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Abstract 
There is an intimate and functional relationship between the cardiovascular system and the thyroid gland; from sharing the same em-
bryologic origin to modulating each of the components of the heart for a normal function. Due to this relationship, patients suffering from 
cardiovascular diseases often undergo a thyroid function test to rule out hypo- or hyperthyroidism. The signs and symptoms of hyper- and 
hypothyroidism are clinically relevant and profound. The cardiac function changes can be explained through the cellular mechanism of 
the thyroid hormone action on the heart. Minor alteration of thyroid hormone can change vascular resistance, cardiac contractility, blood 
pressure, and heart rhythm, because of the presence of the thyroid hormone receptors on these tissues. A better understanding of the 
impact of thyroid hormones on the cardiovascular system is paramount for physicians to make a quick decision and initiate a treatment 
plan because it has been shown to reverse some of the cardiac changes such as systolic and diastolic dysfunction. With this literature review, 
we aim to describe the holistic effect of thyroid hormones on the cardiovascular system, from its effect on a cellular level to changes in 
cardiac functions in subclinical and overt hypo/hyperthyroidism. Additionally, we will describe the effects of the drug treatment regimen 
of thyroid on the cardiac function. (Endokrynol Pol 2020; 71 (5): 466–478)
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Introduction 

Cardiovascular disease (CVD) remains the single largest 
cause of death worldwide. Its association with the endo-
crine system, especially the thyroid gland, has shown to 
have a significant impact on the cardiovascular system 
(CVS). The heart and the thyroid gland are derived 
from the same embryological origin during ontogeny. 
In an attempt to lower the incidence of CVD, optimal 
primary and secondary prevention such as the control 
of hormone disturbances is paramount [1–3].

The thyroid gland releases thyroxine (T4) and 
triiodothyronine (T3), under the direct control of the 
thyroid-stimulating hormone (TSH), released from the 
pituitary. The active T3 hormone has a direct impact 
on the heart through both genomic and non-genomic 
pathways. Studies have shown a positive link between 
subclinical and overt hypothyroidism and an increase 
in CVD. Moreover, heart failure, a final clinical event 
of CVD, is highly associated with changes in thyroid 
hormones (TH) [1–3].

In this review article, we will focus on the following:
—— the physiological effect of TH on the CVS at the 
cellular level;

—— thyroid gland dysfunction associated with dyslipi-
daemia and venous thromboembolism;

—— TH and arrhythmias; 
—— the effect of subclinical and overt hypo/hyperthy-
roidism on cardiac functions monitored by echo-
cardiography;

—— thyroid gland dysfunction and heart failure;
—— the impact of different thyroid drugs on the heart. 

Thyroid hormone (TH) action 
on cardiovascular muscles  
at the cellular level

The thyroid gland is an essential endocrine organ that 
produces two main hormones: thyroxine (T4) and 
triiodothyronine (T3). While T4, a prohormone, has 
some effect on the body, the vast majority of the bio-
logical action is mediated via T3, which is more potent 
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myocyte contractility and it is the most crucial target 
of T3 [10]. SERCA2 sequesters calcium back into the 
sarcoplasmic reticulum during the relaxation phase 
of myofilament contraction. SERCA2 is positively 
regulated by T3, whereas phospholamban (PLB), its 
inhibitory counterpart, is negatively regulated. The 
phosphorylation state of PLB governs the action of 
SERCA2 ion transport capability, and phosphorylated 
PLB decreases the ability of SERCA2 to pump Ca2+ back 
into the sarcoplasmic reticulum [4, 10]. The overall ef-
fect of T3 is that calcium cycling is increased, resulting 
in optimal cardiac myocyte relaxation and contraction 
[4]. Therefore, insufficient serum T3 levels can play 
a significant role in heart disease, specifically resulting 
in diastolic dysfunction, which will be discussed in 
detail later [10]. 

Even though the vast majority of TH effect on the 
heart is mediated through nuclear receptors, TH can 
also elicit a rapid impact on the cardiomyocyte and vas-
culature through the use of ion transport channels that 
do not rely on protein synthesis4. Through in-vitro and 
in-vivo models, it has been shown that TH can exert non-
genomic action by interacting with membrane integrin 
receptors and by affecting signal transduction pathways 
in the cytoplasm [11]. Many functions including growth, 
metabolism, and development are regulated through 
phosphorylation and activation of kinase pathways, 
which are extranuclear actions of the TH [12]. Another 
nongenomic effect of TH involves binding with the TH 
receptor integrin avb3. This receptor activates PI3K and 
ERK1/2, which are involved in various signal transduc-
tion pathways and stimulate transcription of genes such 
as hypoxia-inducible factor 1a (HIF1a) by activating the 
Akt/PKB pathway [13, 14]. This process can be seen in 
Figure 1. These extranuclear or nongenomic actions of 
TH also include rapid recruitment of slowly inactivating 
sodium channels, stimulation of Ca2+ ATPase activity, 
and increasing the activity of Na+/K+ ATPase. Because 
the levels of THs are relatively stable in the body, their 
action on these channels may determine the basal myo-
cardial excitability and duration of action potential [9]. 
The non-genomic effect of TH on the heart is significant 
because it has been shown that it can have cardioprotec-
tive effects on the ischaemic animal heart. Stimulation 
of the membrane Na+/H+ antiport (NHE) by TH has 
been shown to preserve myocardial function [9, 15].

