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Abstract 
Introduction: Maturity onset diabetes of the young (MODY) is a rare form of monogenic diabetes. Being clinically and genetically hetero-
geneous, it is often misdiagnosed as type 1 or type 2 diabetes, leading to inappropriate therapy. MODY is caused by a single gene muta-
tion. Thirteen genes, defining 13 subtypes, have been identified to cause MODY. A correct diagnosis is important for the right therapy, 
prognosis, and genetic counselling.
Material and methods: Twenty-nine unrelated paediatric patients clinically suspected of having MODY diabetes were analysed using 
TruSight One panel for next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA) assay. 
Results: In this study we identified variants in MODY genes in 22 out of 29 patients (75.9%). Using two genetic tests, NGS and MLPA, we 
detected both single nucleotide variants and large deletions in patients. Most of the patients harboured a variant in the GCK gene (11/22), 
followed by HNF1B (5/22). The rest of the variants were found in the NEUROD1 and HNF1A genes. We identified one novel variant in 
the GCK gene: c.596T>C, p.Val199Ala. The applied genetic tests excluded the suspected diagnosis of MODY in two patients and revealed 
variants in other genes possibly associated with the patient’s clinical phenotype.
Conclusions: In our group of MODY patients most variants were found in the GCK gene, followed by variants in HNF1B, NEUROD1, 
and HNF1A genes. The combined NGS and MLPA-based genetic tests presented a comprehensive approach for analysing patients with 
suspected MODY diabetes and provided a successful differential diagnosis of MODY subtypes. (Endokrynol Pol 2019; 70 (1): 28–36)
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Streszczenie
Wstęp: Cukrzyca MODY to rzadka forma cukrzycy monogenowej. Z uwagi na jej zróżnicowanie kliniczne i genetyczne często jest błędnie 
diagnozowana jako cukrzyca typu 1 lub 2, co prowadzi do zastosowania niewłaściwego leczenia. Cukrzyca MODY jest spowodowana 
mutacją pojedynczego genu. Zidentyfikowano 13 genów, których mutacje powodują 13 podtypów cukrzycy MODY. Postawienie prawi-
dłowej diagnozy jest ważne, ponieważ umożliwia zastosowanie właściwego leczenia, określenie rokowania i poradnictwo genetyczne.
Materiał i metody: Używając panelu genów TruSight One do sekwencjonowania nowej generacji (NGS) i zależnej od ligacji multiplekso-
wej amplifikacji sond (MLPA), zbadano 29 niespokrewnionych pacjentów pediatrycznych z podejrzeniem klinicznym cukrzycy MODY. 
Wyniki: Warianty genów związanych z cukrzycą MODY zidentyfikowano u 22 spośród 29 chorych (75,9%). Za pomocą dwóch badań 
genetycznych, NGS i MLPA, wykryto u chorych zarówno warianty pojedynczego nukleotydu, jak i duże delecje. U większości chorych 
występowały warianty genu GCK (11/22) i (nieco rzadziej) genu HNF1B (5/22). Pozostałe warianty dotyczyły genów NEUROD1 i HNF1A. 
Zidentyfikowano jeden nowy wariant w genie GCK: c.596T>C, p.Val199Ala. Zastosowane badania genetyczne pozwoliły wykluczyć 
cukrzycę MODY u dwóch chorych i wykazały warianty w innych genach prawdopodobnie związane z fenotypem klinicznym pacjentów.
Wnioski: W badanej grupie chorych z cukrzycą MODY większość wariantów wykryto w genie GCK. Warianty występowały również 
w genach HNF1B, NEUROD1 i HNF1A. Połączenie badań genetycznych NGS i MLPA umożliwia kompleksową analizę u chorych z podej-
rzeniem cukrzycy MODY i jest skuteczną metodą w diagnostyce różnicowej podtypów cukrzycy MODY. (Endokrynol Pol 2019; 70 (1): 28–36)

Słowa kluczowe: MODY; NGS; MLPA; rozpoznanie różnicowe

Introduction 

Maturity onset diabetes of the young (MODY) is a rare, 
monogenic type of diabetes that results from dysfunc-

tion of pancreatic b-cells. It is characterised by an onset 
of hyperglycaemia before 25 years of age, autosomal 
dominant inheritance, and some forms are insulin in-
dependent upon diagnosis. MODY is found in 1–2% of 
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did not fully satisfy criteria for diabetes type 1 or 
type 2. They met the criteria for a clinical diagnosis of 
monogenic diabetes: hyperglycaemia detected before 
the age of 25 years, presence of diabetes in the family, 
with autosomal dominant mode of inheritance, and 
in most cases insulin independence upon diagnosis of 
diabetes. Some patients had additional renal abnor-
malities. Clinical characteristics of patients included 
in the study are presented in Table I.

