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Abstract 
Hypoxia-inducible factors (HIFs), as a family of transcription factors involved in the cellular response to hypoxia, are key regulatory 
factors in the regulation mechanism of an organism’s response to hypoxia. A large number of studies have shown that HIFs are closely 
related to the angiogenesis, erythropoiesis, cell metabolism, and autophagy of organisms, as well as the occurrence and development of 
tumours. Therefore, it is of great significance to further study HIFs to understand and treat tumours or other related diseases. This paper 
summarises the structure, oxygen-dependent degradation mechanism, non-oxygen-dependent degradation mechanism, transcriptional 
activation mechanism, relevant signalling pathways, and inhibitors of HIFs, in order to provide new clues for the treatment of tumour, 
vascular, and other related diseases. (Endokrynol Pol 2020; 71 (5): 432–440)
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Introduction 

Oxygen content affects human health, and exces-
sive oxygen content leads to increased body free 
radicals, while insufficient content causes a lack of 
oxygen. The body regulates the supply of oxygen to 
an appropriate physiological concentration range 
through a variety of mechanisms, including cell-level 
mechanisms, tissue-organ-level mechanisms, and 
system-level mechanisms [1–3]. In 1992, Semenza 
et al. [4] first discovered this transcription factor 
when studying the expression of the erythropoietin 
(EPO) gene in the oxygen-deficient hepatoma cell 
line 3b Hep3B. Later, it was found that this factor 
could regulate the transcription of various hypoxic 
response genes and participate in the signal trans-
duction process of hypoxic reaction, so it was named 
hypoxia-inducible factor 1 (HIF-1) [5]. It was found 
that HIF-1 is a heterodimer composed of a subunits 
and b subunits. HIF-1b is stable in cytoplasm or cyto-
plasm and plays a structural role. An active subunit 
of HIF-1 in the cytoplasm is HIF-1a. It is also a key 
factor in response to hypoxia stress [6]. The hypoxia 
induction pathway of most hypoxia-inducible genes 
is achieved through HIF-1. As a result, HIF-1 is often 
referred to as a housekeeping transcription factor that 
regulates hypoxic adaptation [7]. In 1997 and 1998, 

HIF-2 and HIF-3 were successively discovered. It is 
thought that there may be a family of HIFs in the 
human body. Transcription, translation, and activity 
of HIFs can be induced by hypoxia. To mediate physi-
ological or pathological effects, HIFs must combine 
with the hypoxia response elements (HRE) in the 
target gene to regulate its expression. 

There are currently more than 60 genes known to be 
directly regulated by HIF-1 [8]. As a core transcription 
factor, HIF-1a mainly regulates the oxygen homeostasis 
of the body’s environment and is widely involved in the 
adaptive response induced by hypoxia [9]. Vascular en-
dothelial growth factor (VEGF), erythropoietin (EPO), 
and heat shock proteins (HSP) are downstream target 
genes of HIF-1, and these genes are closely related to 
angiogenesis, erythropoiesis, energy metabolism, cell 
proliferation, and apoptosis [10–13]. Hypoxia-inducible 
factors can regulate metabolic reprogramming of 
tumour cells, inhibit tumour cell apoptosis, and in-
duce autophagy to promote tumour cell survival. It 
is also closely associated with neovascularisation, pH 
homeostasis, autocrine, maintenance of tumour stem 
cell (CSC), and tumour prognosis [14–17]. At present, 
research of HIF inhibitors is essential for targeting an-
ticancer drugs. Most HIF inhibitors target HIF-1a and 
HIF-2a, and specific inhibitors for HIF-3a have not been 
developed [18].
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acid residues, and is an important structure affecting 
degradation. When this region is lost, HIF-1a keeps 
not degraded under normoxic conditions, so it is called 
oxygen-dependent degradation domain (ODD). Un-
der normoxic conditions, conserved proline residues 
within the polypeptide sequence of the ODD region 
of HIF-1a are hydroxylated by proline hydroxylase 
under aerobic conditions [22–23]. The hydroxylated 
proline residue is recognised by the Von Hippel-Lindau 
tumour suppressor protein (pVHL), a component of 
the ubiquitin ligase complex, which leads to the recog-
nition and degradation of HIF-1a by the proteasome. 
A key regulator is catalysed by the iron-dependent 
prolyl hydroxylase family [24]. The interaction of HIF 
and pVHL depends on the hydroxylation of proline 
residues in the degradation domain of HIF protein. 
And under hypoxia conditions, this hydroxylation 
process is inhibited, and HIF-1a expression increased 
exponentially [25–26]. Hypoxia and iron ion chelating 
agents, such as deferoxamine, can block the effect of 
pVHL [27–28]. Regulation of protein stability is only 
one way for hypoxia to induce HIFs activity. Despite 
the ODD region, the three subunits also include two 
regions that are critical for gene expression and bind 
to common activation factors. One of them overlaps 
with ODD, and its regulation may be a minor part of 
protein stability [29]. The other is the hydroxyl termi-
nal trans-transcription active region (C-TAD), which 
is independent of ODD and can bind to co-activating 
factor complexes such as P300/CBP under hypoxic con-
ditions. The regulation of C-TAD activity is based on the 
hydroxylation process of conserved asparagine residues 
by oxygen-dependent asparagine hydroxylase [30].

