and 

Radiologist B (0.911, 0.866, 0.884, 0.857 vs. 0.705, respectively; p = 0.000, 0.005, 0.001, 

and 0.009, respectively). For accuracy, there were significant differences among Resnet50, 

Densenet121, DenseNet169, SE-ResNeXt50, the ensemble model, and Radiologist B 

(0.874, 0.869, 0.859, 0.859, 0.859 vs. 0.7475, respectively; p = 0.001, 0.002, 0.005, 0.005, 

and 0.005, respectively). For PPV, there were significant differences between the ensemble 

model and Radiologist B (0.920 vs. 0.705; p = 0.042). For NPV, there were significant 

differences among Resnet50, Densenet121, DenseNet169, SE-ResNeXt50, and 

Radiologist B (0.877, 0.833, 0.845, 0.822 vs. 0.677, respectively; p = 0.002, 0.012, 0.008, 

and 0.021, respectively). In conclusion, the 5 CNN models and the ensemble model 

performed better than the radiologists.  

 

Attention heat map and lesion detection 

We generated an attention heat map by a deep learning visualization technique (Fig. 

5). By analysing the heat map images, we learned that the CNN model focuses not only on 

the internal regions of the nodule but also the external parenchyma adjacent to the nodule 



boundary. Both benign and malignant nodules focus on the external parenchyma adjacent 

to the nodule boundary. However, unlike benign nodules, malignant nodules also focus on 

the internal areas. 

 

Discussion 

In this study, 5 models and an ensemble model showed favourable diagnostic 

performances for differentiating malignant and benign thyroid nodules on CT, 

demonstrating AUCs of 0.901–0.947, sensitivities of 0.837–0.919, specificities of 0.768–

0.911, accuracies of 0.808–0.874, PPVs of 0.740–0.877, and NPVs of 0.868–0.920 in the 

test set. Among the 5 models, the AUC of ResNet50, DenseNet121, and DenseNet169 was 

significantly better than that of Xception. In this study, we selected 3 models with better 

AUC for integrating. The AUC of the ensemble model was the best of all the models 

despite no statistical significance with ResNet50 and DenseNet121. The sensitivity of the 

ensemble model was noticeably better than ResNet50, but its specificity was not as good 

as ResNet50.  

Compared with the 2 radiologists, all the data of the 5 models and the ensemble model 

were noticeably better than the inexperienced radiologist (Radiologist A). The AUC of the 

5 models and the ensemble model was significantly better than the experienced radiologist 

(Radiologist B), and the specificity and PPV of ResNet50, DenseNet121, DenseNet169, 

and SE-ResNeXt50 were significantly better than Radiologist B. In terms of accuracy, the 

models, except for Xception, all performed better than Radiologist B. The NPV of the 

ensemble model was significantly better than Radiologist B. The results showed that the 

diagnostic performances of the 5 models and the ensemble model were noticeably better 

than that of Radiologist A and somewhat better than that of Radiologist B. 

This result is especially important for China. Due to the large gap between eastern and 

western China and the varying levels of diagnosis and treatment in primary and secondary 

hospitals, the 5-year survival rate of thyroid cancer is only 67.5%, compared with 98.2% 

and 77.6% in the USA and European countries, respectively [23, 24]. In this study, 5 CNN 



models and an integrated model performed better diagnostically than 2 radiologists and 

showed good application value. 

Previous researchers have applied manual image feature extraction methods to the 

classification of thyroid nodules. Chang et al. [25] extracted 78 texture features from US 

images of thyroid nodules and created a Support Vector Machines (SVMs) model to 

classify the input images into several categories such as nodules and non-nodules, follicles, 

and fibrosis. However, handcrafted image feature extractors are designed and selected by 

the author. They are limited by the author's expertise and can only reflect limited aspects 

of the problem. Therefore, their classification performance is restricted.  

Deep learning, a branch of artificial intelligence, is considered a state of the art image 

classification technique, which analyses the relationships between existing data points. It 

has promising applications in clinical diagnosis and risk stratification [26–28]. Unlike 

handcrafted feature extraction methods, deep learning-based methods, such as CNN, can 

automatically learn the useful texture features for detection/classification problems, thus 

yielding better results. With the rapid development of graphic processing units (GPUs), 

algorithms, and the availability of data, deep learning-based techniques have been widely 

used to solve image classification problems recently [29, 30]. 