TH effect on the vasculature

In addition to the effect of TH on the heart, it also has 
a genomic and non-genomic action on vascular smooth 
muscle (VSM) cells. Non-genomic effects of TH target 
the membrane ions and endothelial nitric oxide syn-
thase, which acts as a paracrine hormone in the VSM 

than T4. The majority of T4 is converted into the active 
form (T3) by 5’-deiodinase type I or II. TH is crucial for 
metabolism, growth, and development of the human 
body. The hypothalamus-pituitary-thyroid axis strictly 
regulates the TH level in the body. Thyroid-releasing 
hormone (TRH) excreted from the hypothalamus ac-
tivates the release of TSH from the anterior pituitary, 
which in turn acts on the thyroid gland to produce TH. 
TH levels affect the levels of TRH and TSH production, 
forming a feedback loop mechanism [4].

TH and the cardiac muscles

TH can have both genomic (delayed) and non-genomic 
(rapid) action. The genomic activity of T3 is mediated 
through binding to nuclear thyroid hormone receptors 
(TR) — specifically to TRa and TRb [5, 6]. Before T3 
binds to TR and exert its effects it has to enter the tar-
get cell. TH enters the cell via membrane transporters, 
predominantly through monocarboxylate transporters 
(MCT) 8 and 10. As mentioned above, T4 is converted 
to T3 through 5’-deiodinase type I or II. The resultant 
T3 enters the nucleus of the target cell and binds to 
the specific TR with a high affinity. TR are essentially 
ligand-dependent transcription factors, and once at-
tached to the ligand (T3) they dimerise with other 
nucleus receptors such as retinoid X receptor (RXR) [7]. 
These TR-RXR complexes regulate expression of target 
genes by binding to the thyroid hormone response ele-
ment (TRE) in the upstream promoter region as homo- 
or heterodimers and recruit other transcriptional cofac-
tors. Based on the cofactors bound, the promoter region 
can either activate or repress transcription of the gene 
[5, 6]. Transcriptional cofactors can be coactivators or 
corepressors. Coactivators bind to the nuclear receptor 
and increase gene transcription by acetylating histones 
and promoting transcription. Corepressors, on the other 
hand, promote gene repression by recruiting histone 
deacetylases [8]. This process is illustrated in Figure 1. 

In the human heart, TRa is the predominant form of 
TR isoform and has both contractile and electrophysi-
ological effects on the heart [9]. This is supported by the 
fact that TRb-deficient mice had a normal TH-depen-
dent increase in heart rate, whereas mice that lacked 
TRa experienced bradycardia [9]. Thyroid hormone 
exerts its effect on the heart by positively regulating 
specific genes and decreasing transcription of other 
genes. The list of cardiac genes that are positively and 
negatively regulated is presented in Table 1 [6]. 

Cardiac myocyte contractility is dependent on 
myosin heavy chains (MHC) a and b. While aMHC, the 
fast myosin, is upregulated, bMHC in contrast is nega-
tively regulated by T3 [4]. Additionally, sarcoplasmic 
reticulum calcium ATPase (SERCA2) is also involved in 
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to cause vascular relaxation [16]. Relaxation of the VSM 
results in a drop in the arterial resistance pressure and 
consequently an increase in cardiac output to compen-
sate for the decrease in SVR. TH also indirectly affects 

the renin-angiotensin-aldosterone system. TH causes 
a fall in the SVR, which in turn causes the mean arte-
rial pressure to drop. The juxtaglomerular apparatus 
of the kidney senses the fall in volume and increases 

Figure 1. Genomic and non-genomic action of TH. In the genomic pathway, TH enters the target cell via thyroid hormone transporters 
such as MCT 8 and 10. T4 is converted to T3 by deiodinase type I and type II (D1 and D2). Next, T3 binds to the TR and translocate 
into the nucleus where it dimerises with RXR. Th e T3-TR-RXR complex then binds to the TRE located in the promoter region and 
with the help of coactivators stimulates the transcription of target genes. In the non-genomic pathway, TH binds to the TR and activates 
the PI3K. In turn, PI3K activates the Akt/PKB cascade, which leads to the upregulation of genes including hypoxia-induced factor 1a 
(HIF1a), ZAKI-4a, and GLUT4 [7, 11, 14]

Table 1. Cardiac-specific genes that are influenced by the effects of T3 [6, 10]

Positively regulated Negatively regulated

a-myosin heavy chain (≠ speed of contraction) b-myosin heavy chain (Ø speed of contraction)

Voltage-gated K+ channels Na+/Ca2+ exchange channel

Sarcoplasmic reticulum Ca2+-ATPase (≠ Ca2+ sequestration) Phospholamban (SERCA2 inhibition)

Na+/K+ ATPase Adenylyl cyclase type V, VI

b1-adrenergic receptor Thyroid hormone receptor a-1

Adenine nucleotide translocase (ANT1) Thyroid hormone transport (MCT8, 10)

Guanine nucleotide-binding protein Gs (≠ adrenergic effect) Guanine nucleotide-binding protein Gi (Ø adrenergic effect)

Malic enzyme

Atrial natriuretic hormone
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synthesis and secretion of renin and subsequently 
increases retention of Na+. The overall effect of TH is 
a decrease in both SVR and afterload but an increase in 
blood volume and preload, which ultimately increases 
the cardiac output [16]. Hypothyroidism has far fewer 
effects on the cardiovascular system than hyperthyroid-
ism. It causes bradycardia, increased peripheral vascular 
resistance, and mild hypertension [17]. This process is 
illustrated in Figure 2. 

