
153

Original paper

O
R

IG
IN

A
L 

PA
PE

R

Genetic testing of PAX8 mutations associated with thyroid 
dysgenesis in Chinese congenital hypothyroidism patients

Miaomiao Li1, 2, Fang Wang3, Xiuli Wang4, Yucui Zang1, 2, Wenmiao Liu1, 2, Fengqi Wang1, 2, Lu Zhang1, 2, 
Qian Tang1, 2, Shiguo Liu1, 2, Dehua Zhao5

1Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
2Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
3Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
4Neonatal Disease Screening Center, Xuzhou Maternity and Child Health Care Hospital,  Xuzhou, China
5Department of Henan Newborn Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Abstract 
Introduction: Thyroid dysgenesis (TD) is the main cause of congenital hypothyroidism (CH), affecting nearly 1 in 2000–3000 newborns 
worldwide, as the most common neonatal endocrine disorder. Paired box gene 8 (PAX8), expressed during all stages of thyroid follicular 
cell, plays a key role in thyroid morphogenesis by a complex regulatory network. In conclusion, the genetic mechanism of PAX8 mutant 
in TD is still ambiguous; therefore, further research is needed. 
Material and methods: Blood samples were collected from 289 TD patients in Shandong Province, China. Genomic DNA was extracted from 
peripheral blood. All the exons of PAX8 along with their exon-intro boundaries were amplified by PCR and analysed by Sanger sequencing.
Results: We identified three novel PAX8 nonsense mutations in three patients by sequence analysis of PAX8: Patient 1 (c.285C>G, 
p.Tyr95Ter), Patient 2 (c.747T>G, p.Tyr249Ter), and Patient 3 (c.786C>A, p.Tyr262Ter). All the three patients carrying PAX8 variants had 
obvious clinical phenotypes of thyroid anomaly, such as hypoplasia and athyreosis.
Conclusion: We conducted the largest worldwide PAX8 mutation screening so far in TD patients. Three presumably pathogenic PAX8 mu-
tations were detected in 289 TD cases for the first time, showing the mutation rate of PAX8 is 1.04% in Chinese TD patients. In addition, 
our study expands the gene mutation spectrum of TD. (Endokrynol Pol 2020; 71 (2): 153–159)
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Introduction

Congenital hypothyroidism (CH) is the most com-
mon neonatal endocrine disorder affecting nearly 1 
in 2000–3000 newborns worldwide, and the severe 
deficiency of thyroid hormone can lead to mental re-
tardation and growth failure if not treated in a timely 
manner [1]. Thyroid dysgenesis (TD), the main cause 
of CH, accounting for 80–85% of CH cases, caused by 
the abnormalities of thyroid gland development and 
migration, can be divided into three subtypes (agenesis, 
ectopy, and hypoplasia) according to the morphology 
and location of the thyroid gland [2]. 

In humans, thyroid development can be divided 
into six stages: the thyroid anlage assembled by thyroid 
progenitors (E20–22); the appearance of the thyroid bud 
(E24); the migration of the thyroid (E30–40); the comple-
tion of thyroid migration (E45–50); thyroid bilobation 
and folliculogenesis (E60); and the completion of dif-
ferentiation and organogenesis (E70) [3]. In this process, 
thyroid morphogenesis is a coordinated spatial and tem-

poral process, which, when altered, can result in agen-
esis, ectopy, and hypoplasia [4, 5]. Various transcription 
factors play important roles in the thyroid development, 
especially haematopoietically expressed homeobox gene 
(HHEX), thyroid transcription factor 1 (TTF1/NKX2.1), 
thyroid transcription factor 2 (TTF2/FOXE1), and paired 
box gene 8 (PAX8), the expression of which can be de-
tected at E20 and forms a complex regulatory network 
to induce morphological changes [6]. PAX8 regulates the 
expression of FOXE1, HHEX, DUOX2, TG, and TPO [7–9] 
but can be regulated by HHEX and NKX2.1 simultane-
ously. In addition, PAX8 expression is autoregulated;  the 
cross-regulatory network ensures that PAX8 is a master 
regulator in thyroid development. Furthermore, muta-
tions in PAX8 combined with NKX2.1, FOXE1, NKX2.5, 
TSHR, NTN1, JAG1, BOREALIN, and GLIS3 have been 
identified in patients with TD [10].

