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Abstract
Introduction: CD28/T-cell receptor (TCR)/cytotoxic T-lymphocyte antigen 4 (CTLA4) complex controls T-cell tolerance and autoimmunity 
in Hashimoto’s thyroiditis (HT). In addition, CD45 protein tyrosine phosphatase (PTPase) and vitamin D receptor (VDR) cooperatively 
interact with the TCR complex to affect autoimmune processes central to the pathogenesis of HT. Nevertheless, their role in HT aetiology 
has been less well established. In this study, we aimed to explore mRNA expression levels of CTLA4, CD28, CD45, and VDR in T-cells, 
across different outcomes of HT. 
Material and methods: The study included 45 HT patients and 13 euthyroid, healthy controls. T-lymphocytes were isolated from peripheral 
blood mononuclear cells, total mRNA was extracted from T-cells, and gene expression was studied by reverse transcription-polymerase 
chain reaction (RT-PCR) and ImageQuant method relative to glyceraldehyde-3-phosphate dehydrogenase RT-PCR products. 
Results: Nominally higher expression levels of VDR, CTLA4, CD28, and CD45RAB mRNA were found in unsorted T-lymphocytes of 
healthy controls when compared to the HT patients. No difference was observed between hypothyroid/untreated, spontaneously euthyroid 
and LT4-treated HT patients. VDR mRNA expression was linked to both T3 levels and CTLA4 gene expression, whilst CD45RB mRNA 
expression coincided with CTLA4 and CD28 transcript levels. Conversely, older age and lower T3 levels were associated with increased 
abundance of CD45R0 isoform in HT patients. 
Conclusions: The results suggest a cross talk between endocrine and immune functions in HT pathology: an altered peripheral T cell 
mRNA profile with reduced VDR, CTLA4, CD28, and CD45RAB transcript levels is accompanied by age-related shift from naive to 
memory/late-differentiated T cell CD45R mRNA signature and associated with thyroid hormone status in the HT patients. (Endokrynol 
Pol 2017; 68 (3): 274–282)

Key words: Hashimoto disease; CD4 positive T lymphocytes; vitamin D3 receptor; CD28 antigen; cytotoxic T-lymphocyte-associated antigen 4; 
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Streszczenie
Wstęp: Kompleks antygenu CD28/receptora limfocytów T (TCR)/antygenu 4 związanego z limfocytem T cytotoksycznym (CTLA4) 
reguluje tolerancję limfocytów T oraz autoimmunogenność w chorobie Hashimoto (HT). Ponadto białkowa fosfataza tyrozynowa 
(PTPase) CD45 oraz receptor witaminy D (VDR) wchodzą w interakcję z kompleksem TCR, modyfikując procesy autoimmunolo-
giczne mające podstawowe znaczenie w patogenezie HT. Jednak rola tych cząsteczek w etiologii HT nie została dokładnie ustalona. 
Celem autorów badania była ocena poziomów ekspresji mRNA dla CTLA4, CD28, CD45 i VDR w limfocytach T w zależności od 
różnego statusu HT. 
Materiał i metody: Do badania włączono 45 chorych na HT i 13 zdrowych osób z prawidłową czynnością tarczycy. Limfocyty T wyizo-
lowano spośród komórek jędnojądrzastych krwi obwodowej, wyekstrahowano z nich całkowity mRNA i określono ekspresję genów za 
pomocą łańcuchowej reakcji polimerazowej z odwrotną transkryptazą (RT-PCR) i metody ImageQuant związanej produktami reakcji 
RT-PCR dehydrogenazy aldehydu 3-fosfoglicerynowego. 
Wyniki: U osób zdrowych stwierdzono nominalnie wyższy poziom ekspresji mRNA dla VDR, CTLA4, CD28 i CD45RAB w niesortowanych 
limfocytach T niż u chorych na HT. Nie zaobserwowano żadnych różnic między chorymi na HT z niedoczynnością tarczycy/nieleczonymi, 
u których samoistnie nastąpiło przywrócenie eutyreozy, i stosującymi leczenie LT4. Ekspresja VDR mRNA była powiązana zarówno ze 
stężeniem T3, jak i ekspresją genu CTLA4, natomiast ekspresja mRNA dla CD45RB wiązała się z poziomami transkryptu CTLA4 i CD28. 
Z kolei starszy wiek i niższe stężenia T3 wiązały się ze zwiększoną ilością izoformy CD45R0 u chorych na HT. 
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phone: +38 531 514 312, fax: +38 531 514 206, e-mail: tokic.stana@kbo.hr
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Introduction