Thyroid hormones and dyslipidaemia

Mason et al. first established the effect of TH on cho-
lesterol, and since then many studies have associated 
low TH levels with hypercholesterolaemia and obesity 
[18, 19]. A multicentre study found 1–13% of patients 
with hypothyroidism to have hypercholesterolaemia, 
which is often left undetected in the general population 
[20]. A decrease in TH inversely correlates with lipid 
levels; a TSH value of 5.1–10 ml U/L has shown to have 
a more significant increase in low-density lipoprotein 
cholesterol (LDL-C) when compared to a healthy con-
trol group [21].

Hypothyroidism causes an increase in the synthe-
sis of total cholesterol while reducing degradation, 
subsequently increasing LDL-C. There is compelling 
evidence that dyslipidaemia and hypothyroidism cause 
chronic heart failure, leading to millions of deaths 
worldwide [22].  Cholesterol synthesis is mediated 

when T3 recognises sterol regulatory element binding 
protein (SREBP) in the endoplasmic reticulum. SREBP 
is then cleaved and transported to the nucleus to bind 
to transcription factor, sterol regulatory element (SRE), 
to initiate transcription of LDL receptor (LDLR) and 
HMG-CoA reductase genes [23, 24]. In hypothyroid-
ism, these steps are diminished, leading to a decrease 
in LDLR activity as well as reduced control of T3 on the 
SREBP-2. A low SREBP-2 further reduces HMG-CoA, 
leading to a decrease in cholesterol levels [23]. Two 
cross-sectional studies of around 3000 people showed 
that the aged population with reduced thyroid function 
had the worst lipid profile when compared to young 
patients. The study also revealed that a TSH value 
higher than 5.5 ml U/L increased cholesterol levels by 
9 mg/dL [25, 26]. This dyslipidaemia due to hypothy-
roidism predisposes to the formation of atherosclerosis, 
inflammation, and oxidative stress, which all contribute 
to endothelial dysfunction and cardiovascular disease 
[27, 28]. Figure 3 demonstrates these steps. 

A meta-analysis study showed that the treatment 
of hypothyroidism with levothyroxine lowered total 
cholesterol as well as LDL-C in patients with subclinical 
hypothyroidism [1]. Current recommendations suggest 
that treatment to lower hypercholesterolaemia, without 
any symptoms, should be considered in patients < 65 
years old, especially those suffering from arterial hy-
pertension or dyslipidaemia [29]. The American Asso-
ciation of Clinical Endocrinologists recommends that, 

Figure 2. The mechanism by which hyperthyroidism increases cardiac output [17]
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before initiating treatment, patients should be closely 
monitored because levothyroxine has been shown to 
increase intimal thickness in carotid arteries [21]. 

Thyroid function and venous 
thromboembolism (VTE)

Thyroid hormone dysfunction has been linked to a hy-
percoagulable state and arterial cardiovascular disease 
[30, 31]. At the cellular level, platelets express protein 
avb3 that contain receptors for T4 hormone but not 
for T3. Therefore, hyperthyroidism increases platelet 
aggregation and increases the risk of thromboembo-
lism [2, 32–34]. Also, platelet aggregation is induced by 
CX3CL1, a chemokine that is regulated from avb3 by 
T4 and thus increases pathologic clotting [34–36]. An-
gioinvasion, a prothrombotic state could also contribute 
to this hypercoagulable state [37, 38]. 

The combination of pulmonary embolism (PE) 
and deep vein thrombosis (DVT), termed as venous 
thromboembolism (VTE), is associated with numerous 
complications. One study published in 2004 stated that 
around 370,000 deaths in six European countries were 
due to VTE [39, 40]. A large registry-based study of 
around 20 million people showed a clear link between 
hyper- and hypothyroidism and events of VTE in their 
lifetime. There was nearly a two-fold increase of having 
a PE in patients suffering from hypothyroidism com-
pared to patients with normal thyroid function [(0.61% 
vs. 0.37%, relative risk 1.64, 95% confidence interval (CI): 
1.63–1.65, respectively)]. Similarly, 1.36% of patients 
with hypothyroidism developed DVT compared to 

0.84% of patients with normal thyroid function (relative 
risk 1.62, 95% CI: 1.61–1.62) [30]. 

