Insulin therapy — new directions of research
Insulinoterapia — nowe kierunki poszukiwań

Edyta Cichocka1, Anna Wietchy2, Katarzyna Nabrdalik1, Janusz Gumprecht1

1Department of Internal Medicine, Diabetology, and Nephrology, Medical University of Silesia, Katowice
2Department of Internal Medicine, SP ZOZ Sanok

Abstract
Insulin therapy is the most effective method of lowering blood glucose. Over 100 years have passed since the discovery of insulin. The first subcutaneous insulin administration was the basic route of insulin delivery. The search for insulin therapy is simultaneously conducted in the following directions: the optimisation of insulin action, automatisation, and the decrease in the invasiveness of insulin delivery methods.

The optimisation of insulin action has led to the discovery of ultra-rapid-acting human insulin analogues, ultra-long-acting human insulin analogues, and biosimilar insulin. Automatisation referred to the “artificial pancreas” and closing the loop system in insulin pump therapy. The decrease in the invasiveness of insulin delivery methods is focused on alternative routes of insulin administration.

Key words: diabetes; new insulin; artificial pancreas; insulin pump; alternative route of insulin therapy

Streszczenie

Słowa kluczowe: cukrzyca; nowe insuliny; sztuczna trzustka; pompy insulinowe; alternatywne drogi podawania insuliny

Introduction
Insulin therapy is the most effective method of lowering blood glucose. It is absolutely essential in the treatment of Type 1 diabetes mellitus (T1DM) and indispensable in many cases of Type 2 diabetes mellitus (T2DM). Over 100 years have passed since the discovery and the first use of insulin. A number of studies have been conducted, the aim of which was to mimic a physiological response to the increase in glycaemia and to optimise insulin therapy. These studies have allowed the use of human insulin on a large scale and then rapid-acting and long-acting human insulin analogues. To date, subcutaneous insulin administration with pens and insulin pumps has been the basic route of insulin delivery [1].

Fast-acting insulin may also be given intravenously, particularly in hospitalised patients in considerable hyperglycaemia, such as ketoacidosis, hyperglycaemic-hyperpermolar syndromes, or in the treatment of carbohydrate disorders in patients in intensive care units and in the perioperative period in surgical units [2]. There have also been trials to administer insulin intravenously in patients with diabetic senso-motoric analgesic polyneuropathy in order to alleviate pain intensity and to improve the quality of life of diabetic patients [3].

Together with technological progress and the advancement of diabetes-related knowledge, the studies and the search for insulin therapy are simultaneously being conducted in the following directions:

— the optimisation of insulin action by pharmacokinetic modifications (ultra-rapid-acting human insulin analogues, ultra-long-acting human insulin analogues, or the use of components accelerating the absorption such as warming the injection site, adding recombinant human hyaluronidase, or intradernal insulin delivery).

— automatisation (i.e. insulin pump therapy in the closed loop system, referred to as the “artificial pancreas”).

Edyta Cichocka M.D., Ph.D., Department of Internal Medicine, Diabetology, and Nephrology, Medical University of Silesia, 3 Maja St. 13/15, 41–800 Zabrze, tel.: 32 370 44 25, e-mail: ecichocka@sum.edu.pl
— the decrease in the invasiveness of insulin delivery methods (i.e. alternative routes of insulin administration [ARIA]).

Optimisation of insulin action

Under physiological conditions, there are two ways of insulin secretion - the first one is meal-related response and the second is a basic way that is independent of meals and is secreted in pulses. Insulin is delivered into the portal vein and ~50% of insulin is distributed into peripheral tissues. Exogenous administration of insulin cannot fully mimic a physiological character of insulin secretion because it is delivered into peripheral tissues, which adversely affects liver function in terms of carbohydrate metabolism in patients with endogenous insulin deficiency. Both pharmacodynamic characteristics of formulations and the mode of delivery influence their dynamics of action.

Rapid-acting insulin

Rapid-acting insulin analogues have been available on the market since 1996. However, their peak of action is still insufficient and does not fully cover postprandial hyperglycaemia.

There are several methods to accelerate the absorption and to improve the action of insulin under research.

The ultra-rapid human insulin VIAject (Linjeta). Test results indicate that it has a faster onset of action as compared to Lispro analogue and human insulins used so far, which is reflected by a more effective decrease in postprandial glycaemia without an increased risk of hypoglycaemia. Linjeta is a formulation containing short-acting human insulin, EDTA, and citric acid. These components result in hexameric insulin dissociation into insulin monomers and a more rapid insulin absorption [4, 5].