In a study by Zhu et al. [30], the researchers fine-tuned the residual network based on 

ResNet18 and obtained good classification results using a public dataset. Similar to the 

above research, Chi et al. [31] also used the CNN network to classify benign and malignant 

thyroid nodules on US images. Another study used detection networks such as the 

multiscale single-shot detection network (multiscale SSD) or Yolo network to differentiate 

the thyroid nodules by detection-and-classification [32]. The results of the first step of the 

detection were used to classify the nodules. The method was characterized by the removal 

of noise and non-nodular regions before performing the classification. However, the 

method is difficult to use to find small nodules, and the network structure is complex. In 

our study, we included all sizes of nodules and obtained better results. 

Compared with the above research, this research has certain advantages. First, we 



trained a total of 5 models, while the above research only used a single model. Second, we 

not only analysed the diagnostic performance of each model for benign and malignant 

thyroid nodules but also made pairwise comparisons between all models. All 5 models 

achieved good results, among which ResNet50, DenseNet121, and DenseNet169 had better 

diagnostic performances. Finally, this study also selected 3 models with better diagnostic 

performances for the ensemble model. The advantage of an ensemble model is that it can 

collect each CNN model’s architecture and learn characteristics of the input image features, 

resulting in richer information than can be obtained using individual models. The ensemble 

model had the highest AUC, sensitivity, and NPV values and improved diagnostic 

performance, among which the improvement in terms of sensitivity is favourable for 

clinical screening of malignant nodules. Nguyen et al. [33] integrated the classification 

results of 2 trained network models, ResNet50 and Inception, to investigate whether the 

diagnostic performance of the ensemble network for thyroid nodules was better than that 

of the individual models. This is similar to the present study. After observing its analytical 

pattern on the heatmaps, we recognized that the internal area was vital for classification. 

This deep learning visualization technique may help radiologists interpret thyroid CT 

images more effectively. 

This study has several limitations. First, approximately 92.2% of the malignant 

thyroid nodules in this study were papillary thyroid carcinoma, which may cause the CT 

presentation of malignant thyroid nodules to be too homogeneous. Follow-up studies are 

needed to increase the number of various types of malignant thyroid nodules. Second, this 

study was based on a single centre and had a small total sample size, requiring an external 

validation study and an expanded sample size to validate its diagnostic performance and 

generalizability. Finally, the sketch of regions of interest in this study was a manual sketch, 

which is not automatic enough and has limitations in clinical application. In the next stage, 

it will be further improved to carry out an automatic or semi-automatic sketch. 

 

Conclusions 



In conclusion, 5 models and the ensemble model performed better than radiologists in 

distinguishing malignant thyroid nodules from benign nodules on CT. Compared with the 

single model, the diagnostic performance of the ensemble model improved and showed 

good potential. Therefore, CNN can be employed as a useful method for distinguishing 

malignant thyroid nodules from benign ones. 
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Table 1. Histopathological results of surgically resected nodules 

 

 

Table 2. Summary of demographic features 

 

 

 Histopathologic result Number 

Benign (n = 445) Nodular goitre 247 

 Follicular thyroid adenoma 161 

 Subacute thyroiditis 25 

 Hashimoto’s thyroiditis 12 

Malignant (n = 541) Papillary thyroid carcinoma 499 

 Medullary thyroid carcinoma 19 

 Follicular carcinoma 12 

 Anaplastic carcinoma 6 

 Primary thyroid lymphoma 5 

Features Benign nodules 

(n = 445) 

Malignant nodules 

(n = 541) 

   p value  

No. of patients 408 472  

Age, years, x ± s 50.6 ± 12.3 44.3 ± 12.6 < 0.001 

Sex (%)   0.358  

Male 118 (29.0%) 150 (31.7%)  

Female 290 (71.0%) 322 (68.3%)  

Size, cm 2.06 ± 1.40 1.81 ± 1.20 < 0.001 

≤ 0.5 49 (11.0%)  90 (16.9%)  

0.5-2.0 134 (30.1%) 173 (32.1%)  

≥ 2.0 262 (58.9%) 278 (51.0%)  



 

 

Table 3. The diagnostic performances of 5 convolutional neural network (CNN) models, 

an ensemble model, and 2 radiologists on the test set 

 AUC Accuracy Sensitivity Specificity PPV NPV 

ResNet50 0.945                                   0.874 0.837 0.911 0.877 0.872 

DenseNet121 0.943                                   0.869 0.884 0.866 0.833 0.898 

DenseNet169 0.936                                  0.859 0.837 0.884 0.845  0.868 

SE-ResNeXt50 0.920                                   0.859 0.872 0.857 0.822 0.889 

Xception 0.901                                   0.808 0.872 0.768 0.740 0.878 

ensemble model 0.947                                   0.859 0.919 0.821 0.796 0.920 