Hashimoto’s thyroiditis (HT) is an organ-specific au-
toimmune disorder characterised by chronic thyroid 
inflammation, and subsequently, hypothyroidism [1]. 
Morphological and functional alterations in HT are pre-
dominantly mediated by T-helper (Th) 1 cytokines and 
cytotoxic T-lymphocytes through apoptotic cell death [2].  
Recently, however, both CD4+CD25+  regulatory  
T-cells (Treg) [3–5] and interleukin IL-23-driven Th17 
effectors [6–8] have been independently associated 
with thyroid inflammation, disease chronicity, and HT 
destructiveness.

CD28/T-cell receptor/CTLA4 complex controls 
T-cell homeostasis, tolerance, and autoimmunity in 
Hashimoto’s thyroiditis [9, 10]. In addition, many other 
molecules, such as CD45 protein tyrosine phosphatase 
(PTPase) [11, 12] and vitamin D receptor (VDR) [13, 14], 
cooperatively interact with the TCR complex to affect 
Th1/Th17/Treg processes central to the pathogenesis 
of HT. Nevertheless, their role has been comparatively 
less well established.

CD28 acts as potent regulator of T-cell mRNA splic-
ing [15]. In addition, emerging data suggest that the 
identification of disease-specific splice variants may 
provide novel biomarkers and drug targets [16, 17]. 
CD45 PTPase activity is regulated by isoform-specific 
differential homodimerisation, and alternative splicing 
of exons 4–6 (A-C) within the CD45 extracellular domain 
results in the production of at least five different CD45 

isoforms: CD45RABC (exons 4-6 included), CD45RAB, 
CD45RBC, CD45RB, and CD45R0 (exons 4–6 skipped). 
Naive T-cells express longer isoforms at higher levels, 
while activated and memory T-cells express shorter 
isoforms (CD45R0) [18]. The alternatively spliced 
CD45 variants differentially homodimerise in primary 
T-cells, with the smallest isoform (CD45R0) being able 
to dimerise more efficiently and rapidly than the larger 
isoforms [19]. The resulting CD45 dimers have signifi-
cantly reduced phosphatase activity; thus, the splicing 
switch is potentially critical for preventing prolonged 
TCR signalling and undesirable tissue injury.

We therefore sought to investigate VDR, CTLA4, 
CD28, and CD45 mRNA expression profiles in periph-
eral T-cells of Croatian HT patients in relation to HT 
susceptibility and phenotypic characteristics of affected 
individuals.

Material and methods

Subjects
The collection consisted of 45 HT patients (3 males) and 
13 healthy controls (2 male, Table I). Control subjects 
were characterised as euthyroid, thyroid peroxidase 
autoantibodies (TPOAb)-negative individuals, with 
normal ultrasound findings of the thyroid gland and 
no evidence or family history of autoimmune and 
endocrine disorders. HT was diagnosed as previously 
described [20], and patients were classified as hypo-
thyroid (hypoHT, n = 15), spontaneously euthyroid 

Wnioski: Uzyskane wyniki sugerują interferencje między czynnością wewnątrzwydzielniczą i immunologiczną w patologii HT: zmiana 
profilu mRNA obwodowych limfocytów T z ograniczeniem poziomu transkryptu białek VDR, CTLA4, CD28 i CD45RAB współistnieje  
z zależnym od wieku przesunięciem sygnatury mRNA limfocytów CD45R od komórek naiwnych do komórek pamięci immunologicznej/ 
/zróżnicowanych i jest powiązana ze stężeniami hormonów tarczycy u chorych na HT. (Endokrynol Pol 2017; 68 (3): 274–282)

Słowa kluczowe: choroba Hashimoto; limfocyty T CD4-dodatnie; receptor witaminy D3; antygen CD28; antygen 4 związany z limfocytem T 
cytotoksycznym; antygen CD45

This study was supported by the Croatian Ministry of Science, Education, and Sport (grant No. 219-0982914-2176, 219-2190372-2068, and 
0127-0000000-3420).