Comparing the influence of Linjeta, Lispro, and fast-acting human insulin on postprandial glycaemia in patients with Type 1 diabetes, significantly lower values were obtained in the Linjeta group (0-180 min; 157 ± 30 mg/dL; p = 0.002 vs. fast-acting human insulin) and in the Lispro group (170 ± 42 mg/dL; p = 0.668 vs. fast-acting human insulin). The difference between maximal and minimal glycaemia was lower in the case of Linjeta and was 70 ± 17 mg/dL, as compared to fast-acting human insulin (91 ± 33 mg/dL; p = 0.007 vs. Linjeta) and Lispro (89 ± 18 mg/dL; p = 0.011 vs. Linjeta) [4].

Different methods have been used to accelerate insulin absorption. Clinical trials have been conducted with an InsuPatch device heating the injection site and increasing blood supply, which resulted in more rapid insulin absorption. This device might be integrated with an insulin pump thus improving the functioning of the pump [6–8].

Addition of recombinant human hyaluronidase to insulin formulation is yet another method to accelerate the absorption and action of insulin. Study results confirm the acceleration of insulin absorption from the injection site and a faster onset of its action, which results in the improvement in postprandial glycaemic control without an increased risk of hypoglycaemia. These results also indicate good tolerance and safety of the method [9].

Intradermal administration of insulin using a 0.9 mm-long microneedle also accelerates insulin absorption. In two clinical studies on patients at different ages a more rapid onset of action (of ~22 min) was observed as compared to subcutaneous insulin administration. This is due to a more rapid absorption of insulin from the stratum papillare, which is rich in lymphatic vascularity and is well supplied with blood [10]. It offers some hope for the improvement in the precision of insulin pump therapy in the closed loop system. Intradermal insulin delivery was not more painful compared to subcutaneous administration, as assessed by patients in the visual analogue pain scale (VAS) [10].

New basal insulin

Degludec

A medical need remains for a once-daily insulin with 24-hour basal coverage in all diabetic patients. The search for the improvement in pharmacodynamic properties of insulin has resulted in introducing insulin Degludec, which is an ultra-long-acting basal insulin analogue. In January 2013 the European Medicines Agency granted a marketing authorisation and approved Tresiba (insulin Degludec) and Ryzodeg (insulin Degludec and rapid-acting analogue of human insulin Aspart) for distribution in the European Union [11].

After subcutaneous injection Degludec creates soluble multi-hexamers from which it is slowly absorbed into the bloodstream. Time of action is over 42 hours for therapeutic doses. The balance is obtained after 2–3 days of administration. A total decrease in glucose level after Degludec administration increases linearly with dose increase [12]. Eleven treat-to-target international, controlled, open, randomised trials were conducted with the parallel groups. These trials lasted 26 or 52 weeks. A total of 4275 patients were administered Degludec (1102 with T1DM and 3173 with T2DM). It was confirmed that a decrease in HbA1c was the same in all trials in terms of all the compared products (insulin Detemir and insulin Glargine) [12-14].

In the meta-analysis including seven treat-to-target trials Degludec was demonstrated to be more effective...
as regards a lower number of confirmed treatment-related hypoglycaemic episodes and nocturnal confirmed hypoglycaemia, as compared to basal insulin Glargine in patients with Type 1 and 2 diabetes. The decrease in hypoglycaemia was achieved with a lower mean plasma glucose level during the administration of Degludec compared to the administration of insulin Glargine [15].

The mixed formulation of insulin Degludec and insulin Aspart administered in T1DM at mealtime resulted in a decrease in HbA1c by 0.7%, and in patients with T2DM even by as much as 1.7% when it was administered alone or in combination with other antidiabetic agents [16-17].

Glargine U300

Using higher concentration insulin was another method to prolong its action. Glargine U300 was characterised by a significantly longer action compared to classic Glargine U100 and was related to lower variability of serum concentrations. It was demonstrated that the action of Glargine U300 lasts up to 36 hours after subcutaneous injection. A more stable release of insulin glargine U300 as compared to insulin Glargine U100 is related to the decrease in the volume of injection by 2/3, which results in a lower precipitate surface [18].

Similar efficacy and safety profile were obtained when Glargine U100 and U300 were compared. However, a lower weight gain and a lower risk of hypoglycaemia were observed in a group of patients using Glargine U300 [19].