The study was approved by the Ethics Committee 
of the Children’s University Hospital, Belgrade and was 
performed in accordance with the ethical standards 
of the Declaration of Helsinki. Informed consent was 
obtained from all participants included in the study.

DNA Extraction and next-generation sequencing
The DNA was extracted from whole blood samples us-
ing a QIAamp DNA Blood Mini Kit (Qigen, Germany) 
following the manufacturer’s protocol. 

Sequencing of genes was performed using Illumi-
na’s TruSight One Sequencing Panel (Illumina, San Di-
ego, CA) containing 4813 clinically relevant genes. This 
panel contains all reagents necessary for tagmentation, 
indexing, amplification, and enrichment of the samples 
(library preparation). Each step was carried out accord-
ing to the manufacturer’s instructions. The library was 
quantified on the Qubit 2.0 Fluorometer and sequenced 
on an Illumina MiSeq instrument (Illumina, San Diego, 
CA) using 150bp paired-end reads. The generated se-
quencing data were submitted for analysis if the data 

all patients with diabetes. Due to overlapping clinical 
features with the common types of diabetes, type 1 and 
type 2, MODY could be misdiagnosed [1–3].

MODY arises from changes in single genes im-
portant for function, regulation and development of 
b-cells, glucose sensing or interaction with insulin [4]. 
Until now genetic variants of 13 genes have been as-
sociated with MODY. The most affected MODY genes 
are HNF1A, GCK, and HNF4A followed by HNF1B 
[1, 4]. Each gene manifests a distinct clinical subtype. 
GCK-MODY subtype is unique because usually it does 
not require therapy and is not associated with the 
risk of microvascular complications [5]. In the case of 
HNF1A/4A-MODY subtypes, low doses of sulphonyl-
urea provide better glycaemic control than treatment 
with insulin [6]. Renal impairment is a dominant clini-
cal feature for HNF1B-MODY subtype, where insulin 
therapy is usually required [7, 8]. 

Distinguishing MODY diabetes from type 1 and 
type 2 diabetes, as well as determining the exact 
MODY subtype, has a great therapeutic and prognos-
tic value for the patients. Patients with undiagnosed 
MODY diabetes are treated as type 1 or type 2 diabe-
tes [9]. Consequently, they may receive unnecessary 
therapy or have difficulties in achieving a good gly-
caemic control [6, 9]. The clinical criteria, according to 
which MODY patients are recognised or distinguished 
from other diabetic patients, are not sufficiently sen-
sitive and are overlooked in half of MODY cases [3]. 
Genetic testing can determine if a patient’s diabetes 
has a genetic cause, but it can also provide a correct 
sub-classification of MODY patients and the best 
management option [10].

Here we aimed to genetically characterise clini-
cally suspected MODY patients, evaluate the relative 
frequency of MODY subtypes and to examine the na-
ture of variants in MODY genes of Serbian paediatric 
patients. We used two different methods to analyse 
genes relevant for MODY: next-generation sequencing 
(NGS) and MLPA (multiplex ligation-dependent probe 
amplification) assay. This comprehensive approach 
for detection of both single nucleotide variants and 
large deletion in MODY genes enables a successful 
differential diagnosis of MODY subtypes. Additionally, 
it provided the first steps for implementing genetic 
diagnosis of MODY in Serbia. 

Material and methods

Subjects and clinical characteristics
Twenty-nine unrelated paediatric patients and 38 
family members were included in this study. Patients 
were treated at the Children’s University Hospital in 
Belgrade, Serbia. They all had atypical diabetes that 

Table I. Clinical characteristics of patients included in the 
study
Tabela I. Charakterystyka kliniczna chorych włączonych 
do badania

Patients 29

Male/female 23/6

Diabetes

Age [years, M ± SD (range)] 15.76 ± 3.96 (8.0–25.0)

Age at diagnosis  
[years, M ± SD (range)]

12.57 ± 3.74 (7.0–20.0)

Fasting glucose level [mmol/l] 6.69 ± 1.47

HbA1c (%) 6.12 ± 0.84

BMI [kg/m2] 20.21 ± 3.67

Family history of diabetes [yes] 21

Therapy 

Yes [Insulin/OHA] 6 (2/4)

No* 23

Other clinical features 

Renal malformations 9

Clinical parameters are presented as mean ± SD; OHA — oral hypoglycaemic 
agents; *patients without therapy or on diet management
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passed the acceptance criteria for analytical runs ac-
cording to the manufacturer’s instructions. 