Radiologist A 0.587                                   0.586 0.593 0.580 0.520 0.644 

Radiologist B  0.754                                   0.748 0.802 0.705 0.677 0.705 

PPV —positive predictive value; NPV — negative predictive value, ensemble model: ResNet50, 

DenseNet121, and DenseNet169; Radiologist A — inexperienced radiologists; Radiologist B — 

experienced radiologists 

 

Table 4. Comparisons of diagnostic performances between 5 convolutional neural network 

(CNN) models and an ensemble model for malignant and benign thyroid nodules 

 AUC Accuracy Sensitivity Specificity PPV NPV 

RN50 vs. DN121 0.839 0.881 0.219 0.125 0.425 0.537 

RN50 vs. DN169 0.234 0.658 0.453 0.453 0.562 0.939 

RN50 vs. SE-RN50 0.035* 0.685 0.508 0.109 0.323 0.693 

RN50 vs. Xception 0.005* 0.074 0.581 0.000* 0.022* 0.899 

RN50 vs. IM 0.680 0.685 0.016* 0.006* 0.151 0.250 



PPV — positive predictive value; NPV — negative predictive value; RN50 — ResNet50; DN121 

— DenseNet121; DN169 — DenseNet169; SE-RN50 — SE-ResNeXt50, IM — ensemble model; 

* represent statistically significant (p < 0.05)  

 

Table 5. Comparisons of diagnostic performances between 2 radiologists and 

convolutional neural network (CNN) models for malignant and benign thyroid nodules 

 AUC Accuracy Sensitivity Specificity PPV NPV 

RN50 vs. Radiologist A < 0.001* < 0.001* 0.001* < 0.001* < 0.001* < 0.001* 

DN121 vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 

DN169 vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 

SE-RN50 vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 

Xception vs. Radiologist A < 0.001* < 0.001* < 0.001* 0.002* < 0.001* < 0.001* 

IM vs. Radiologist A < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 

DN121 vs. DN169 0.365 0.770 0.118 0.727 0.831 0.491 

DN121 vs. SE-RN50 0.051 0.770 1.000 1.000 0.844 0.825 

DN121 vs. Xception 0.002*  0.101 0.250 0.007* 0.118 0.693 

DN121 vs. IM 0.489 0.770 0.250 0.063 0.510 0.585 

DN169 vs. SE-RN50 0.155 1.000 0.453 0.453 0.684 0.641 

DN169 vs. Xception 0.015* 0.178 0.453 0.002* 0.082 0.842 

DN169 vs. IM 0.007* 1.000 0.016* 0.016* 0.389 0.224 

SE-RN50 vs. Xception 0.173 0.178 1.000 0.021* 0.173 0.800 

SE-RN50 vs. IM 0.009* 1.000 0.219 0.344 0.674 0.447 

Xception vs. IM 0.001* 0.178 0.289  0.238 0.352 0.322 



RN50 vs. Radiologist B  < 0.001* 0.001* 0.839 < 0.001* 0.002* 0.321 

DN121 vs. Radiologist B < 0.001* 0.002* 0.263 0.005* 0.012* 0.119 

DN169 vs. Radiologist B < 0.001* 0.005* 0.824 0.001* 0.008* 0.361 

SE-RN50 vs. Radiologist B < 0.001* 0.005* 0.359 0.009* 0.021* 0.125 

Xception vs. Radiologist B < 0.001* 0.147 0.359 0.360 0.321 0.286 

IM vs. Radiologist B < 0.001* 0.005* 0.064 0.053 0.056 0.042* 

Radiologist A vs. Radiologist B < 0.001* 0.001* < 0.001* 0.001* 0.624 0.006* 

DN169 — DenseNet169; SE-RN50 — SE-ResNeXt50; IM — ensemble model; 

Radiologist A — inexperienced radiologists; Radiologist B — experienced radiologists; 

*represent statistically significant (p < 0.05) 

 

Figure 1. Regions of interest (ROIs). Figure A shows benign nodules, and Figure B shows 

malignant nodules. The regions in the red circle are the regions of interest 

 

 

Figure 2. Basic architecture of convolutional neural network (CNN) for image 

classification problems 



 

Figure 3. Receiver operating characteristic curves. The receiver operating characteristic 

curves of the 5 convolutional neural network (CNN) models and the ensemble model on 

the test set. Different CNN models are represented by 6 dotted lines, respectively. 

 

 

Figure 4. Receiver operating characteristic curves. The receiver operating characteristic 

curves of 2 radiologists and the 2 solid lines, respectively, represent the radiologists 