PEGylated insulin Lispro

Next to insulin Degludec and Glargine U300, PEGylated insulin Lispro also deserves attention. It is formed by attaching a polyethylene glycol chain to the particle of insulin Lispro. The aim of PEGylation is to prolong the action of the insulin particle, to increase its hydrodynamic abilities, and to slow down subcutaneous absorption [20]. Insulin modified in such a way is characterised by a 24-hour flat profile of action. It shows more hepatic rather than peripheral activity, thereby mimicking endogenous insulin. Clinical studies revealed a similar or even better glycaemic control in patients using PegLispro as compared to Glargine. Lower glycaemic variability was noted both in T1DM and T2DM with a beneficial influence on body mass — a loss of up to 5% of body mass in the group of patients treated with PegLispro. The risk of nocturnal hypoglycaemia was significantly lower with a slightly increased risk of hypoglycaemia in general (NS). There was no need for dose modification in patients with renal problems [20]. In phase 3 trials, compared to insulin Glargine, PegLispro demonstrated a better influence on glycaemic control, lower glycaemic variability, and a reduction in a total number of hypoglycaemia, especially nocturnal hypoglycaemia. However, an increase in triglycerides, elevated liver enzymes, and increased fat content in the liver were reported [21]. The above observations resulted in termination of further trials concerning PEGylated insulin Lispro, and in December 2015 Eli Lilly stopped further observations.

Biosimilar insulin

The sale of insulin increases every year, hence the greater interest of pharmaceutical companies in introducing biosimilar insulins onto the market. It is a well-known fact that protein (i.e. insulin) production covers a few stages, and even small changes in the complex procedure may result in the production of protein products that are different from the original. Eli Lilly and Merck conduct independent clinical research using biosimilar Glargine [22].

Biodel Inc., a pharmaceutical company, is working on another basal insulin — referred to as BIOD — regulated basal insulin that contains modified insulin Glargine and possesses the ability to mix formulations of different time of action [22].

BIOD-Smart Basal is another promising formulation that was also offered by Biodel. It contains insulin Glargine, glucose oxidase, and peroxidase. In the presence of glucose and the above enzymes, gluconic acid is formed. It lowers pH of the suspension and increases solubility of insulin Glargine, thus promoting its release into the bloodstream.

The idea of “smart insulin” cannot be omitted. As part of the research on technology platforms (Smart-Cells), scientists from the Massachusetts Institute of Technology were the first to put forward the idea that an insulin particle could be modified so that it could be activated by sufficiently high blood glucose concentration. This research, however, is still in the preclinical phase [22].

After completing the necessary research and obtaining the approval of the European Medicines Agency, Eli Lilly started production and sales of biosimilar insulin Glargine in Europe (LY2963016). Since 2015 biosimilar Glargine (trade name Abasaglar) has also been available in Poland [23, 24].

Automatisation

Artificial pancreas

The first insulin pumps and the devices for continuous glycaemic monitoring appeared as early as in the 1960s. Since that time there have been trials to “close the loop”, i.e. to create a system in which the information on glycaemic level could automatically influence insulin delivery [25].
In 2014 another trial was conducted with a higher (the lowest registered glycaemic value was 62 mg/dL) with the minimal number of hypoglycaemic episodes to the pump, patients reached good glycaemic control life (consumption of at least six carbohydrate-rich meals and physical activity poses a real challenge to the artificial pancreas. A slightly easier role of the artificial pancreas seems to be at night, which is confirmed in the case of pumps that automatically suspend insulin delivery and are already available on the market [26, 27].

A number of professionals, including physicians, mathematicians, computer scientists, and algorithm specialists are involved in the teamwork on algorithms. The most advanced predictive-control algorithms plan the action a few moves ahead.

Constant progress in improving sensors as well as the efforts made to accelerate the onset of insulin action by adding recombinant human hyaluronidase, warming the site of injection, intradermal delivery, and the use of ultra-fast-acting insulin contribute to the reduction in postprandial glycaemia and lead to the desired efficacy and the closure of the loop system. An adequate reaction to dynamic glycaemic changes induced by meals and physical activity poses a real challenge to the artificial pancreas. A slightly easier role of the artificial pancreas seems to be at night, which is confirmed in the case of pumps that automatically suspend insulin delivery and are already available on the market [26, 27].