Other case-cohort and case-control studies have 
also shown a link between hyperthyroidism and risk 
of VTE [41, 42]. A recent study by Lerstad et al. showed 
a two-fold increased risk of VTE in patients with low 
TSH when compared to healthy patients [39]. This is be-
cause hyperthyroidism or subclinical hyperthyroidism 
increases the release of von Willebrand factor (VWF), 
plasminogen activator inhibitor-1 (PAI-1), factor III, and 
factor IX [32, 43]. A multicentre cohort study on VTE 
recurrence showed that subclinical hyperthyroidism 
was less likely to cause a recurrent VTE compared to 
hypothyroidism, which was non-statistically associ-
ated with recurrent VTE [44]. A first of its kind study 
by Lupoli et al. showed that treatment of subclinical 
hypothyroidism with levothyroxine for six months 
reversed the prothrombotic state [45]. The results of 
these studies are summarised in Table 2. 

Thyroid hormone and cardiac arrhythmias

TH influences both the heart rate (chronotropic effect) 
and the conduction (dromotropic effect). T3 exerts 
its electrophysiological effect through sodium pump 
channels and increases Na+/K+ permeability [47]. 
T3-mediated rise in heart rate is achieved by increased 
pacemaker ion current in the sinoatrial node [9]. This 
is corroborated by case studies on humans, which 
found that the heart rate of hyperthyroid patients was 
increased throughout the day, whereas hypothyroid 

Figure 3. The mechanism by which hypothyroidism leads to the development of atherosclerosis. On the left-hand side, hypothyroidism 
lowers bile acid flow, followed by a diminution in the rate of cholesterol excretion, which in turn increases intrahepatic cholesterol and 
reduces uptake from the circulation, contributing to atherosclerosis formation. Additionally, untreated hypothyroidism (including 
subclinical hypothyroidism) causes arterial hypertension and dyslipidaemia, respectively. This predisposes to inflammation due to 
oxidative stress and reactive oxygen species, forming atherosclerosis, and leading to cardiovascular disease [27]
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patients had a much lower basal, average, and maximal 
heart rate [48]. 

Atrial fibrillation (AF), atrial flutter, and sinus tachy-
cardia are the most common dysrhythmias in people 
suffering from overt or subclinical hyperthyroidism [49, 
50]. Between 10% and 15% of patients suffering from 
hyperthyroidism develop AF [51]. Atrial fibrillation is 
clinically significant because the rapid and irregular 
heartbeat produced can predispose the individual to 
form blood clots, which can dislodge and cause an em-
bolism and stroke [9]. Atrial fibrillation is more common 
in the older population; in one study, 25% of hyperthy-
roid patients aged > 60 years developed AF while the 
prevalence was only 5% in patients <60 years old [52]. 

Re-entry is believed to be one of the primary mecha-
nisms by which hyperthyroidism causes AF. Thyroid 
dysfunction generates multi-circuit wave fronts in the 
atrium, which predisposes to a fibrillatory rhythm. 
Development of AF is also associated with a shortened 
refractory period of atrial cells. Hyperthyroidism may 
cause AF by reducing the action potential that deter-
mines the refractory period; therefore, it increases the 
likelihood of developing re-entry [17]. 

Patients with subclinical hyperthyroidism are shown 
to have a three-times greater chance of developing AF 
over the subsequent decade compared to those with 
normal TSH [51]. Thyrotoxic patients are also at a higher 
risk of developing supraventricular tachycardia, which 
can result in AF. Ventricular arrhythmias, on the other 
hand, have a similar rate of occurrence in both healthy 
and hyperthyroid populations [53]. 

The link between hyperthyroidism and AF is well 
established through clinical and experimental studies; 
however, the impact of hypothyroidism on AF is still 
unclear [54]. A few case reports have suggested that 
hypothyroidism might increase the occurrence of AF 
[3], whereas a population cohort study found an insig-
nificant risk of developing AF in hypothyroid patients 
[55]. In contrast, a study carried out by Zhang et al. on 
rats found that both hypothyroidism and hyperthyroid-
ism are associated with increased AF vulnerability. They 

found that although hypothyroidism and hyperthy-
roidism increase AF susceptibility, they have different 
effects on atrial electrophysiological parameters. While 
hyperthyroidism increases the heart rate and shortens 
the effective refractory period (ERP), hypothyroidism 
effectively does the opposite [54]. Chronic exposure 
to high TSH levels associated with hypothyroidism 
prolong the cardiac action potential by increasing the 
depolarisation of the Ca2+ current and decreasing the 
repolarising of the K+ current [56]. Overt or subclinical 
hypothyroidism is shown to increase the risk of devel-
oping atherosclerosis and myocardial infarction more 
than arrhythmias [57]. 

Hypothyroidism and cardiac functions 
measured by echocardiography

Hypothyroidism is a commonly encountered condi-
tion in which a high TSH and low levels of T3 and T4 
are seen. It causes a low cardiac output, a decrease 
in HR, diastolic dysfunction, and an increase in pe-
ripheral vascular resistance. These disorders eventu-
ally lead to dilated cardiomyopathy [58, 59]. Overt 
hypothyroidism is highly associated with pericardial 
effusion and abnormally increased cholesterol levels 
[59]. Patients with hypothyroidism have an impaired 
diastolic function, which can be recognised by echo-
cardiography as prolonged isovolumetric contraction 
time (IVCT), isovolumetric relaxation time (IVRT), de-
celeration time of E wave of early mitral inflow velocity 
(EDT), as well as a reduction in the ratio of mitral inflow 
early wave velocity (E) to atrial wave velocity (A) ratio 
(E/A). A low E/A demonstrates a diastolic dysfunction 
due to reduced relaxation [60]. These patients have 
also shown a reduced left ventricular global longitu-
dinal strain (LV GLS) even though they might have 
a normal LVEF [45]. 