Oxygen-independent degradation 
Chaperone-mediated autophagy (CMA) leads to the 
non-oxygen-dependent degradation of HIFs that hap-
pens in lysosome. Its core components are constitu-
tive heat shock cognate 70 (HSC70) and LAMP2A. In 
detail: CMA is a kind of selective autophagy, which is 
responsible for degrading nearly 30% of soluble pro-
teins in the cytoplasm due to oxidative damage. And 
these proteins all contain KFERQ-like pentapeptide 
motifs [31]. In the pathway of CMA-mediated lyso-
somal degradation of HIF-1a subunits, the molecular 
chaperone HSPA8/HSC70 binds to it by recognising 
the KFERQ-like pentapeptide motif in HIF-1a. After 
stretching the HIF-1a subunit peptide chain, it is 
transported to the CMA receptor-lysosomal-associated 
membrane protein 2A (LAMP2A). This protein mediates 
the translocation of HIF-1a subunit into the lysosomal 
cavity, and HIF-1a is eventually degraded by acidic 
proteases in lysosome [32]. Adam et al. [33] found an E3 
ubiquitin ligase SIAH 1/2 (seven-in-absentia homologue 

Structure of HIFs 

Hypoxia-inducible factors are DNA-binding proteins 
and include two subunits, which are the hypoxia-reg-
ulated a subunit (HIF-1a, HIF-2a, HIF-3a) and the 
oxygen-insensitive b subunit, also called ARNT. Among 
the two subunits that make up HIF-1, the b subunit ex-
ists steadily in cells, while the a subunit is regulated by 
oxygen concentration, so the regulation of HIF-1 mainly 
lies in the a subunit. The HIF-1a gene is located on 
chromosome 14 (14q21-24), the HIF-1b gene is located 
on chromosome 1 (1q21). The biochemical properties 
of HIF-1a and HIF-2a are very similar, recognising 
the same DNA binding region, but each has unique 
biological effects. For example, during embryonic devel-
opment, HIF-1a regulates the growth of blood vessels, 
and HIF-2a regulates the production of catecholamine. 
As a transcription activator, HIF acts on the enhancer 
sequence of the target gene and regulates the hypox-
ia-induced expression of various genes. These genes 
mainly include glucose metabolism, cell growth, oxygen 
transport and transmission, etc. [19]. The N-terminus 
of HIF-1a contains a basic bHLH configuration, which 
is necessary for binding to DNA. The downstream 
proline-serine-threonine (Pro/Ser/Thr) is a specific struc-
ture that forms a heterodimer and binds to the target 
gene [20]. The C-terminal contains three domains, one 
is transactivation domain-C terminal (TAD-C), which 
is functional in regulating transcription. The other is 
the transactivation domain-N terminal (TAD-N), which 
can activate transcription. There is also an oxygen-de-
pendent degradation domain (ODDD) that is rich in 
Pro/Ser/Thr and can degrade HIF-1a protein through 
ubiquitination pathway [21]. There is also a nuclear 
localisation signal (NLS) at the C-terminus, which can 
help HIF-1a protein and nuclear pore protein bind to 
the nucleus. The N-terminal activation domain binds 
to HIF-1b to form the heterodimer HIF-1, and it binds 
to cis-acting elements of hypoxia response elements 
(HRE) for transcription.