Table I. Descriptive analysis of clinical and biochemical characteristics of patients and healthy controls
Tabela I. Analiza opisowa klinicznych i biochemicznych cech pacjentów i osób zdrowych

Group Age (years) fT4 [pmol/L] fT3 [pmol/L] TSH [mIU/L] TPOAb [kIU/L]

euHT 57 (42–62) 11.6 (11.3–13.4)** 2.6 (2.4–3.1) 1.9 (0.96–3.1)** 155 (21–1112)

substHT 50 (29–62) 16 (13.3–16.5)** 2.7 (2.3–3) 2.57 (0.57–3.13)** 368 (112–1253)

hypoHT 46 (40–55) 10 (8.4–11.2) 2.5 (2.3–3) 8.1 (5.9–14.8) 321 (128–1520)

Controls 41 (29–61) 12.1 (10.8–12.7)** 3 (2.7–3.1) 1.6 (1.03–2.52)** neg.

P* 0.532 7.3 × 10-5 0.136 10-6 –

Data correspond to median with interquartile range (25–75th percentile). The study included 13 healthy controls and 45 HT patients classified as hypothyroid (hypoHT, 
n = 15), spontaneously euthyroid (euHT, n = 18), and rendered euthyroid by thyroxine (L-T4) replacement therapy (substHT, n = 12). fT4 — free thyroxine, fT3 — free 
tri-iodothyronine, TSH — thyroid stimulating hormone. *Kruskall-Wallis test; **P < 0.05, Dunn’s post hoc test, vs. hypoHT group
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(euHT, n = 18), and rendered euthyroid by hormone 
replacement therapy (substHT, n = 12).  Overt hy-
pothyroidism requiring L-thyroxine (T4) treatment 
was defined by thyroid-stimulating hormone (TSH)  
> 10 mIU/L and/or free-T4 < 10 pmol/L; otherwise, it 
was considered subclinical if TSH was > 4.7 mU/L and 
fT4 was ≥ 10 pmol/L on at least two consecutive visits  
≥ 3 months apart. All participants were unrelated adults 
from eastern Croatia and had to be in self-proclaimed 
good health and free of any obvious medical illness for 
at least one month before the blood withdrawal, includ-
ing acute infections and allergic reactions. None of the 
participants used vitamin D supplements or immune-
modifying drugs. Informed consent in written form 
was obtained from all participants prior to the testing, 
and the study protocol was reviewed and approved 
by the institutional ethical committee (Document No. 
29-1:9890-11/2007).

Thyroid function measurement 
Thyroid stimulating hormone (TSH) (normal range: 
0.46–4.7 mIU/L), free tri-iodothyronine (fT3) (1.9– 
–5.7 pmol/L) and free thyroxine (fT4) (10–22 pmol/L) 
were measured in morning (8–11 a.m.) sera using im-
munoassay methods (Vitros fT3 Reagent Pack, Vitros 
fT4 Reagent Pack and Vitros TSH Reagent Pack, Ortho-
Clinical Diagnostics, Amersham, UK) according to the 
manufacturer’s instructions. Maximum baseline serum 
TPOAb-IgG (negative < 125 kIU/L) levels were meas-
ured by ELISA (Anti-TPO Kit, Milenia Biotec, Germany). 

Peripheral blood mononuclear cell (PBMC)  
isolation
PBMC were isolated by density gradient centrifuga-
tion on a LymphoPrep (Axis Shield, Oslo, Norway) as 
described by Böyum [21]. After collection, heparinised 
blood samples were diluted 1:1 with 0.9% NaCl and 
following application to the LymphoPrep centrifuged 
for 20 minutes at 1000 g. Fraction of total lymphocytes 
and monocytes was harvested and rinsed with saline 
and then pelleted by centrifugation for 10 minutes at 
550 g. The procedure was repeated twice. Cells were 
resuspended in 1 mL of Isolation buffer (PBS without 
Ca2+ and Mg2+ with 0.1% BSA and 2 mM EDTA) and 
counted after trypan-blue staining using  the Bürker-
Türk counting chambers and light microscope. 

Lymphocyte separation
T-lymphocytes were separated from PBMC by nega-
tive selection using a Dynabeads untouched human 
T-cells isolation kit (Invitrogen, Paisley, UK) according 
to the guidelines in the manufacturer’s leaflet. Briefly, 
PBMC (1 × 107) were incubated with FBS and mouse 
monoclonal antibodies specific for CD14, CD16, CD19, 

CD36, CD56, CDw123, and CD235 (20 minutes at 
2–8°C). Following incubation, cells were washed with 
Isolation buffer and pelleted by centrifugation (300 g, 
8 minutes). The pellet was resuspended and incubated 
for 15 minutes with pre-washed magnetic beads coated 
with monoclonal human anti-mouse IgG antibody. 
The bead-bound cells were subsequently separated on  
a DynaMagTM magnet, leaving the cell suspension free 
from B-lymphocytes, NK cells, monocytes, platelets, 
dendritic cells, granulocytes, and erythrocytes. The 
remaining untouched T-lymphocytes were transferred 
to a new tube. Steps involving washing and binding 
of bead-bound cells to a magnet were repeated twice. 
Residual Dynabeads were removed by placing the tube 
in a magnet for two minutes and then transferring the 
supernatant to a new tube. 