Every patient with overt hypothyroidism is treated 
with levothyroxine, which leads to improvement in 
cardiac function. Overall hypothyroidism has a nega-
tive impact on the myocardial function.

Table 2. Coagulation factor parameters before and after treatment with levothyroxine. It also illustrates the percentage change 
in haemostatic and fibrinolytic parameters [46]

Before treatment After treatment Difference p value

FVII (%) 123.9 ± 20.4 102.6 ± 14.3 –17.1 < 0.001

FVIII (%) 120.4 ± 19.3 116.5 ± 16.1 –3.2 0.182

VWF (%) 119.5 ± 16.6 122.1 ± 10.2 +2.2 0.044

D-dimer 220.3 ± 67.1 245.2 ± 103.1 +11.3 0.053

PAI-1 [ng/mL] 33.6 ± 13.9 19.4 ± 7.6 –42.3 < 0.001

t-PA [ng/mL] 5.56 ± 2.22 4.43 ± 1.91 –20.3 0.002

FVII — factor 7; FVIII — factor 8; VWF — von Willebrand factor; PAI-1 — plasminogen activator inhibitor 1; t-PA — tissue plasminogen activator
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Subclinical hypothyroidism (ScH)  
and the cardiac functions measured  
by echocardiography

Subclinical hypothyroidism (ScH) is defined as in-
creased serum thyroid-stimulating hormone (TSH) 
and normal thyroxine (T4) values. Its prevalence 
ranges between 4 and 15%, and females have a higher 
predisposition than males. Treatment of subclinical 
hypothyroidism is of debate, but therapy with levo-
thyroxine is indicated when TSH is > 10 mU/L [4, 61]. 
As mentioned above, TH affects the cardiac function 
through transcription of a cardiovascular regulatory 
protein, changes on smooth muscles in the arterial 
walls, and changes in overall cardiac tissue.

A meta-analysis showed an overall increase of sys-
tolic blood pressure in patients with ScH compared to 
the control group [62]. No statistically significant dif-
ference in the left ventricle (LV) function was observed 
between ScH patients and the healthy control groups; 
however, after treating ScH patients with levothyroxine, 
there was a statistically significant difference in the LV 
function [63–65]. Ozturk S. et al. performed echocar-
diography in ScH patients and, using tissue Doppler 
imaging (TDI), measured the maximal systolic velocity 
of the mitral valve ring motion (S’), which is a parameter 
of LV systolic function. They showed a statistically sig-
nificant reduction of S’ in patients with ScH compared 
to the controlled group; however, levothyroxine treat-
ment did not improve the S’ [66]. 

Myocardial performance index (MPI), a parameter 
measuring global LV systolic function, is generally 
shown to be abnormal in ScH patients. MPI values 
can be reversed with levothyroxine treatment [66, 67]. 
Global longitudinal strain (GLS) is a better parameter 
for measuring LV global systolic function, mainly when 
the ejection fraction (EF) is normal. GLS is significantly 
lower in ScH patients compared to the control groups; 
however, levothyroxine treatment has been shown to 
improve GLS with a statistically significant difference 
in terms of improvement in ScH groups. The diastolic 
function of the heart measured by echocardiography 
is usually abnormal in ScH patients. A statistically sig-
nificant difference was found in the E/A ratio and the 
ratio of E wave velocity to early diastolic velocity of 
mitral valve ring motion measured at the septum (E’). 
The E/A normalised after treatment with levothyroxine 
for > 6 months [66, 68]. Additionally, ScH patients had 
increased epicardial adipose tissue thickness compared 
to a control group. This increased thickness is associated 
with adverse cardiovascular effects and can be reversed 
with the restoration of the euthyroid state [69]. 

To summarise, subclinical hypothyroidism does not 
cause a significant heart problem. However, Sunbul 

et al. showed an association between impaired LV 
myocardial function with ScH patients who were not 
treated [70]. There are subtle changes in systolic and 
diastolic LV function in ScH patients compared to the 
control group before and after the treatment, and le-
vothyroxine treatment has been shown to improve LV 
parameters. However, the American Thyroid Associa-
tion states that there is not enough evidence showing 
an improvement in the general quality of life of ScH 
patients treated with thyroid hormone [71]. 

Hyperthyroidism and the cardiac functions 
measured by echocardiography

High thyroid hormone is associated with increased HR, 
decreased total peripheral resistance, increased cardiac 
output, and increased blood volume [72]. Short-term 
hyperthyroidism improves haemodynamic param-
eters by increasing LV contractile function; however, 
long-term hyperthyroidism increases the risk of myo-
cardial remodelling such as chamber dilatation, heart 
failure symptoms, and low cardiac output [73]. 