Processing sequencing data
Sequencing data were aligned to the hg19 genome 
within Variant Studio Software (Version 2.2, Illumina 
Inc.) and filtered under conditions of heterozygous 
and homozygous mutations and frequency below 
5%. The following genes were analysed: HNF4A, 
GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, 
PAX4, INS, BLK, ABCC8, and KCNJ11. Variants report-
ed by the software as deleterious, damaging/probably 
damaging, or without any prediction were further 
inspected. They were checked in literature and 
public databases: HGMD database (public version), 
Ensemble (https://www.ensembl.org/), ExAc (http://
exac.broadinstitute.org), dbSNP (http://www.ncbi.
nlm.nih.gov/snp), and ClinVar (https://www.ncbi.

nlm.nih.gov/clinvar/). Novel variants were evaluated 
in silico using online predicting algorithms: Mutation 
Taster (http://www.mutationtaster.org/), SIFT (http://
sift.jcvi.org/), and PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/). Additionally, variants were 
searched for in our population-specific TruSight 
One-derived variant database. Variants classified as 
tolerated or benign by the software were excluded 
from further analysis.

Validation of pathogenic variants
Variants recognised as pathogenic were validated by 
a standardised Sanger sequencing method (BigDye® 
Terminator v3.1 Cycle Sequencing Kit [Applied Bio-
systems®]). Primers were designed for each variant 
using the Primer Blast online tool (www.ncbi.nlm.nih.
gov/tools/primer-blast/). Primer sequences and PCR 
conditions are presented in Tables II and III.

Table II. Primers sequences and annealing temperatures for each PCR reaction
Tabela II. Sekwencje primerów i temperatura hybrydyzacji (annealing) każdej reakcji

Gene Exon Primer sequence (5’ to 3’) PCR product (bp) Annealing Temp.* (°C)

GCK

3
F TAG TCC CTT GTG CCT TCC CT

380 60
R CTC CCC ACC CCT GGT AGA CA

4
F CAT TCA GTG GCC AGG TGT TG

320 59
R GGG GGC TAC ATT TGA AGG CA

5
F GGG ACT CAG CCC TGC AGA AAT A

380 60
R TGG AAG CCA AGG AGA AAG GCA

6
F AGG GCA TCC TTC TCA ACT GG

434 60
R ACC AGG CTC TGC TCT GAC ATC

7
F TGA AGC AAC CCA GGT CTT CC

506 60
R GAG CAG AAG GGA TGG AGC TT

8
F TGA ACC AGC TGG GGG AGT G

374 60
R GAG ACC AAG TCT GCA GTG CC

9
F ATC GCC CCC ATT TCT CCA GAG

489 58
R ATC TTG GAG CTT GGG AAC CGC

HNF1B

1
F CGG GGA GTA ACA GGT GTC TG

596 58
R GGG ACT TCT CTG GTG GGA AAC

2
F CCT CAT GTC TAC CCC AAA GTT G

484 58
R GGC CAA ATC TAC TTG CCA CC

4
F TCT TCT CCT CGA GAG CCA CA

576 59
R AGA TCC GTG GCA AGA ACC AG

HNF1A

1
F GAG TTT GGT TTG TGT CTG CCG

521 60
R GGG GAC TCA ACT CAG AAG GG

4
F TGC TCA CCC AAT TCG ATT CTC T

605 60
R GCA TGA ATG GAA TGG AAC CAA ACT

NEUROD1 2
F CGC AAG GTG GTG CCT TGC TAT TC

596 60
R GCA GCG GTG CCT GAG AAG ATT G

Primer sequences and PCR temperature profile for Sanger validation of detected variants. PCR reactions were performed using QIAGEN Hot Start Taq® DNA 
polymerase kit (Germany) according to manufacturer’s recommendations.
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Multiplex ligation-dependent probe amplification
SALSA P241-B MODY kit (MRC-Holland, Amsterdam, 
The Netherlands) for multiplex ligation-dependent 
probe amplification assay (MLPA) was used to detect 
genomic rearrangements in genes for most common 
subtypes of MODY diabetes: HNF4A, GCK, HNF1A, 
and HNF1B. MLPA was carried out using 120 ng of 
genomic DNA according to the manufacturer’s instruc-

tions. Coffalyser® software was used for graphic and 
statistical analysis.