PAX8 (NM_003466.4), located on human chromo-
some 2q12-q14, can be divided into 12 exons. The 
PAX8 protein has a bipartite functionality consisting of 
a highly conserved DNA binding region in N-terminal 
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screening of newborns in Shandong Province from January 2015 to 
November 2017. Neonatal screening for CH was proceeded in all of 
the subjects 72 hours after birth with blood samples from the heel. 
Then the concentrations of thyroid-stimulating hormone (TSH), 
free/total triiodothyronine (T3), and free/total thyroxine (T4) in se-
rum were detected, respectively, using electro-chemiluminescence 
kits: Elecsys TSH, Elecsys FT3III, and Elecsys FT4III (Roche, Ger-
man). The diagnosis of CH was based on a high serum TSH level 
(TSH ≥ 10 mIU/L) and a low fT4 level (fT4 < 12 pmol/L). When the 
CH patients were three years old, they underwent thyroid echog-
raphy and scintigraphy to establish the cause of CH. All the 289 
patients selected for further research had been diagnosed as TD. 
The present study was approved by the Ethics Committee of the 
Affiliated Hospital of Qingdao University (2013-qdfy22). Informed 
consent was obtained from all individuals included in this study. 
The research related to human use complied with all the relevant 
national regulations and institutional policies, was in accordance 
the tenets of the Helsinki Declaration, and was approved by the 
authors’ Institutional Review Board or equivalent committee.

Methods
Genomic DNA was extracted from peripheral blood with TIANGEN 
blood kit (TIANGEN, Beijing, China). All the exons of PAX8 along 
with their exon-intro boundaries were amplified by PCR, with the 
specific primer as Table 1. The PCR reaction solution contained 

and a transactivation region in C-terminal [11, 12].  
Expressed during all stages of thyroid follicular cell (TFC) 
and in adults [13], PAX8 plays a key role in thyroid mor-
phogenesis. In pax8-/- mice at E11.5, thyroid primordium 
appears to be much smaller (hypoplastic thyroid) than 
in wild-type and is essentially undetectable at E12.5 fol-
licular cells [14, 15]. In vitro, PAX8 is a master gene for 
the regulation of the thyroid differentiated phenotype 
in several thyroid-derived cell lines [16]. Therefore, PAX8 
is required for thyroid bud survival and TFC differentia-
tion, and mutations in PAX8 may lead to TD [16, 17]. In 
the present study, we aimed to identify potential patho-
genic PAX8 mutations in 289 Chinese children with TD, 
thereby providing insights into its aetiology. 

Material and methods

Patients
Sixty-three TD patients were collected for screening variations in 
exon3 and exon4 of PAX8 in our preliminary study. In this research, 
we collected another 289 patients with TD identified through 

Table 1. The primer sequence for polymerase chain reaction (PCR) of PAX8

Primer Sequence Tm PCR product Product length [bp]