Degradation mechanism of HIFs 

Oxygen-dependent degradation 
Under normoxic conditions, although the HIF-1a 
subunit is expressed, it degrades quickly, so there is 
no accumulation of HIF protein. Under hypoxic con-
ditions, the degradation of the a subunit is blocked, 
resulting in the accumulation of HIF-1a in the nucleus, 
and after binding with the b subunit, it can identify the 
HIF response element (HRE) in the promoter of target 
gene of hypoxic response. The oxygen-sensitive region 
near the c-terminal of the PAS region (non-PAS region) 
of HIF-1a and HIF-2a is composed of about 200 amino 
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1/2) in breast cancer cell line MCF-7 by reducing the 
stability of its substrate PHD3 in a manner that is not 
affected by the O2 level, maintaining the level of HIF-1a 
subunit and promoting the metastasis and invasion of 
breast cancer cells. Activated protein kinase C1 recep-
tor RACK1, spermidine/spermine N1-acetyltransferase 
SSAT1, calcineurin, hypoxia-associated factor (HAF), 
differentiated embryonic cartilage development gene 
SHARP1, and HSP70/CHIP (carboxy terminus of Hsp70 
interacting protein) also regulate the proteasome degra-
dation of the HIF-1a subunit in an oxygen-independent 
manner [30].

Transcription activation mechanism of HIFs

The transcription activity of the HIF-as subunit is also 
regulated by oxygen concentration. Under normoxic 
conditions, the aspartic acid residue of HIF-1a is hy-
droxylated, which inhibits the binding of the tran-
scription activation domain to co-activated molecules 
such as CBP and p300 and inhibits the transcription 
activity of HIF-1a. During hypoxia, hydroxylation is 
inhibited, HIF-1a dissociates from heat shock protein 
90 (HSP90) into the nucleus and combines with the 
nuclear protein HIF-1b to form the HIF-1 complex. 
Under the action of co-activating molecules, HIF-1 is 
fully activated and combines with hypoxic response 
element (HRE) containing the 5'-RCGTG-3 sequence in 
the target gene to exert transcriptional activity [34–35]. 
Regulation of HIF-as subunit transcriptional activity is 
often achieved through hydroxylation, phosphoryla-
tion, deacetylation, etc. These modifications affect the 
affinity of the HIF-as subunit to p300/CBP, influence 
the polymerisation and interaction with pVHL, and 
thus have positive or negative effects on regulating the 
transcriptional activation of HIFs.

Hydroxylation 
The transcriptional activity of HIF-1a and HIF-2a sub-
units is regulated by aspartate hydroxylase (FIH-1). 
Aspartate hydroxylase, also known as HIF-1a inhibitor 
(factor-inhibiting HIF-1a), has a catalytic function that 
depends on the participation of O2, a-ketoglutarate, 
and Fe2+ [36]. Under normoxia, FIH-1 can hydroxylate 
Asn803 residue in hHIF-1a subunit C-TAD domain and 
Asn851 residue in hHIF-2a subunit C-TAD domain, 
respectively (Fig. 4A), and can block the binding of 
HIF-1/2a to p300/CBP, thereby inhibiting the transcrip-
tion activation function of HIF-1 and HIF-2. While, due 
to the lack of C-TAD domain in HIF-3a subunit, FIH-1 
cannot regulate its transcription activity through hy-
droxylation modification [37, 38]. In hypoxia conditions 
or in the presence of CoCl2, DMOG, iron ion chelating 
agents, etc., FIH-1 activity is inhibited, and HIF-1/2a 

and HIF-1b subunits without hydroxylation modifica-
tion successfully enrich p300/CBP to activate the target 
gene transcription [39]. 

Phosphorylation 
In mitogen-activated protein kinase (MAPK) pathway, 
phosphorylation of Thr796 residue of HIF-1a subunit 
and Thr844 residue of HIF-2a subunit by mitogen 
protein kinase p42 / p44 can enhance the interaction 
of C-TAD domain with CBP/p300, and significantly 
increase the transcription activity of HIF-1 and HIF-2. 
p42/p44 can also inhibit the interaction between HIF-1a 
and nucleoprotein CRM1 by phosphorylating HIF-1a 
subunit S641 and S643 residues, and promote the ac-
cumulation of HIF-1a in the nucleus, hence increasing 
the protein level of HIF-1 [40, 41]. The casein kinase 1 
(CK1) phosphorylation of Ser247 residue in the PAS-B 
domain of HIF-1a subunit can inhibit the binding of 
HIF-1a to HIF-1b subunit and reduce HIF-1a target 
gene expression [35].