Results

In order to provide a genetic diagnosis for 29 clinically 
suspected MODY patients, two methods were used. 
Using the TruSight One panel for next-generation 
sequencing, all genes confidently likened to MODY 
diabetes were analysed. When there was a suspicion of 
a HNF1B-MODY phenotype MLPA assay was addition-
ally used in order to identify large deletions as a po-
tential cause of this subtype of MODY diabetes. MLPA 
assay was also used if no changes in MODY genes were 
found in patients by sequencing. By this approach 
we detected variants in MODY genes in 22 out of 29 
patients (75.9%). Detected variants are summarised in 
Table IV. Sanger sequencing was used to validate de-
tected variants, and false positives were not detected.

Table III. Temperature profile for all reactions
Tabela III. Profil temperaturowy wszystkich reakcji

Reaction Temperaure Time

Initial denaturation 95°C 15 min

Denaturation 95°C 30 s

Annealing *°C 30 s

Extension 72°C 45–60 s

Final extension 72°C 10 min

Table IV. Variants in MODY genes identified by NGS and MLPA assay
Tabela IV. Warianty genów związanych z cukrzycą MODY wykryte za pomocą badań NGS i MLPA

No. P. NGS MLPA MODY 
gene Exon Type of sequence 

change cDNA change Protein change References

1 ü GCK 3 Missense c.214G>A p.Gly72Arg [45, 46]

1 ü GCK 4 Missense c.446C>T p.Thr149Ile [16]

1 ü GCK 5 Missense c.533G>A pGly178Glu [47]

1 ü GCK 5 Missense c. 572G>A p.Arg191Gln [18, 48]

1 ü GCK 6 Missense c.596T>C p.Val199Ala Novel

1 ü GCK 7 Missense c.745G>C p.Gly249Arg [49]

1 ü GCK 7 Missense c.763A>G p.Thr255Ala [19]

1 ü GCK 7 Missense c.781G>A p.Gly261Arg [19, 50–52]

1 ü GCK 7 Missense c.812T>C p.Leu271Pro ClinVar database

1 ü GCK 8 Missense c.908G>T p.Arg303Leu [53]

1 ü GCK 9 Missense c.1148C>T p.Ser383Leu [45, 54]

1 ü ü HNF1A 1 Missense c.293C>T p.Ala98Val [36, 55]

1 ü HNF1A 4 Insertion c.872dupC p.Pro291fs [32, 56–58]

1 ü HNF1B 1 Missense c.182T>G p.Val61Gly [59]

1 ü ü HNF1B 2 Deletion c.477delT p.Met160Terfs [60]

1 ü HNF1B 4 Missense c.1006C>G p.His336Asp [61]

1 – ü HNF1B 1, 2, 3 Exon deletion c.1-?_809+?del p.Met1_Arg270del [62]

1 ü ü HNF1B 3, 4 Exon deletion c.545-?_1045+?del p.Gln182_Ser384del [62][63]

2 ü ü NEUROD1 2 Missense c.590C>A p.Pro197His [43]

1 ü NEUROD1 2 Missense c.590C>A p.Pro197His (hom*)

1 ü NEUROD1 2 Missense c.750C>A p.Ser250Arg ExAc, dbSNP 
databases#

Sequence information is based on GeneBank reference sequences GCK: NM_000162.3; HNF1A: NM_000454.5; HNF1B: NM_0004585.2; NEURD1: NM_002500.4; 
#variants were found only in sequencing databases; No.P. — number of patients; hom* — variant in homozygous state; NGS — DNA samples analysed by Next generation 
sequencing method and TruSight One Panel; MLPA — DNA samples analysed by Multiplex Ligation-dependent Probe Amplification using SALSA P241-B probemi
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Variants in GCK gene
In the GCK gene we detected 11 different variants, one 
in each of the patients. This presents 50% of all detected 
variants in different MODY genes in 22 patients. All 
variants in GCK gene were heterozygous missense vari-
ants dispersed in almost all exons. Most of them were 
found in exon 7. Variants were confirmed by Sanger 
sequencing in parents and in family members where 
samples were available. 