Total RNA extraction and cDNA synthesis
Total RNA was extracted from T-lymphocytes using 
TRI REAGENT (Sigma, USA) solution as described by 
Chomczinsky and Sacchi [22]. After isolation, RNA 
integrity was electrophoretically verified by ethidium 
bromide staining and OD260/OD280 nm absorption 
ratio > 1.9 determined by UV spectrometry using  
a Shimadzu-UV-1601 instrument (Shimadzu Scientific 
Instruments, SAD). Total RNA (500 ng) was reverse 
transcribed to cDNA using the iScript Select cDNA 
Synthesis Kit (Bio-Rad Laboratories, California, USA) 
and the provided oligo(dT) primer mix according to the 
manufacturer’s instructions. 

Gene expression profiling
Following the RT step, mRNA expression analysis of tar-
get (VDR, CTLA4, CD28, CD45) and reference (GADPH) 
genes was carried out in a thin-wall PCR tubes using 
a 96-well Veriti thermal cycler (Applied Biosystem). 
Sequence-specific PCR primers for all assays were de-
signed using PrimerQuest software (http://eu.idtdna.
com/Scitools/Applications /PrimerQuest) and NCBI ref-
erence sequences (Table II). All PCR experiments were 
performed in 25 μl final volume reactions comprising  
2 μl of cDNA template, 1.5 mM of MgCl2, 200 μM of 
each dNTP (Roche Diagnostics, Mannheim, Germany),  
0.25 μM of each primer (TIB MOLBIOL, Berlin, Ger-
many), and 1U of EUROTAQ polymerase (EuroClon, 
Italija, EU). Following initial denaturation (two minutes 
at 95°C), 35 repeating cycles with the same denaturation 
(95°C for 30 seconds) and elongation (72°C for 1 minute) 
steps were performed for all genes. The annealing step 
for GAPDH was set at 68°C for 90 seconds, for VDR at 
56°C for 30 seconds, and for CTLA4, CD28, and CD45 
at 55°C for 30 seconds. All reactions were terminally ex-
tended at 72°C for 15 minutes. All RT-PCR experiments 
were performed in duplicate, and no template negative 
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control was included in each experiment. To check for 
DNA contamination, the reverse transcription negative 
controls with no added RT enzyme were run in parallel 
and did not yield any PCR product.

Relative quantification of gene expression
RT-PCR products (5 μl) were applied to 2% agarose gel, 
separated in an electric field, and visualised by ethidium 
bromide staining (Fig. 1). The amount of cDNA present 
in agarose bands was quantified by measuring fluo-
rescence band intensities using a UV Transilluminator 
(HVD life sciences, Vienna, Austria), Olympus digital 
camera, and computer image processing software 
ImageQuant™. The fluorescent signal ratio of target 
and GAPDH transcripts in each sample were used for 
normalisation of the mRNA expression levels according 
to the formula: 

 
Each sample was subjected to two cycles of RT-PCR 

experiments, followed by quantification and normali-
sation of the results. Collected data were described by 
arithmetic mean and standard deviation. Finally, the 
fold difference in mRNA levels in unknown samples 
was calculated relative to healthy controls.