E1-F AGGGCATCCTACAGAGACCA 55
Exon 1 547

E1-R TCCCGTTTAACTTGGGAGGG 56

E2-F TCCTCCTACTCCTGGCAGAC 60
Exon 2 471

E2-R AGAGATCCCCTCACCGATCC 60

E3-F TTGGGAGTGAGAACTGGGGA 60
Exon 3 421

E3-R GGGGAATTCTCTAGCTGCCC 60

E4-F GAGGCCTTTAGCAGAGGGTG 60
Exon 4 451

E4-R GACACCAGAGGCTGCTTTCT 60

E5-F GGGTGTCAAAAAGGCGACTG 60
Exon 5 372

E5-R TCAGTGAATCTGCCCTGGGA 60

E6-F ACTCTCACTCCCTGACCCTC 60
Exon 6 446

E6-R CACATGCAGAGCCCCTACAA 60

E7-F GCCCTTTTTCTCCCTCCACA 60
Exon 7 549

E7-R ATCATCAGGTTGTGCTGCCA 60

E8-F TGCCGAGTGGAGTTGAGAAC 60
Exon 8 414

E8-R CTGGGCCCACCTGGC 59

E9-F CTTGGCTTGTGCGTGTTCC 60
Exon 9 401

E9-R CTCCAAAAGTTGCCGGAGGA 60

E10-F GTGGGAATGGCATGGAGGAA 60
Exon 10 468

E10-R GTCTCAGCCCCTCCCTTTTC 60

E11-F CTCCAACTGTCTCCCCAACC 60
Exon 11 452

E11-R CATGGGCTTGAGAAGCAGGA 60

E12-F-1 CAGGGAAGGCTATGGTGCAA 60
Exon 12-1 1508

E12-R-1 GTGAGGTACCCAGCGTTCAA 60

E12-F-2 CATCAGAGCTGAGTAGCCGA 59
Exon 12-2 1389

E12-R-2 ACAGTCAACAAACACCCGCT 60
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1 × TransStart® FastPfu buffer with 0.2 mM dNTP, 1.25 units of 
TransStart® FastPfu DNA polymerase, 50 ng Genomic DNA, and 
0.2 μM of each primer; the total volume was 25 μl. The procedure 
of the PCR amplification was as follows: step 1 — denaturation at 
95∞ for 2 min; step 2 — denaturation at 95∞ for 20 s; step 3 — an-
nealing at primer-specific temperatures for 20 s; step 4 — extension 
at 72∞ for 20 s or 60 s; step 5 — incubated at 72∞ for 5 min. Steps 2 
to 4 were cycled 35 times. A BigDye® Terminator Cycle Sequenc-
ing Kit and automated sequencer ABI 3730XL were used for the 
sequencing reaction of the PCR products. The sequencing results 
were interpreted using BioEdit software.

Results and clinical report

Genetic screening of PAX8 mutation
A total of 289 TD patients were enrolled in this study, 
the ratio of male to female was 1:1.05. According to the 
location and size of the thyroid gland, TD was classified 
into agenesis (120 cases, 41.5%), ectopy (94 cases, 32.5%), 
and hypoplasia (75 cases, 26%). Sanger sequencing 
analysis of PAX8 leading to the discovery of three novel 
PAX8 variants in three patients: Patient 1 (NG_012384.1 
(NM_003466.4): c.285C>G, p.Tyr95Ter); Patient 2  
( NG_012384.1 (NM_003466.4): c.747T>G, p.Tyr249Ter), 

and Patient 3 (NG_012384.1 (NM_003466.4): c.786C>A, 
p.Tyr262Ter); the sequence maps of the variants is 
shown in Figure 1. All the variants located in the evo-
lutionary conserved protein domains of PAX8 were 
not detected in 200 control individuals or in the Exome 
Sequencing Project (ESP) or the 1000 Genomes Project 
databases. 

Analysis of the relationship between genotype 
and phenotype
The three patients carrying PAX8 mutations had obvi-
ous clinical phenotype of thyroid anomaly, such as 
hypoplasia and athyreosis (Tab. 2). The medical records 
in detail are as follows.

Patient 1, a female infant with p.Tyr95Ter mutation 
in PAX8, was born at 39 weeks of gestation by vaginal 
delivery with 3250 g birth weight. High TSH levels 
(208 μIU/mL) were detected at five days of age during 
neonatal screening; she was recalled at 18 days of age 
for further evaluation, and the TSH serum level had 
increased to 384 μIU/mL, the FT3 level was 2.28 pmol/L, 
and the FT4 level was 4.12 pmol/L. There was no fam-

Figure 1. Sequence maps of PAX8 gene. P1 — sequence of Patient 1 with the PAX8 variant c.C285G; P2 — sequence of Patient 2 with 
the PAX8 variant c. T747G; P3 — sequence of Patient 3 with the variant c. C786A; C1, C2, and C3 is the corresponding sequence in 
the general population
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ily history of thyroid disease. Tc-99 m scans confirmed 
hypoplasia. Levothyroxine (L–T4) replacement therapy 
was started at an initial dose of 25 μg per day. We lost 
contact with this patient until 3.5 years of age. Then 
we contacted her parents and learned that the patient 
was receiving L–T4 33.3 μg replacement therapy. Half 
a year after withdrawal of L–T4 therapy, her TSH levels 
were outside the normal range for her age (five years). 
Therefore, L–T4 25 μg replacement therapy has been 
needed until now.