One novel variant was found in the GCK gene 
p.Val199Ala (c.596T>C) in one patient. Levels of 
FBG and HbA1c for this patient were 6.7 mmol/l 
and 6.2%, respectively. The variant was confirmed 
by Sanger sequencing in the mother who had mild 
hyperglycaemia. Prediction algorithms reported 
a damaging effect of the amino acid substitution on 
protein function for the variant p.Val199Ala. This 
variant was searched for in ExAc and dbSNP data-
bases as well as in our population-specific TruSight 
One variant database (in-house database) and was 
not found in either one.

Variants in HNF1B gene
Heterozygous alterations in HNF1B gene were observed 
in 5/22 patients. Both nucleotide variants and large dele-
tions were detected. All variants have been previously 
reported. The variant p.His336Asp was also found in 
our in-house database. 

In this group, the average levels of FBG and HbA1c 
were almost normal, and body mass index was in the 
normal range. All patients except one (data unavailable) 
had renal abnormalities. Family history of diabetes was 
reported for three patients. One patient needed insulin 
therapy because of high blood glucose, two were on diet 
management, and two were without therapy. 

Variants in HNF1A gene
Two heterozygous variants, one missense and one in-
sertion (c.293C>T, p.Ala98Val, and c.GLy292ArgfsTer25, 
p.Pro291fs) were detected in HNF1A gene by NGS. 
The detected insertion was confirmed in other family 
members: mother and sister. The variant p.Ala98Val was 
detected in a patient who had kidney transplantation 
before the genetic test was performed. The patient was 
initially suspected to have a HNF1B-MODY pheno-
type, but no variants or large deletions were found in 
HNF1B gene. Variant p.Ala98Val was also detected in 
one sample of our in-house database.

Variants in NEUROD1 gene 
In the remaining 4/22 patients two different variants 
were found, p.Pro197His, and p. Ser250Arg. Variant 
p.Pro197His was detected in three unrelated patients, 
and in one of them this variant was found in a homozy-

gous state. The variant was also present in four samples 
of our in-house database. The variant p.Ser250Arg was 
reported only as sequence data in ExAc and dbSNP 
databases, and no data on the effect of this variant on 
clinical features in patients were reported. The variant 
is predicted to be probably benign by all predicting 
algorithms. Among analysed patients, it was found in 
one patient with a BMI = 27.8 kg/m2 and FBG/HbA1c 
level 6.0 mmol/l/6.1% and without therapy. No other 
variants in MODY genes were found in this patient. 

Discussion

In patients with diagnosed diabetes but with clinical 
features atypical for diabetes type 1 or type 2, other rare 
types of diabetes should be considered, MODY being 
one of them. In patients with clinical characteristics sug-
gestive of MODY diabetes, a genetic test could confirm 
or disprove the presumed diagnosis. 

Next-generation sequencing technologies present 
an adequate method when there are larger numbers of 
genes to be analysed, as in the case of MODY diabetes 
[11, 12]. Here, using the TruSight One panel comprising 
of 4813 genes, we have created a “virtual” gene panel 
of 13 genes that were associated with MODY diabetes 
and screened patients with a suspected diagnosis of 
MODY diabetes. [13]. Additionally, introduction of the 
MLPA assay made it possible to detect large deletion in 
most common MODY genes in patients with specific 
phenotypes. This primarily refers to HNF1B-MODY 
subtype, where whole or partial deletions of the HNF1B 
gene were reported in half of all cases, while for other 
MODY types they are very rare [14, 15]. 

A change in the MODY gene was found in 22/29 
patients (75%). Twenty different variants were found in 
common MODY genes, GCK, HNF1A, and HNF1B, and 
in NEUROD1 gene. The dominant subtype in our group 
was GCK-MODY (50%), followed by HNF1B-MODY 
(22.7%). 