Statistical analysis
Normality of distributions was tested by Anderson- 
-Darling test. Data are presented as medians with in-
terquartile ranges. Mann-Whitney and Kruskall-Wallis 

test with Dunn’s post-hoc analysis were used for group 
comparisons. Pair-wise correlations were determined 
by Spearman rank-test. Two-tailed P < 0.05 was con-

Table II. Description of investigated genes, used primers, and amplicon sizes in RT-PCR
Tabela II. Opis badanych genów, używanych starterów i wielkości amplikonu w RT-PCR

Gene 
abbreviation

Gene names (synonyms) GenBank#  
Accession number

Sense, antisense primer Amplicon size (bp)

VDR vitamin D receptor NM_000376.2 5’–gtttgattttagctgcagaacg–3’

5’–agagacagggtttctccatgtt–3’

277

CTLA4 cytotoxic T-lymphocyte-
associated protein 4

NM_005214.4 5’–agtatgcatctccaggcaaagc–3’

5’–ccagaggaggaagtcagaatctg–3’

316

CD28 T-cell-specific surface 
glycoprotein CD28

NM_006139 5’–gtttgagtgccttgatcatgtgc–3’

5’–ggcgatctgcttcaccaaaatc–3’

238

CD45RABC protein tyrosine phosphatase, 
receptor type C, PTPRC

NM_002838.4 5’–ggcaaagcccaacacctt–3’

5’–tgtggttgaaatgacagcg–3’

577

CD45RAB 434

CD45RBC 380

CD45RB 236

CD45RO 95

GAPDH glyceraldehyde-3-phosphate 
dehydrogenase

NM_002046.5 5’- ccatcaatgaccccttcattgacc–3’

5’–gaaggccatgccagtgagcttcc–3’

605

#gene sequences available online at www.ncbi.nlm.nih.gov, primers were designed using PrimerQuest software

Figure 1. RT-PCR analysis of GAPDH (605 bp), VDR (277 bp),  
CTLA4 (316 bp), CD28 (238 bp), CD45RABC (577 bp), 
CD45RAB (434 bp), CD45RBC (380 bp), CD45RB (236 bp) and 
CD45R0 (95 bp) gene expression. The total RNA (n = 500 ng) 
extracted from peripheral CD4+ and CD8+T cell population was 
reverse transcribed with oligo(dT) primer mix and amplified in 
the presence of sequence-specific primers
Rycina 1. Analiza RT-PCR ekspresji genów GAPDH (605 bp), 
VDR (277 bp), CTLA4 (316 bp), CD28 (238 bp), CD45RABC 
(577 bp), CD45RAB (434 bp), CD45RBC (380 bp), CD45RB 
(236 bp) i CD45R0 (95 bp). Całkowita wartość RNA (n = 500 ng)  
pochodzącego z peryferyjnego CD4+ i CD8+T populacji komórek 
była odwrotnie zapisana z użyciem primera oligo (dT) i zwiększona 
w obecności primerów o sekwencjach specyficznych

DNA
MARKER GAPDH VDR CTLA4 CD28 CD45

1000

500
400
300

200

100
50

RABC
RAB
RBC
RB

RO

http://www.ncbi.nlm.nih.gov/nucleotide/339276048
http://www.ncbi.nlm.nih.gov
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sidered significant. Uncorrected P-values are presented 
throughout the text. For correlation data analysis across 
eight transcripts, Bonferroni’s correction was used. Itali-
cised P-values indicate those that remained significant 
after sequential Bonferroni’s corrections (P < 0.0063). 
All statistical analyses were performed with NCSS2007 
(v07.1.20, NCSS LLC, Kaysville, Utah, USA).

Results

Patients
Patients’ characteristics are presented in Table I. Median 
age, sex, thyroid volume, and fT3 levels were similar in 
all groups. As expected, hypothyroid patients exhib-
ited significantly higher serum TSH levels and lower 
fT4 levels compared to the untreated, spontaneously 
euthyroid HT patients, HT patients undergoing LT4 
treatment, and healthy controls.

Expression profile of peripheral T cells in HT 
patients vs. controls
No significant differences in mRNA expression profiles 
were found among patient subgroups (data not shown), 
which prompted us to further analyse HT data as one 
group. Subsequently, a nominally higher VDR [median 
expression levels (IQR), HT vs. controls 46 (30–69) vs. 
80 (62–105), P = 0.021, Fig. 2a], CTLA4 [96 (59–114) vs. 
113 (98–132), P = 0.018, Fig. 2b], CD28 [35 (23–49) vs. 50 
(37–62), P = 0.0074, Fig. 2c], and CD45RAB [10 (8–14) 
vs. 13 (10–19), P = 0.042, Fig. 2e] mRNA expression 
was observed in unsorted peripheral T-lymphocytes 
of healthy controls when compared to HT patients. 
However, no significance persisted upon correction for 
multiple testing (P < 0.0063). Concerning other CD45 
mRNA isoforms, no changes across the studied groups 
[HT vs. controls] were observed when CD45RABC  
[16 (12–19) vs. 17 (12–23), P = 0.272, Fig. 2d], CD45RBC 
[11 (8–14) vs. 13 (10-19), P = 0.062, Fig. 2f], CD45RB  
[45 (36–63) vs. 63 (40–74), P = 0.126, Fig. 2g], or CD45R0 
transcripts were measured [35 (21–52) vs. 23 (13–42),  
P = 0.168, Fig. 2h]. 