Patient 2 with p.Tyr249Ter mutation was a female 
who weighed 3000 g at birth by vaginal delivery. She 
was recalled for further analysis after high TSH levels 
(232 μIU/mL) were detected at six days of age during 
neonatal screening. At 13 days of age, TSH levels were 
284 uIU/L, FT3 levels were 4.31 pmol/l, and FT4 levels 
were 8.71 pmol/L. Therefore, L–T4 25 μg replacement 
therapy was started immediately with re-examination 
of TSH levels per mouth. At two years old, she was 
diagnosed with permanent CH, and persistent treat-
ment was prescribed because TSH levels were outside 
the normal range after a four-week withdrawal of 
L–T4 therapy. Tc-99 m scans showed hypoplasia. L–T4 
30 ug replacement therapy was restarted. She is now  
12 years old, and her physical and intellectual develop-
ment are normal. The dosage of L–T4 was increased to  
62.5 μg per day.

Patient 3 was a male subject with a p.Tyr262Ter muta-
tion. He was born at full-term by caesarean delivery, and 
his birth weight was 3750 g. Routine neonatal screening 
showed a high TSH level of 186 μIU/mL at three days of 
age. Then, the patient was recalled at 19 days to review 
the serum TSH level which had increased to 294 μIU/mL 
but the FT4 (2.8 pmol/L) and FT3 (2.2 pmol/L) levels 
were both low. L–T4 replacement therapy was started 
immediately at a dose of 25 μg. Tc-99 m scans detected 
an athyreosis. At two years of age, he was diagnosed 
with permanent CH. Now he is four years old, with 
normal physical and mental development.

Discussion

PAX8 induces thyroid morphogenesis by cooperating 
with other transcription factors, such as HHEX, NKX2.1, 
and FOXE1. The regulatory function of PAX8 is closely 

related to its molecular structure, which consists of 
two functional domains: a paired box domain for DNA 
binding; and an octapeptide and a residual paired type 
homeodomain for transaction. The paired box domain 
consists of 128 amino acids positioned between 9 and 
137, the octapeptide is between 180 and 187, and the 
residual paired type homeodomain is between 228 and 
250, all the domains are highly conserved in human 
PAX protein family [12, 18]. 

The first description about PAX8 variants was 
conducted by Macchia in 1998; three mutations in 
two sporadic patients (p.R31H, p.L62R) and one fa-
milial case (p.R108X) resulted in severe reduction of 
the DNA-binding activity of PAX8, causing thyroid 
hypoplasia [19]. Vilain identified p.C57Y in a TD 
patient; the mutation resulted in loss of the ability to 
activate thyroid peroxidase (TPO) gene [20]. In these 
cases, PAX8 mutations were inherited in an autosomal 
dominant manner. However, the same mutation site in 
a familial case may result in different clinical pheno-
types. Esperante described a thyroid hypoplasia patient 
and his family carrying mutation p.T225M, while the 
father, brother, and sister were asymptomatic; and 
a thyroid agenesis patient and her mother carrying 
mutation p.G336S, while the mother was unaffected, 
suggesting that the variable penetrance or expressivity 
of the mutational carrier can be modulated not only by 
genetic but also by epigenetic factors [18]. In conclu-
sion, the genetic mechanism of PAX8 mutant in TD is 
still ambiguous; therefore, more research is needed in 
future studies.  