GCK-MODY is caused by at least 600 different 
variants that are distributed across the gene [16]. In 
Italy, the Czech Republic, and Spain, where paediatric 
patients are routinely tested for blood glucose levels, 
GCK-MODY is more frequently detected than other 
types of MODY [17–19]. In our group, 11 patients car-
ried a different variant in the GCK gene, of which 
10 had been previously reported. Most patients carrying 
a variant in the GCK gene are asymptomatic and their 
mild hyperglycaemia is incidentally detected [17, 20]. 
Patients in our GCK group developed diabetes in early 
adolescence, at around 11 years of age. Their clinical 
phenotype corresponds to the phenotype of previously 
described patients with variants in GCK gene [20–22]. 
If not genetically confirmed, GCK-MODY diabetes can 
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be misdiagnosed and may be treated with unnecessary 
glucose lowering medications [21–23]. Confirmation 
of having GCK diabetes brings a relief to patients by 
knowing that their diabetes will not progress during 
life, and that they are at very low risk of developing 
microvascular complications [5, 16, 21, 23]. Also, aware-
ness of having GCK-MODY diabetes may be important 
for women when planning a family [21]. During preg-
nancy, due to the risk of foetal macrosomia in unaffected 
babies, mothers may be treated with insulin to avoid 
possible complications [21, 24]. 

We have identified one novel variant, p.Val199Ala 
(c.596T>C), in the GCK gene. Based on the in silico 
prediction algorithms, SIFT, PolyPhen-2, and Mutation 
taster, the variant, p.Val199Ala (c.596T>C) is considered 
likely to be pathogenic. Additional facts support the in 
silico prediction: (I) low frequency of this variant be-
cause it was not found in the population databases ExAc 
and dbSNP nor in our population-specific TruSight One 
variant database; (II) the patient’s phenotype matches 
the phenotype of GCK-MODY diabetes; (III) the variant 
confirmed in the mother with mild hyperglycaemia was 
inherited in an autosomal dominant manner, which is 
consistent with the inheritance mode of the disease; 
and (IV) a different amino acid substitution on the 
same codon, p.Val199Leu, was previously reported in 
GCK-MODY patients [16].

Alterations in the HNF1B gene were found in 5/22 
patients. Single nucleotide variants as well as whole 
exon deletions were detected, which confirms the 
necessity of applying two methods when there is a sus-
picion of an HNF1B-MODY phenotype [25]. Patients 
may present with similar clinical features regardless of 
whether they carry a large deletion or single nucleotide 
variation in the HNF1B gene [25, 26].

Family history of diabetes and renal anomalies 
were observed in our patients. The average glucose 
levels were close to normal. This scenario, that renal 
malformations can occur prior to diabetes, has already 
been observed, especially in young patients, such as 
the ones in our HNF1B group, with an average age at 
diagnosis of 10 years [8, 15]. Results from a systematic 
review have reported that while renal malformations 
were observed in almost all HNF1B carriers under 25 
years old, only 21% of them developed diabetes. These 
patients should be monitored for blood glucose levels 
because they are at high risk of developing diabetes later 
in life [27]. It is possible for HNF1B variant carriers to be 
free from insulin therapy or only use insulin sensitisers, 
as long as beta-cell function is preserved [28]. 

Patients with kidney malformations are candidates 
for the analysis of the HNF1B gene [29]. In our two 
patients with kidney malformations no changes in the 
HNF1B gene were found by sequencing or by MLPA 

assay. By using the TruSight One panel we were able 
to expand the list of analysed genes for these two pa-
tients. This enabled us to exclude HNF1B-MODY diabe-
tes and to explore other genes that could be associated 
with the phenotype of these patients. A homozygous 
variant in BB1 gene (NM_024649.4: c.951+1G>A) 
responsible for Bradet-Biedl syndrome [30] was de-
tected in one patient, while in the other patient two 
heterozygous variants in PKHD1 gene (NM_138694.3: 
c.2414C>T, p.Pro805Leu and c.9530T>C p.Ile3177Thr) 
were found. These PKHD1 gene variants are responsible 
for the autosomal recessive polycystic kidney disease 
(ARPKD) [31]. Variants in both genes have been previ-
ously reported and associated with the related diseases 
[30, 31].