Correlation analysis
Pair-wise correlation analysis of pooled samples (HT 
patients + controls, n = 58) was preformed to examine 
the possible association between mRNA expression pro-
files, age, and thyroid hormone levels measured at the 
time of T-cell sampling. Firstly, an inverse relationship 
between serum fT3 and age was found (Spearman’s  
ρ = –0.307, P = 0.018). Furthermore, VDR mRNA expres-
sion was related to fT3 levels (ρ = 0.352, P = 0.0062).  
A weak, but nominally significant positive correlation was 
observed between VDR and CTLA4 mRNA expression 
levels (ρ = 0.326, P = 0.012). In contrast, CTLA4 mRNA 

expression was strongly related to CD28 mRNA abun-
dance (ρ = 0.425, P = 0.00087). CD45RABC mRNA levels 
weakly paralleled serum fT4 levels (ρ = 0.31, P = 0.021), 
whilst CD45RB mRNA expression was independently 
and positively related to CD28 (ρ = 0.52, P = 0.000033) 
and CTLA4 mRNA levels (ρ = 0.583, P = 0.000002).  
In contrast, CD45R0 mRNA levels were inversely re-
lated to both VDR (ρ = –0.318, P = 0.017) and fT3 levels 
(ρ = -0.433, P = 0.0012). Upon correction for fT3 levels, 
the association between CD45R0 and VDR mRNA was 
lost (data not shown). There was no effect of gender, 
and age did not affect expression of VDR. Subgroup 
analysis revealed an additional, positive association 
between CD45R0 mRNA and age in HT patients (n = 45,  
ρ = 0.33, P = 0.025), predominantly in spontaneously 
euthyroid HT cases (n = 18, ρ = 0.5, P = 0.036), but not 
in healthy controls. Furthermore, a positive associa-
tion was observed between CD45R0 transcript levels 
and serum logTSH in untreated, hypothyroid cases  
(n = 15, ρ = 0.593, P = 0.02). Finally, a negative as-
sociation between transcript levels of CTLA4 and age 
(ρ = -0.63, P = 0.028), between CD45RB mRNA levels 
and age (ρ = –0.74, P = 0.0056), and a positive rela-
tion between CD45RBC mRNA and serum fT4 levels  
(ρ = 0.73, P = 0.0074) was found in the treated patients 
group. However, a minority of these correlations would 
have remained statistically significant after Bonferroni’s 
correction for multiple testing.

Discussion

Vitamin D deficiency is widespread among patients 
with HT [23, 24], but how vitamin D metabolism af-
fects HT pathophysiology is not well understood. 
Most effects of vitamin D are mediated by the binding 
of 1,25(OH)2D3 to the intracellular vitamin D recep-
tor (VDR), which promotes or inhibits transcription 
of vitamin D responsive genes [25]. In thyroid, VDR 
ligands directly affect thyroid cell function [26, 27] and 
suppress tissue inflammatory processes by inhibiting 
Th1 [28], Th17, Tc17 [14], CD8+Tc, and invariant natural 
killer T-cells [29]. Despite this, no data currently exist on 
VDR mRNA expression in target cell populations from 
HT patients. In the present study, a nominally higher 
expression level of total VDR mRNA was observed in 
peripheral T-lymphocytes of healthy controls when 
compared to the HT patients; however, the mecha-
nisms that mediate the apparent down-regulation of 
VDR transcript levels in T-cells of HT patients remain 
to be clarified.