Deacetylation 
The regulation of HAD-1a subunit activity by NAD+-
-dependent histone deacetylase Sirtuins1 (Sirt1) is 
inconclusive [42]. Under normoxia, Sirt1 prevents the 
enrichment of p300 by removing the acetyl group on 
the Lys674 residue of HIF-1a subunit, thereby inhibiting 
the transcription activity of HIF-1a subunit [43]. During 
hypoxia, the NAD+ produced by the redox reaction in 
the cell is reduced, the activity of Sirt1 deacetylase is 
reduced, and the inhibitory effect on HIF-1a is relieved. 
The acetylation of Lys674 residues in HIF-1a subunit is 
catalysed by p300/CBP-associated factor (PCAF), which 
has the ability to antagonise Sirt1 deacetylase activity 
[44]. Sirt1 in hepatocellular carcinoma cell line (HCC) 
can promote the accumulation of HIF-1a subunit and 
positively regulate its transcription activity [45]. Sirt7 
can interact with HIF-1a and HIF-2a subunits at the 
protein level to negatively regulate their oxygen-inde-
pendence [46].

Other transcriptional activation mechanisms 
The activity of HIF-1a and HIF-2a subunits in cancer 
stem cells (CSC) is also regulated by the phosphati-
dylinositol 3-kinase signalling pathway (PI3K-AKT 
pathway). This pathway activates CSC survival-related 
genes (such as glycolytic enzyme genes) through the 
positive regulation of HIF-1a subunit, and at the same 
time inhibits the activity of tumour suppressor gene 
p53, hence promoting the survival of CSC. This path-
way can also increase the expression level of down-
stream CSC stem-related genes Oct-4, Sox-2, etc. by 
activating HIF-2a subunit, and promote the stemness 
maintenance of CSC [47]. 
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coma (OS) [55]. This positive feedback loop between 
SENP1 and HIF-1a is of great significance in the increase 
of tumour dryness in liver cancer and the occurrence 
of liver cancer under hypoxic conditions. Drugs that 
specifically target SENP1 may provide a potential new 
treatment for HCC [56].

HIF-1a/BNIP3/Bcline-1 signalling pathway 
Bal-2/adenovirus E1B 19kD-related protein 3 (BCL-2/in-
teracting protein 3, BNIP3) signalling pathway is im-
portant in the process of hypoxia-induced autophagy 
activation. Under hypoxic conditions, the expression 
level of HIF-1a increases, and it combines with the 
hypoxic response element of BNIP3 to promote the 
expression of BNIP3. BNIP3 belongs to the BH3-only 
subfamily in the Bal-2 protein family. It not only medi-
ates non-caspases-dependent apoptosis, but also inter-
acts with Bcline-1 to regulate the process of autophagy. 
When the expression of BNIP3 is increased, a large 
amount of free Beclin-1 is produced, and Beclin-1 me-
diates the localisation of other autophagy proteins 
in phagocytic vesicles, regulating the formation and 
maturation of autophagosomes. Strengthening the au-
tophagy of tumour cells and inflammatory cells in medi-
cal treatment is a new method for targeted treatment 
of cancer and inflammation [57]. Ischaemia/reperfusion 
and hypoxia/reperfusion injury increase the expres-
sion level of HIF-1a and activate downstream BNIP3, 
thus triggering mitochondrial-dependent autophagy. 
Upregulating the expression of HIF-1, HIF-a, and 
BNIP3 may promote autophagy in H9C2 cells induced 
by ischaemia/reperfusion injury and hypoxia/reperfu-
sion injury. In addition, downregulating the expression 
of HIF-1a or BNIP3 siRNA can reduce the autophagy 
ability of H9C2 cells under hypoxia/reperfusion in-
jury. Therefore, HIF-1a synchronises the regulation of 
BNIP3 during the autophagy of H9C2 cells induced by 
hypoxia-ischaemia reperfusion injury [58]. Testosterone 
induces renal tubular epithelial cell death by activating 
the HIF-1a/BNIP3 pathway [59]. The protective effect of 
Panax notoginseng saponins on ischaemia-reperfusion 
injury is mainly through the HIF1a/BNIP3 pathway to 
promote mitochondrial autophagy in myocardial tissue 
[60]. Hypoxia-induced autophagy is involved in the 
invasion of salivary adenoid cystic carcinoma through 
HIF-a/BNIP3 signalling pathway [61]. Autophagy 
regulates hypoxia-induced osteoclastogenesis through 
HIF-1a/BNIP3 signalling pathway [62].