Graves’ disease, the most common cause of hyper-
thyroidism, is responsible for tachycardia, pulmonary 
hypertension, and a high output cardiac failure [74]. 
Pulmonary hypertension occurs in 50% of cases with 
Graves’ disease, and the incidence increases with high 
thyroid receptor antibodies and increased cardiac 
output [75]. A longitudinal study demonstrated that 
Graves’ disease resulted in a hyperdynamic right 
ventricular function, which can be normalised after 
treatment. The authors of the study hypothesised that 
an increased right ventricular preload predisposes to 
eventual right ventricular failure, which can be reversed 
by treating the hyperthyroid state [76, 77]. 

With regard to left heart function, a case-control 
study showed a high left ventricular end-diastolic 
diameter (LVEDD) and left ventricular end-systolic 
diameter (LVESD), compared to the control group. 
Furthermore, the left atrium volume index and left 
ventricular mass index were also increased in hyper-
thyroid patients. These parameters were successfully 
resolved back to normal after the restoration of euthy-
roidism [78]. 

A study with vector flow mapping (VFM), a novel 
method to visualise and describe a cardiac pathologi-
cal condition, showed no significant difference in left 
ventricular ejection fraction (LVEF), left ventricular 
end-diastolic diameter (LVEDD), and left atrium di-
ameter (LAD) between hyperthyroid patients and the 
control group (p > 0.05). Bozkus et al. also showed that 
LV systolic haemodynamic increases in a compensatory 
manner and suggested that VFM could be used to detect 
early pathological ventricular contraction in clinical 
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settings [79]. A study by Bozkus et al. on the effect of 
short-term L-thyroxine (LT4) suppression therapy on 
the cardiac function is shown in Table 3. 

Short-term LT4 suppression treatment with LT4 
decreased MLVDD and PWTD while increasing SV, SVI, 
CO, and CI. In addition, LT4 suppression treatment did 
not have a negative impact on diastolic function, as well 
as on the cardiac conduction system [80].

Subclinical hyperthyroidism and 
the cardiac functions measured by 
echocardiography

Subclinical hyperthyroidism is defined as a normal 
range of FT3 and FT4, and low TSH values. Subclini-
cal hyperthyroidism is associated with many CVDs, 
particularly AF. The prevalence of this disease is 
common in the general population, and its frequency 
depends on age, sex, and iodine intake. The elderly 
population aged ≥ 70 years have over 15% incidence 
of subclinical hyperthyroidism [51]. As mentioned 
earlier, subclinical hyperthyroidism patients are at 
a high risk of developing AF, and subsequently, at 
high risk of stroke [49–51]. However, a relationship 
between stroke and subclinical hyperthyroidism is 
unclear. The risk of stroke in this population is linked 
to their increased predisposition to AF and altered 
coagulation parameters [1, 32]. 

There are mixed data available on a link between 
subclinical hyperthyroidism and hypertension. While 
some studies have shown an increase in blood pressure, 
others have not found a clear link between subclinical 
hyperthyroidism and blood pressure [81]. Subclinical 
hyperthyroidism patients have an increased risk of 
developing heart failure (HF) [55, 81–83]. This could be 
due to an alteration in the heart caused by subclinical 
hyperthyroidism such as AF and diastolic dysfunction 
[81]. A randomised placebo-controlled trial on subclini-
cal hyperthyroid patients showed a diastolic dysfunc-
tion during echocardiography, which was reversed 

with treatment. In this study, the authors found a sig-
nificantly high mean left ventricular mass, and a high 
intraventricular septum thickness and posterior wall 
thickness in subclinical hyperthyroid patients. Frac-
tional shortening and LVEF were lower when com-
pared to the controlled group. Furthermore, diastolic 
function revealed abnormal values of E/A ratio, E and 
E’ velocities, EDT, and IVRT in subclinical hyperthyroid 
patients [82]. Finally, a meta-analysis of 290 subjects has 
shown a 1.4-fold increased risk of all-cause mortality 
in subclinical hyperthyroidism when compared with 
euthyroid [84]. In contrast, two meta-analyses showed 
no link between subclinical hyperthyroidism and car-
diovascular mortality [85, 86].

Effect of thyroid drugs on the heart

Levothyroxine
The use of levothyroxine to treat hypothyroidism has 
been shown to significantly improve total cholesterol, 
LDL-cholesterol, triglycerides, diastolic function, hyper-
tension, and heart rate and improves cardiac contractil-
ity in patients with cardiomyopathies [16, 97]. Adrees 
M et al. observed women receiving levothyroxine for 
18 months and noticed the normalisation of elevated 
systolic and diastolic blood pressure as well as a subse-
quent reduction in LDL cholesterol levels [97]. Another 
study showed that patients receiving a placebo pre-
sented progression in myocardial diastolic dysfunction, 
while patients receiving levothyroxine had no signifi-
cant changes [98]. Levothyroxine has been shown to 
precipitate arrhythmias and myocardial ischaemia, but 
its incidence is rarely reported [91]. 

The European Thyroid Association guidelines rec-
ommend treatment with levothyroxine in patients <65 
years with TSH >10 mLU/L, although it is still contro-
versial. A reduced dose of 25–50 mcg of levothyroxine 
is recommended as an initial starting dose for older 
patients (> 80 years) and those suffering from a cardiac 
disease [29]. 