A putative positive relation between VDR mRNA 
expression in T-cells and thyroid functional status 
has been observed. Nevertheless, no causal inference 
was possible because several mechanisms, such as 
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Figure 2. Relative mRNA levels of VDR, CTLA4, CD28 and CD45 isoforms in HT patients and healthy controls. Compared to healthy 
controls (n = 13). A. VDR (P = 0.021); B. CTLA4 (P = 0.018); C. CD28 (P = 0.0074) and E. CD45RAB (P = 0.042) mRNA levels 
were downregulated in peripheral T cells of HT patients (n = 45). No difference was found in D. CD45RABC; F. CD45RBC; G. CD45RB 
or H. CD45R0 mRNAs levels across the studied groups. Data are presented as median with interquartile range and min and max values 
are demonstrated by whiskers; *P < 0.05
Rycina 2. Względne poziomy mRNA izoformów VDR, CTLA4, CD28 i CD45 u pacjentów z HT i osób zdrowych. W porównaniu  
z osobami zdrowymi (n = 13). A. VDR (p = 0.021); B. CTLA4 (p = 0.018); C. CD28 (p = 0.0074) and E. CD45RAB (p = 0.042), 
poziomy ekspresji genów był zmniejszone na poziomie mRNA w peryferyjnych komórkach pacjentów z HT (n = 45). Nie odnotowano 
żadnej różnicy w D. CD45RABC; F. CD45RBC; G. CD45RB or H. CD45R0 na poziomach mRNA w badanych grupach. Dane 
przedstawione zostały jako rozstęp międzykwartylowy, minimalne i maksymalne wartości przedstawione są za pomocą wąsów; *p < 0,05
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VDR-mediated protection against autoimmune thy-
roid dysfunction [26, 30], T3-dependent shift in T-cell 
composition/vitamin D3 metabolism [31], and immune 
effects on both T3 conversion and thyroid activity 
[32], may all provide parts of conjecture. Furthermore,  
a question remains about the exact source of these  
mRNAs. Peripheral T-cell populations exhibit high 
levels of cellular complexity; thus, lineage-specific 
up- or down-regulation, altered composition of T-cell 
compartments, a developmental shift – from naïve to 
memory cells — or a combination — may be respon-
sible for observed mRNA data. Finally, the number of 
VDR binding sites in primary CD4+ cells is strongly 
correlated with 25 hydroxy vitamin D3 levels [33]. 
Thus, it would also be useful to obtain 25(OH)D3 and 
1,25(OH)2D3 measurements, environmental ultraviolet 
radiation exposure, and seasonal data for future study.

Tregs, mostly defined as CD4+CD25+FoxP3+ 
expressing T-lymphocytes, constitutively express 
CTLA4 [34] and play an important role in HT aetiol-
ogy. In the present study, transcript levels of CTLA4,  
a major gatekeeper of thyroid autoimmunity, have been 
nominally reduced in T-cells of HT patients. Decreased 
CTLA4 levels were also detected by Kucharska [9], al-
though another report failed to find a clear decrease in 
CD4+CTLA4+ lymphocytes [35]. In addition, a weak 
relation between VDR and CTLA4 mRNA was also seen 
in our sample set, but no simple explanation could be 
provided. Both VDR and CTLA4 expression are tightly 
controlled and rapidly co-induced by T-cell activation 
[13]; in addition, CTLA4 is constitutively expressed on 
CD4+CD25+ Treg cells [34], shows higher levels in 
Th2 [36] and Th17 clones [37], and is expressed signifi-
cantly higher in the CD4+ than in CD8+ T-cells [38]. 
Lastly, VDR binding has recently been described within 
the CTLA4 region in lymphoblastoid cell lines upon 
ligand stimulation [39], and a vitamin D-dependent 
increase in CTLA4 expression and the frequency of 
FoxP3+CTLA4+ T-cells has been reported through 
direct VDR binding to the FOXP3 gene [14]. 

In addition to vitamin D3, thyroid hormones and 
TSH are also known to influence the function, compo-
sition, and development of lymphoid cells and organs 
[31, 40]. During these processes, alternative splicing of 
pre-mRNA encoding the transmembrane phosphatase 
CD45 marks the transition from naïve to activated  
T-cells [18]. In the present study, CD45 composition 
was apparently affected by age, thyroid hormones, 
and case-control status, suggesting a shift from long/
CD45RA+ isoforms to short/CD45R0 transcripts in an 
inverse, age- and T3-dependent manner. Higher pro-
portions of both CD4+ and CD8+ T cells expressing 
CD45R0 have previously been detected in HT patients 
[41]; moreover, these cells have been functionally char-

acterised as memory/effector T-cells and high producers 
of proinflammatory cytokines TNFα and IFNα [42]. Here, 
older age and lower T3 levels have been associated with 
the accumulation of CD45R0 isoform in HT patients, 
but not controls, a pattern suggestive of accelerated 
T-cell ageing in elderly, hypothyroid HT subjects. The 
characterisation of other functional markers, an aim that 
seems worth pursuing in future studies, is necessary to 
delineate the subsequent stage of maturation for vari-
ous CD45R0+ T-cell compartments in those patients. 