HNF1A-MODY is considered to be the most fre-
quent type of MODY diabetes in the Netherlands and 
the United Kingdom [9]. According to a large study 
comprising more than 2000 probands with diagnosed 
diabetes, half of the detected variants were found 
in the HNF1A gene [7]. In our group we found two 
patients with variants in the HNF1A gene. The low 
number of these patients may be because of the dif-
ficulty recognising them, which leaves them misdiag-
nosed. HNF1A-MODY is usually misdiagnosed with 
diabetes type 1 [6, 32–34]. Additional tests for IA2 and 
GAD antibodies, or highly sensitive C-reactive protein 
(hsCRP), could help differentiate HNF1A-MODY from 
type 1 diabetes, but are not routinely performed [6, 33]. 
For these patients, the right diagnosis is crucial because 
it alters therapy. HNF1A variant carriers should be 
switched from insulin injections to oral sulphonylurea 
tablets because they are very sensitive to low doses of 
sulphonylurea. It is the first choice of therapy because it 
provides a better glycaemic control and reduces the risk 
of hypoglycaemia compared with insulin treatment [6]. 

One of the detected variants in the HNF1A gene was 
the most common variant, p.Pro291fs, present in 25% 
of all HNF1A variant carriers [20]. The other variant, 
p.Ala98Val, was reported previously and was not as-
sociated with monogenic diabetes [35, 36]. The striking 
clinical feature of the patient was that he had kidney 
transplantation. It has been previously reported that 
variants in the HNF1A gene may produce a phenotype 
with renal abnormalities, but very rarely [37]. Without 
functional studies or clinical presentation of other 
patients carrying this variant, it is difficult to evaluate 
whether this variant in the HNF1A gene was associated 
with the renal phenotype and/or monogenic diabetes, 
or it was a coincidental finding.

Variants in the NEUROD1 gene associated with 
monogenic diabetes are very rare and have been re-
ported in few families. Carriers of reported variants 
had diverse phenotypes. For most of them a higher 
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body mass index and later onset of diabetes was 
a common feature [38–42]. We detected two variants 
in the NEUROD1 gene: p.Pro197His and p.Ser250Arg. 
The first variant, p.Pro197His, was detected in three 
patients both in homozygous and heterozygous state, 
but the state of zygosity of the allele did not manifest 
a difference in the clinical phenotype. Functional stud-
ies showed that p.Pro197His variant does not alter the 
transcription of the insulin gene and therefore its role in 
the pathogenesis of diabetes was excluded [43]. Variant 
p.Ser250Arg was reported only as sequence data and 
was predicted to be benign. Here it was detected in 
a slightly overweight patient with elevated glycaemia 
and without therapy. There are some indications that 
obesity may be the factor that triggers the development 
of diabetes in NEUROD1 variant carriers [40]. Given 
that detected changes were not likely to be associated 
with diabetes, and that disease-causing variants were 
not found in other MODY genes, the exact cause of 
diabetes in these patients remains unknown.

This type of study was the first one conducted 
in our country, and it set the roots for implementing 
genetic testing of MODY diabetes into routine genetic 
practice. Accurate diagnosis will lead to improvement 
of patient care and management. Benefits of imple-
menting this methodology can be seen on different 
levels. By sequencing all genes simultaneously, the rate 
of molecular confirmation of the diagnosis is higher 
than when requesting an analysis for a specific gene. 
The genetic test for a specific MODY gene is requested 
according to the observed phenotype and available 
clinical characteristics in patients [10, 44]. Due to clinical 
variability, the selection of an appropriate gene to test 
can be challenging, and if the presumption is wrong, it 
could lead to a false negative result. The consequence 
is not only the failure to identify the possible causative 
disease variant, but also additional costs for further 
analysis. As the cost of NGS sequencing continues to 
drop, it will become more available. This type of analysis 
does not only provide information for 13 MODY genes 
selected for the study, but for the entire clinical exome 
per patient, where in some cases it could be used to 
extend the initial gene list without further costs. 

Conclusions

This study is the first to report molecular the genetic 
basis of MODY of Serbian paediatric patients. The re-
sults of this study provided two major conclusions. First, 
there is a need for a genetic test when clinical param-
eters indicate GCK-MODY diabetes. Conformation 
of this type of diabetes will provide appropriate care 
to patients and reduce healthcare costs due to un-
necessary medications. Secondly, poor recognition of 

HNF1A-MODY indicates the necessity for additional 
non-genetic testing prior to genetic, in order to better 
distinguish from other patients with common types 
of diabetes.

Describing more patients and providing clinical 
characteristic will contribute to our present knowledge 
of MODY diabetes. Implementation of genetic testing 
in clinical practice will improve the care of MODY 
patients because it will be based on an individualised 
approach, save costs of unnecessary therapy, and offer 
genetic counselling for family members.
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