In present study, all the patients carrying the novel 
variant of PAX8 had symptoms of obvious abnormal 
thyroid. Variant Y95X located at paired box domain, 
variant Y249X at homodomain, and variant Y262X at 
transactivation domain of PAX8 protein (Figure 2) led 
to PAX8 dysfunction, with most or all of transactivation 
domain lost. Carrying the heterozygous variant, P1-3 
was detected with high level of TSH during neonatal 
screening, and then P1 and P2 were diagnosed as hypo-
plasia by ultrasound examination; P3 was athyreosis. It 
is possible that the nonsense variants led to nonsense 
mediated decay of the mutated mRNA, thus the TD 
phenotype could be due to haploinsufficiency of PAX8 
protein. The actual functional consequences of PAX8 

Table 2. Clinical characteristics of four congenital hypothyroidism (CH) patients carrying genetic variants

Subject Age Sex TSH [uIU/mL] FT4 [pmol/L] Variant Clinical phenotype

Patient 1 10 Girl 384 4.12 p.Tyr95Ter Hypoplasia

Patient 2 12 Girl 284 8.71 p.Tyr249Ter Hypoplasia

Patient 3 13 Boy 294 2.8 p.Tyr262Ter Athyreosis

TSH — thyroid-stimulating hormone; FT4 — free thyroxine
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truncating mutations are yet to be further investigated, 
and thus more experiments in vitro are still needed for 
pathologic study. 

Because PAX8 plays a key role in thyroid morpho-
genesis, many researches have screened PAX8 mu-
tations in a large number of CH patients to get the 
mutational frequencies and relationship between 
genotypes and phenotypes. Kumorowicz-Czoch 
found two novel heterozygous substitutions (c.68G>A, 
p.G23D; c.*416C > T) in 48 Polish CH patients, and the 
PAX8 mutation rate is 4.17% [21], while Al Taji E identi-
fied a novel mutation (c.155G>C, p.R52P) in 170 CH 
patients, and the PAX8 mutation rate in the Czech Re-
public is 0.6% [22]. In addition, Ramos HE analysed 35 
patients with thyroid hypoplasia in southern Brazil and 
identified a patient with PAX8 mutation (c.155G>C; 
p.R52P), and suggested the mutation rate to be 2.9% 
[23].  Cangul and Kirsten Lanzerath did not find any 
PAX8 mutation in 120 CH patients in Pakistan and the 
United Kingdom and 95 CH patients in south-west 
Germany, respectively [24, 25], showing the low muta-
tion rate of PAX8 in these countries. All these findings 
confirmed the contribution of PAX8 mutations to the 
aetiology of CH with a variable penetrance, and rare 
overall incidence.

In 2012, we analysed exon3 and exon4 of PAX8 in 
300 CH patients, and then reported a heterozygous 
missense mutation (c.G92>A, p.R31H) and a varia-
tion (c.122G>T, p.G41V) in PAX8, showing that the 
PAX8 mutation rate (0.67%) is very low in CH patients 
in China [26]. In 2015, we collected 63 TD patients and 
found a heterozygous missense de novo mutation 
(c.155G>C, p.R52P) in PAX8 by sequencing exon3 and 
exon4; the mutation rate in Chinese TD patients is 
1.59% [27]. The mutation rate of PAX8 in TD patients 
is obviously higher in CH patients, illustrating PAX8 
induced CH by influencing thyroid development or 
migration from a different aspect. To further deter-
mine the mutational frequencies of PAX8 in Chinese 

TD patients, we expanded the sample size to 289 and 
analysed all the 12 exons and exon-intro boundar-
ies. Ultimately, we discovered three novel variants; the 
mutation rate was 1.03%. 

Conclusion

We conducted the largest worldwide PAX8 mutation 
screening so far in TD patients, and three novel PAX8 
nonsense variants were identified in three of 289 TD 
cases; the mutation rate of PAX8 was 1.03%. However, 
there are still two limitations in this study: first, we 
did not construct the three variants for functional 
verification; and second, we did not make the genetic 
analysis in familial cases due to lack of samples from 
their parents. Therefore, it is necessary to explore the 
mechanism for the effects of mutations and screen 
the mutations of PAX8 among large samples in future 
research.
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Figure 2. Schematic representation of human PAX8 protein domains
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