A critical phenotypic and genetic change as T-cells 
becomes late-differentiated and progress to senescence 
is the loss of gene and surface expression of CD28 [43]. 
CD28 surface expression in HT is not steady and is 
influenced by several mechanisms [41]. In this study, 
nominally reduced levels of CD28 mRNA expression 
and the peripheral loss of CD45RAB mRNA were as-
sociated with HT development. Other analyses support 
these results: a parallel loss of CD28 expression and 
the peripheral reduction of CD45RA+ T-cells have re-
cently been described in HT [41]. Several groups have 
reported an expansion of CD4+ T-cells lacking CD28 
in chronic inflammatory disorders [44–46], as well as 
in some normal-aged subjects [47]. Such CD4+CD28-  
T-cells display an effector/memory CD45R0+ pheno-
type with increased replicative history and oligoclonal-
ity but reduced apoptosis [48]. An increased proinflam-
matory and cytotoxic capacity of these cells has been 
demonstrated [46], suggesting a pathogenic role of 
CD4+CD28 null T-cells in the development of chronic 
immune-mediated disorders. 

The transitions of CD45R isoforms are rapidly 
induced upon TCR activation [11, 12]. In the present 
study, the CD45RB mRNA expression coincided most 
consistently with CTLA4 mRNA levels, but with wide 
inter-individual variations. As opposed to CD45R0+  
T-lymphocytes, T-cells expressing CD45RB isoform 
have been shown to be less susceptible to T-cell activa-
tion [16]; moreover, different cytokine profiles have 
been observed between CD4+CD45RBlow (IL-4/IL-10 
producing) and CD4+CD45RBhigh (TNFα producing) 
T-cells, independent of the CD45RA or CD45R0 expres-
sion [49]. Finally, the CD45RB-inducible regulatory 
region had been recently discovered within the CTLA4 
promoter [17], lending mechanistic support to the 
tolerance mediated by anti-CD45RB through CTLA4 
up-regulation [50]. Nevertheless, the functional signifi-
cance of these observations for HT and L-T4 treatment 
remains unknown. 

There are several caveats that deserve further at-
tention. 
1. Our findings emphasise that examination of tran-

script abundance alone in unsorted T-cells provides 
only a partial picture. 
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2.  The correlation between RNA and protein expres-
sion levels of the selected target mRNAs is uncer-
tain. Lack of difference in mRNA profiles does not 
preclude differences in protein expression, protein 
kinetics, and intracellular trafficking. 

3.  T-cell activation is followed by complex, context- 
and lineage-specific dynamics of CD28, CTLA-4, 
VDR, and CD45R expression. In the present study, 
expression data from vitamin D-stimulated cells 
were not available. 

4.  Studies of peripheral T-cell mRNAs may have been 
confounded by the composition of T-cell subpopula-
tions and the different roles they play in HT. T-cells 
exhibit vast cellular complexity and plasticity; thus, 
only most robust changes are readily detected. 

5. Statistical power remains limited in small data 
sets; thus, the cohort was exploratory in nature. 
Nevertheless, strict selection criteria were applied, 
resulting in a well-characterised cohort regarding 
demographics, treatment exposures, and outcomes. 
Detailed knowledge of disease status and residual 
thyroid function is fundamental in order to eluci-
date any pathogenetic component of HT, and may 
be an explanation for the contradictory results in 
several similarly sized but phenotypically mixed 
studies. Finally, the majority of patients in this study 
were female Caucasians of European ancestry, thus 
limiting generalisations to males and individuals of 
other ethnicities.
In conclusion, an altered peripheral blood T-cell 

mRNA expression profile, encompassing nominally 
reduced VDR, CTLA4, CD28, and CD45RAB mRNA 
levels, occurs in HT. The current study also reports as-
sociations between free T3 and VDR/CD45R transcripts, 
particularly in older individuals, evidence that may 
contribute to our understanding of senescence and im-
munoregulation in HT. Our data provide preliminary 
evidence that CD28/CTLA4-CD45R axis might contain 
relevant investigational targets whose identification 
could improve our understanding of thyroid-immune 
interactions and treatment effects in HT. Nevertheless, 
methodological refinements, encompassing cell sorting, 
qPCR, and protein expression data are necessary in the 
confirmatory step.
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