Table 3. Effect of short-term treatment of overt hyperthyroidism on cardiac parameters. The results are compared when 
the patients were first diagnosed with hyperthyroid and after six months of treatment [79]

Baseline [mm] After 6 months [mm] p value

MLVDD 4.1 ± 0.3 3.8 ± 0.2 < 0.05

PWTD 0.9 ± 0.1 0.8 ± 0.1 < 0.05

SV 41.9 ± 9.9 48 ± 8.2 < 0.05

SVI 25.6 ± 5.4 29.4 ± 4.7 < 0.05

CO 3.5 ± 1.4 3.9 ± 0.9 < 0.05

CI 2.2 ± 0.8 2.4 ± 0.5 < 0.05

MLVDD — mean left ventricle diameter in diastole; PWTD — posterior wall thickness in diastole; SV — stroke volume; SVI — stroke volume index; CO — cardiac 
output; CI — cardiac index
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Radioactive iodine (RAI) and thyroid 
suppressing drugs
As mentioned before, untreated hyperthyroidism can 
cause tachycardia and ventricular dilation, leading to 
chronic heart failure [99]. Initial treatment with beta-ad-
renergic blockers is paramount in reducing the heart 
rate, followed by correction of thyroid dysfunction [16]. 
While anti-thyroid drugs can reduce the symptoms, 
they require a very long treatment plan to have an ef-
fect. Radioactive iodine (RAI) therapy is frequently used 
for definitive treatment. However, several studies have 
shown that radioactive iodine therapy can increase the 
mortality rate by altering myocardial and vascular im-
pairment, as well as causing other systemic effects. This 
may appear due to the initial exaggeration of hyperthy-
roidism caused by the damaging effects of RAI on the 
gland. It is more frequent in patients with overt than 
subclinical hyperthyroidism [99, 100]. However, RAI 
treatment that resulted with hypothyroidism was not 
associated with increased CVD morbidity compared to 
other methods of treatment (e.g. thyroidectomy) [101].

Amiodarone

Amiodarone-induced hypothyroidism
Amiodarone is widely used in the management of car-
diac arrhythmias and has been shown to cause thyroid 
dysfunction due to iodine load or the intrinsic effects 
of amiodarone itself [87]. It can cause amiodarone-in-
duced hypothyroidism (AIH) by the Wolff-Chaikoff 
effect [88]. Amiodarone-induced hypothyroidism is 
strongly linked with patients from iodine-sufficient 
areas or the presence of anti-thyroid antibodies [89]. It 
mainly manifests as primary hypothyroidism, and it is 
also believed that AIH progresses the pathogenesis of 
Hashimoto’s thyroiditis [90]. If the patient is suffering 
from a prior thyroid abnormality or amiodarone can-
not be withdrawn from the patient, then levothyroxine 
replacement therapy is recommended [90, 91].

Amiodarone-induced thyrotoxicosis 
Amiodarone can cause three types of thyrotoxico-
sis. Firstly, type 1 amiodarone-induced thyrotoxicosis 
(AIT 1) is an iodine-induced hyperthyroidism, mainly 
occurring in nodular goitres [92]. Secondly, type 2 
amiodarone-induced thyrotoxicosis (AIT 2), the most 
frequent form, occurs by destruction of the thyroid 
gland. Finally, a mixed type may also occur in which 
a patient may show an overlapping condition [92–94]. 
Diagnosis usually requires a low TSH and a high serum 
T3 and T4. Anti-thyroid antibodies are negative in AIT 2 
but positive in AIT 1. The use of ultrasound and nuclear 
medicine in combination are utilised to diagnose and 
differentiate the different types of AIT [94].

Management of thyrotoxicosis is paramount, espe-
cially in patients with cardiac dysfunction or reduced 
left ventricular ejection fraction (LVEF). Mortality 
is as high as 30–50% in AIT patients with low LVEF 
[94]. Total thyroidectomy is a preferred procedure for 
patients with severe heart disease, such as ventricu-
lar arrhythmias, post-infarction, or congenital heart 
disease [95]. 

Amiodarone should be continued in AIT patients 
if they have life-threatening arrhythmias and in those 
with poor prognosis. Treatment of AIT 1 is usually by 
antithyroid drugs and in certain cases by thyroidec-
tomy. Bartalena et al. recommend oral glucocorticoids 
as the first-line treatment for AIT 2, and if the patient 
presents as an emergency, then total thyroidectomy is 
suggested. Thionamide is recommended for patients 
with mixed form of AIT [96].

Treatment of thyroid cancer  
and cardiac muscle changes 

Thyroid cancer is the eighth most common cancer in the 
United States and is predicted to rise to be the fourth 
leading cancer by 2030 [102]. Thyroid surgery such as 
thyroidectomy is the mainstay treatment of thyroid 
cancer, and almost every patient with follicular and pap-
illary thyroid cancer receives post-operative adjuvant 
RAI. TSH suppression and TSH replacement regimen 
are often prescribed to reduce the risk of recurrence 
[103, 104]. Patients diagnosed with thyroid cancer are 
usually young and have excellent long-term survival 
expectancy.

Studies have shown that the use of RAI has a det-
rimental effect on the gastrointestinal, cardiovascular 
system and causes salivary dysfunction [105–107]. In 
addition, long-term TSH suppression increases the risk 
of cardiovascular-specific mortality and predisposes to 
pathologic skeletal condition [108–111].