MAPK/HIF-1a signalling pathway 
Mitogen-activated protein kinase (MAPK) can pro-
mote cell proliferation and participate in HIF-1a 
activation [63]. Anti-apoptotic extracellular regulated 
kinase (ERK) is a member of the MAPK protein family. 

Signalling pathway of HIF-1a

PI-3K/Akt/HIF-1a pathway 
The phosphatidylinositol-3kinase (PI-3K) signalling 
pathway works on cell proliferation and apoptosis. Un-
der hypoxic conditions, PI-3K is activated and binds to 
downstream Akt to phosphorylate Akt, enhance HIF-1a 
activity, and initiate transcription of downstream tar-
get genes, resulting in increased cell proliferation and 
decreased apoptosis [48]. This pathway is related to 
the level of cellular glycolysis. Hexokinase II (HKII)/ 
/glucose transporter 1 (GLUT1) and lactated dehydro-
genase (LDHA) may be the site of action downstream 
of this pathway. Under hypoxia conditions, epidermal 
growth factor (EGF) activates the PI3K/Akt pathway 
and participates in the regulation of glycolysis through 
HIF-1a; inhabiting the PI3K/Akt-HIF-1a pathway can 
significantly reduce glycolysis in a variety of cells, and 
this mechanism has potential value for tumour therapy 
[49]. Basic fibroblast growth factor (bFGF) activates 
HIF-1 via the PI-3K/Akt and MEK1/ERK pathways, and 
PI-3K/Akt and MEK1/ERK pathways synergistically 
and differently regulate the HIF-1 process, where the 
PI-3K/Akt pathway plays a more important role [50, 51]. 
Hypoxia-mediated enhancement of ERK1/2 and Akt 
activation requires a direct cell-cell interaction between 
mast cells and keloid fibroblasts, and the activation of 
ERK1/2 and Akt is involved in the accumulation of 
hypoxia-dependent HIF-1a protein and the expression 
of VEGF [52].

SENP1/HIF-1a signalling pathway 
Sentrin-specific protease 1 (SENP1) is a member of the 
small ubiquitin-like modified protein (SUMO) spe-
cific protease family, and HIF-1a is the target protein 
modified by SUMO. Hypoxia can inhibit the activity 
of PHD and activate SENP1. The decreased activity of 
PHD increases the expression of HIF-1a. At the same 
time, the activated SENP1 de-SUMOises HIF-1a, and 
hence HIF-1a is stably expressed and activates down-
stream target genes [53]. Inhibiting the SENP1/HIF-1a 
pathway is important for controlling tumour growth. 
Hypoxia can promote the expression of HIF-1a and 
SENP1. Si-HIF-1a downregulates SENP1 expression 
and angiogenesis ability under hypoxia, Si-SENP1 
down-regulates HIF-1a expression and angiogen-
esis ability under hypoxia. Under hypoxic conditions, 
SENP1 and HIF-1a form a positive feedback loop 
and are important for angiogenesis [54]. HIF-1a and 
SENP1 have a positive feedback loop in the regulation 
of osteosarcoma (OS) cell proliferation, invasion, and 
epithelial transformation under hypoxic conditions, 
suggesting that the SENP1/HIF-1a axis may become 
a new therapeutic drug for the treatment of osteosar-
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Hypoxia can induce ERK phosphorylation, which in 
turn activates oncogenes to produce cancer cells. Ras, 
a kind of upstream regulatory factor of ERK, can bind 
to the N-terminal domain of Raf, and activate it. Raf 
activates downstream MAPK/ERK kinase (MEK), which 
phosphorylates ERK and increases the expression level 
of HIF-1a [64]. Salceda confirmed by reporter gene 
analysis and EMSA experiments that in hypoxic Hep3B 
cells the ERK pathway inhibitor PD98059 can block the 
transcriptional activity of HIF-1 without affecting its 
DNA binding activity [65]. Richard showed that the 
HIF-1a subunit can be phosphorylated by activated 
ERK1 or ERK2, but the activity of ERK1 or ERK2 could 
not be detected. Other related experiments confirmed 
that the activation of the ERK pathway can directly 
participate in the activation of HIF-1 transcription 
activity [66]. Tanshinone IIA sodium sulfonate reduces 
the cigarette smoke-induced inflammation and oxida-
tive stress by blocking the mitogen-activated protein 
kinase/HIF-1a signalling pathway [67].

Other related signalling pathways 
In recent years, it has been found that proteins such 
as pVHL, heat shock protein 90 (Hsp90), and cyclo-
oxygenase-2 (COX-2) can also form pathways that 
mediate hypoxic signalling with HIF-1a. The experi-
ment found that the expression of pVHL in renal clear 
cancer cells resulted in decreased expression of HIF-1a 
and vascular endothelial growth factor (VEGF), which 
inhibited cancer cell proliferation, metastasis, and 
vascular regeneration [68].The mechanism is the hy-
droxylation of key proline residues of HIF-1a under 
normoxia, which results in HIF-1a being recognised by 
the pVHL/E3 ubiquitin ligase complex and degraded by 
polyubiquitination, thus affecting the metabolic activity 
of cells. During hypoxia, the proline residues of HIF-1a 
will not be recognised by pVHL, which makes HIF-1a 
stable in the hypoxic environment, and in turn activates 
downstream VEGF genes and induces blood vessels 
[69]. The Hsp90 signalling pathway is important for 
liver cancer, pancreatic cancer, and breast cancer. Under 
hypoxic conditions, Hsp90 binds to the bHLH-PAS do-
main of HIF-1a and activates the expression of HIF-1a, 
thereby regulating its downstream target genes and 
promoting cancer cell growth [70]. Under hypoxic 
conditions, HIF-1a is expressed in large amounts and 
binds to the hypoxic response element on the COX-2 
promoter, thus promoting the expression of COX-2. 
This pathway has significance for tumour cell prolif-
eration, blood vessel growth, and anti-apoptosis [71]. 
In retinoblastoma, the hypoxic microenvironment may 
enhance distant invasion and metastasis of tumour cells 
by up-regulating the HIF-1a/MMP9 axis. HIF-1a regu-
lates glucocorticoid-induced osteoporosis through the 

PDK1/AKT/mTOR signalling pathway [72]. Circular ri-
bonucleic acid PIP5K1A promotes the proliferation and 
metastasis of non-small cell lung cancer by regulating 
miR600/HIF1a [73]. ARHGAP4 mediates the Warburg 
effect of pancreatic cancer through mTOR and HIF-1a 
signalling pathway [74]. Necrostatin 1 (NEC-1) effec-
tively protects renal ischaemia-reperfusion (I/R) injury 
by inhibiting necrotising ptosis, oxidative stress, and 
inflammatory response, and may function by mediat-
ing HIF-1a/miR-26a/TRPC6/PARP1 signalling pathway 
[75]. HIF-1a/phosphokinase 4/autophagy pathway 
has a protective effect on the vascular smooth muscle 
cell calcification induced by advanced glycation end 
products, i.e. AGEs promote autophagy through the 
HIF-1a/PDK4 signalling pathway, and autophagy helps 
to reduce AGE-induced calcification of vascular smooth 
muscle cells [76]. Through the miR-21/PDCD4 pathway, 
HIF-1a can work on the myocardial ischemia injury in 
rats [77]. The IL-6/stat3 pathway leads to metastasis and 
chemotherapy resistance of hepatocellular carcinoma 
after interventional therapy through the HIF-1a/SNAI1 
axis [78]. MALAT1 affects hypoxia-induced vascular 
endothelial cell damage and autophagy by regulating 
the miR-19b-3p/HIF-1a axis [79]. Nuclear factor-kappaB 
hypoxia-induced ROS participates in the myoblast 
sagging during obstructive sleep apnoea through the 
NF-B/HIF-1 signalling pathway [80]. 