A study of around 4000 thyroid cancer patients after 
their treatment showed that the proportion of people 
who died after the treatment were greater in those 
with CVD compared to patients without CVD (11.4% 
and 2.7%, respectively, p < 0.001). Furthermore, the 
risk of CVD increased if the patient was male (hazard 
ratio [HR]: 1.46; 95% CI: 1.31–1.62), overweight (HR: 
1.24; 95% CI: 1.11–1.39), obese (HR: 1.41; 95% CI: 
1.25–1.60), elderly (HR: 2.84; 95% CI: 2.24–3.27), those 
receiving TSH suppression therapy (HR: 1.25; 95% CI: 
1.12–1.40), with another comorbidity (HR: 4.47; 95% 
CI: 3.87–5.15), or having distant metastases (HR: 1.35; 
95% CI: 1.03–1.77) [112]. The results of this study are 
shown in Table 4.

Also, several studies have supported the findings of 
Park et al., who reported that TSH suppression and RAI 
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treatment significantly increase the risk of the chronic 
cardiovascular diseases due to alteration in myocar-
dial and vascular function. A reduction in TSH level 
increases the risk of cardiovascular mortality by 3.08 
(95% CI: 1.32–7.21) [99, 105, 108, 109]. Another study 
by Schultz et al., in a cross-sectional survey, showed 
that 9.7% of thyroid cancer survivors developed CVD 
within 10 years of diagnosis and treatment, with men 
affected more than women [113].

Thyroid hormone and heart failure

The relationship between heart failure and thyroid 
dysfunction has been increasingly investigated. T3 has 
been shown to have cardioprotective effects; therefore, 
it is no surprise that cardiac function may be impaired 
in cases of thyroid dysfunction [114]. A small propor-
tion of hyperthyroid patients present with dyspnoea on 
exertion, oedema, and neck vein distention indicative 
of congestive heart failure (CHF) [6]. The pathogenesis 
behind this is explained by the fact that TH decreases 
the SVR, which activates the renin-angiotensin-aldoste-
rone system, leading to retention of Na+ and fluid. The 
overall effect of hyperthyroidism is an increase in total 
blood volume and stroke volume. The cardiac effects 
of thyroid coupled with low SVR and increased total 
blood volume result in a high cardiac output state. This 
can, over time, lead to left ventricular (LV) dysfunction 
and heart failure [115]. Thyrotoxicosis can also cause 
tachycardia and can lead to tachycardia-mediated car-
diomyopathy (TMC), defined as secondary ventricular 
dysfunction, which is reversible through the normalisa-
tion of heart rate. 

Furthermore, hyperthyroidism should be sus-
pected in patients with unexplained right heart 
failure. The mechanism behind this is believed to 
be endothelial damage due to high cardiac output, 
which in turn increases the metabolism of intrinsic 
pulmonary vasodilators, increasing the pulmonary 

vascular resistance. Consequently, the right ventricle 
undergoes hypertrophy because of the increased re-
sistance against which it has to pump [17]. However, 
it must be noted that CHF due to hyperthyroidism 
is rare. If patients with high cardiac output are left 
untreated, they can develop systolic dysfunction 
and ultimately heart failure, but it is more common 
in patients with pre-existing heart disease [115]. The 
lack of TH can also increase the risk of HF [116]. It 
has been demonstrated through various experimen-
tal studies that hypothyroidism can cause cardiac 
atrophy due to a decrease in aMHC expression and 
an increase in bMHC expression. It can also lead to 
chamber dilation and decreased myocardial blood 
flow [117, 118]. Additionally, patients with HF, cardiac 
surgery, and myocardial infarction have an altered 
TH metabolism that may result in low serum T3 level, 
resulting in cardiac dysfunction [119]. HF caused by 
hypothyroidism is reversible and the American Col-
lege of Cardiology guidelines for HF recommend that 
all new cases of HF must be screened for thyrotropin 
levels [120]. 

Conclusion

Thyroid hormone dysfunction can have a devastat-
ing impact on the heart, such as arrhythmias, and 
systolic and diastolic dysfunction. Hypothyroidism 
has a different effect on the heart, and treatment with 
levothyroxine has been shown to improve some of this 
dysfunction. However, the treatment of subclinical 
hypothyroidism has been controversial and has mixed 
results; therefore, a more controlled trial is required for 
further clarification. It is worth noting that the aging 
population has to be screened thoroughly when clinical 
suspicion of any thyroid dysfunction is raised, because 
this population is more susceptible to detrimental 
cardiac dysfunction, which may result in death due to 
thyroid hormone abnormality. 

Table 4. Clinical characteristics of thyroid cancer survivors stratified by cardiovascular disease (CVD) diagnosis [112]

Characteristics Total (n = 3822) CVD after diagnosis No CVD p value

Female 3006 1278 1728 < 0.001

Male 816 441 375 < 0.001

Overweight 1145 609 536 < 0.001

Obese 680 415 265 < 0.001

Dead 252 196 56 < 0.001

Papillary carcinoma 3510 1564 1946 0.43

Surgery with radiation 2006 895 1111 0.40

TSH suppression therapy 941 465 476 0.002

TSH — thyroid-stimulating hormone
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