HIFs inhibitors

Inhibitors affecting the synthesis of HIF-A Mrna 
or HIF-A protein 
The synthetic antisense oligodeoxynucleotide EZN-2968 
contains 16 nucleotide residues complementary to 
hHIF-1amRNA, which downregulate the expression 
of hHIF-1a subunit in a dose-dependent manner, 
and it has complete inhibitory activity at a concentra-
tion of 5 nmol/L. EZN-2968 and HIF-2a mRNA have 
three base pair mismatches, so the inhibitory effect 
on HIF-2a subunit is weak. The results of the tumour 
biopsy in the phase I clinical trial of EZN-2968 showed 
that EZN-2968 reduced the mRNA levels of HIF-1a 
subunit and target genes [81]. MicroRNAs (miRNAs) 
can regulate the synthesis of HIF-a through interaction 
with HIF-a mRNA [82, 83]. For example, through the 
principle of base pairing, miR-145 and miR-558 would 
respectively combine with the three non-coding regions 
and five non-coding regions of HIF-2a mRNA to inhibit 
HIF-2a’s transcription and translation. Hutt et al. [84] 
discovered histone deacetylases inhibitors (HDACis) 
in HCC cells. Vorinostat can reduce the protein level 
of HIF-1a subunit by inhibiting HDAC9 with an eIF3G 
(eukaryotic translation initiation factor)-dependent 
translation mechanism. Vorinostat and another HDACis 
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romidepsin have been approved by the US Food and 
Drug Administration (FDA) for the treatment of skin T 
cell lymphoma. Topotecan (TPT), a semi-synthetic ana-
logue of camptothecin, is an inhibitor of topoisomerase I  
(Top I), which can inhibit the production of the HIF-1a 
subunit at the translation level. Camptothecin drugs can 
be used for clinical treatment of small cell lung cancer 
and ovarian cancer [85]. The oestrogen metabolite 2-me-
thoxyestradiol (2ME2) can inhibit tumour growth and 
angiogenesis by inhibiting the translation synthesis of 
HIF-1a and HIF-2a subunits and the nuclear transloca-
tion process [86]. In addition, Shukla et al. [87] found 
that HIF-1a mediates the resistance of pancreatic cancer 
cells to gemcitabine by upregulating the expression of 
cytidine triphosphate synthase (CTPS1) and transketo-
lase (TKT). After digoxin inhibits the translation process 
of the HIF-1a subunit, pancreatic cancer cells become 
more sensitive to gemcitabine. 

Inhibitors affecting the stability or dimerisation 
of HIF-a subunits 
Geldanamycin (GDM) and its synthetic derivative 
17-allylamino-17-demethoxygeldanamycin (17-AAG) 
can inhibit heat shock protein 90 (HSP90) activity pre-
vents the HIF-a subgene from folding and positioning 
properly, and thus degrades in a pVHL-independent 
manner. EC154, another small molecule HSP90 inhibi-
tor, has a stronger ability to inhibit HSP90 activity than 
17-AAG [88]. The PAS domains in HIF-as and HIF-1b 
subunits are involved in the assembly of HIFs heterodi-
mers. Therefore, small molecules targeting the PAS do-
main can affect the dimerisation of HIF-as and HIF-1b. 
The disinfectant acriflavine (acriflavine) destroys the 
stability of the HIFs heterodimer by binding to the 
interface between the HIF-as subunit PAS-B domain, 
and it destabilises the heterodimers of HIFs [89]. Cyclic 
peptide inhibitors (cyclic-CLLFVY) selectively act on 
the PAS-B domain of HIF-1a subunit, thus disrupting 
the dimerisation process of HIF-1, without affecting the 
dimerisation process of HIF-2 [90]. Compound PT2385 
selectively acts on the PAS-B domain of HIF-2a subunit 
but has no effect on HIF-1 [91]. The bicyclic compound 
OX3 can bind to the hydrophobic pocket of the PAS-B 
domain of the HIF-2a subunit, which affects the con-
formational stability of HIF-2 and the HREE sequence 
binding activity, but it has little effect on HIF-1 [92].

Inhibitors affecting the binding of HIFs to DNA 
Hypoxia-inducible factors mainly play the role of tran-
scriptional activation by binding to HRE sequences in 
target genes. In vitro studies on human glioma cell line 
U251 using ChIP assay have confirmed that echinomy-
cin can specifically inhibit HIF-1 and HRE sequences in 
the VEGF promoter region (5’- TACGTG-3 ‘) binding, 

hence inhibiting hypoxia-induced VEGF expression 
[93]. However, the clinical trials of echinomycin are 
not effective. In addition, HIF-1 inhibitors targeting 
HRE sequences also include polyamide compounds, 
doxorubicin and daunorubicin [94]. 

Inhibitors affecting the formation of HIFs 
transcription complexes 
The chetomin from the fungus Chaetomium chrysoge-
num can act on the zinc binding site in the p300 CH1 
domain to efflux Zn2 + and change the conformation 
of the CH1 domain, thereby destroying p300 and 
HIF-1a interaction [95]. Reece et al. [96] confirmed 
that chaetocin can reduce the expression of secreted 
VEGF, lactate dehydrogenase A (LDHA) and enolase 
1 (ENO1) in a dose-dependent manner, which would 
result in the growth of rat prostate cancer xenograft 
cells significantly inhibited in the end. The antitumour 
activity of bortezomib is through enhancement of the 
binding of aspartate hydroxylase FIH and HIF-1a, and 
destruction of the enrichment effect of HIF-1a on p300 
[97]. In addition, the anti-platelet agglutinating agent 
YC-1 and thiazolidinone compounds also inhibit the 
transcription activation activity of HIFs to target genes 
by disrupting the interaction between HIF-as and p300. 
The compound CJ-3k designed and synthesised accord-
ing to the structure of YC-1 can also effectively inhibit 
the activity of HIF-1a [98]. 

Degradation mechanism of HIFs 

The above indicate that HIFs are closely related to the 
occurrence and development of human diseases. In 
particular, HIFs regulate angiogenesis, tumour cell dif-
ferentiation, tumour cell metabolism reprogramming, 
tumour angiogenesis, glucose metabolism, and cell 
apoptosis and autophagy. But there are many specific 
questions that remain unanswered. For example, how 
do HIF-1a and COX-2 work together on tumour cells? 
Is there some connection between the simultaneous 
expression of STAT3 and HIF-1a? What is the interaction 
mechanism between PKM2 and HIF-1a in the process 
of tumourigenesis and development? HIF-1a, HIF-2a, 
and HIF-3a are similar in protein structure, regulation 
of stability, and regulation of transcriptional activation, 
but the three show complexity in the functional rela-
tionship in the occurrence and development of different 
types of tumours. For example, Jiang et al. [99] found 
that HIF-1a and HIF-2a have similar effects on the sur-
vival, apoptosis, and cell cycle of cervical cancer cell line 
CaSki. When only inhibiting the expression of HIF-1a 
or HIF-2a, the cell cycle of CaSki can be blocked in the 
G1 phase. As another example, in vitro studies on the 
bladder cancer T24 cell line show that under long-term 
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hypoxia, HAF expression levels increase and play the 
role of E3 ubiquitin ligase, while activating the NF-κB 
pathway and degrading HIF-1a via the polyubiqui-
tinated proteasome pathway in an oxygen-independent 
manner. At this time, the expression of HIF-2a increased 
compensatorily, which accelerated the deterioration of 
T24 cells and facilitated the maintenance of T24 stem 
cell markers [100]. This indicates that there is a com-
pensatory mechanism between HIF-1a and HIF-2a. 
In addition, overexpression of the HIF-1a subunit can 
slow the growth of pVHL-deficient renal cell carcinoma 
(RCC) xenograft cells, while overexpression of HIF-2a 
subunit can promote the growth of RCC transplanted 
cells. This indicates that in some tumours HIF-1a and 
HIF-2a play opposite roles [101]. Hydroxylase inhibi-
tors may promote the growth of existing tumours by 
promoting angiogenesis. However, there is little 
evidence for its role in promoting tumours in animal 
models. On the contrary, there is a lot of evidence that 
they can effectively increase serum EPO levels, which 
may lead to unnecessary erythropoiesis in non-anaemic 
patients. Therefore, it is very attractive to develop 
a targeted drug delivery system for hydroxylase inhibi-
tors to avoid the side effects of erythropoietin under 
non-anaemic conditions [102]. At the same time, the 
following question should be considered: The tumour 
will secrete relevant protein factors to promote angio-
genesis in the tumour, so will the regulation of HIFs to 
promote angiogenesis induce a tumour? 

Conclusion

The research potential for HIF is still very large, and 
we believe that further comprehensive research on HIF 
will be of vital significance for curing many diseases.
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