Bihormonal pump

The practical use of a bihormonal pump (insulin + glucagon) is a subject of conducted research in patients with T1DM. A pilot study on six patients with T1DM was performed. The subjects were monitored for over 48 hours with special attention paid to the efficacy and safety of the bihormonal pump in normal life (consumption of at least six carbohydrate-rich meals and physical activity). Glycaemia was measured every 15 minutes. The study results seem to be promising. Due to the pump, patients reached good glycaemic control with the minimal number of hypoglycaemic episodes (the lowest registered glycaemic value was 62 mg/dL) [28]. In 2014 another trial was conducted with a higher number of patients, *i.e.*, 20 adults and 32 teenagers with type 1 diabetes, in whom the fully autonomic bionic pancreas was used. Glycaemic control, insulin, and glucagon administration were done in a completely automatic manner, based on a mathematical algorithm recorded on a smartphone, with consideration given to the results of CGMS (continuous glucose monitoring system) — Dexcom. The mean glycaemic control level was obtained, *i.e.*, 138 mg/dL, and glycaemic level was noted within 4.8% and 6.1% of the time in adults and teenagers, respectively. Unlike previous studies, patients were allowed to consume meals and undertake physical activity at any time [29]. The greatest barrier with using bihormonal pumps is still the lack of a precise algorithm and the imperfection of continuous glucose monitoring systems. However, the computer progress, miniaturisation of electronic technology, and the use of modern smartphones to control the artificial pancreas gives hope to a great number of patients with type 1 diabetes.

Alternative routes of insulin administration

Inhaled insulin

Despite advanced technology and promising study results (though often in the pre-clinical phase), a change in the route of insulin administration has not been successful in clinical practice. Negative marketing experience with Exubera, the first inhalable insulin, resulted in great caution to such novelties. Exubera was given marketing authorisation for a medicinal product in the European Union in 2006. However, it was withdrawn from the market after a few months, which resulted in enormous financial losses. The reason for the withdrawal was related to poor sales results, which were caused by too high a price, a bulky size of the inhaler, dose-related problems, limitations of use in the case of pulmonary diseases, lack of reports on long-term results and safety, as well as complications in the form of cough.

However, attempts to use this route for periprandial insulin administration were not abandoned due to very satisfactory conditions for inhaled drug absorption (a large absorption surface and rich vascularity) [30]. In June 2014 the FDA approved Afrezza, an inhaled powder with fast-acting insulin in the form of technospheres (lyophilised microspheres made up of micromolecules of 2–3 µm). Technospheres are inhaled into the respiratory tract in the form of a dry powder. Afrezza is mainly addressed for periprandial use, with its onset of activity 15 minutes after inhalation. The inhaler is activated by the patient’s breath. The efficacy of this form of insulin was confirmed in a number of clinical trials and studies, both in patients with type 1 diabetes combined with basal insulin as well as in patients with type 2 diabetes in conjunction with oral diabetic agents [31]. In phase 3 randomised clinical trials in patients with type 1 diabetes a lower reduction in HbA1c was obtained in the group using Afrezza compared to the group using subcutaneous Aspart. However, significantly lower fasting glycaemic values, lower hypoglycaemia, and lower
weight gain were obtained as compared to the Aspart in patients with type 2 diabetes [31]. HbA1c level was significantly higher in comparison the placebo group. Afrezza is contraindicated in patients with chronic pulmonary disease or asthma. The most frequent adverse effect is usually pain, pharyngeal irritation, or mild cough occurring within the first three months of therapy, which is not intensified over time [31].

Transmucosal insulin

Transmucosal delivery is another means of non-invasive insulin delivery. An aerosol with properly adjusted nanoparticles is applied on the oral mucosa. Studies performed on animals offered promising results. Consequently, clinical trials were undertaken on healthy volunteers and patients with T1DM and T2DM. They showed that the absorption of insulin was more rapid in the form of an oral spray as compared to subcutaneous insulin delivery. Its onset of action was faster and the time of action was shorter [32].

The rate of absorption depended on the dose administered. In general, it was well tolerated. The only adverse effect was transient mild nausea. The product is on the market in some countries (e.g., Ecuador, India). However, the possibility for clinical use is still distant in Europe and in the USA due to the lack of required clinical trials [32].

Oral insulin

The possibility of oral insulin supplementation was an unattainable yet still very desired aim that has been pursued from the very beginning of insulin discovery [22]. In one study on patients with T1DM in whom an oral insulin preparation was used three times daily, 45 minutes before main meals with subcutaneous insulin administration for 15 days, a 24% reduction in the increase in glycaemic concentration above 200 mg/dL was noted. Furthermore, a greater reduction in glycaemic levels was observed in the morning hours, which is explained by hepatic pass of insulin and promoting the proper hepatic response concerning gluconeogenesis and glycogenolysis [33].

The development of nanotechnology has offered some hope for an increase in the efficacy and the acceptance of oral route of insulin administration. Nanoparticles composed of biodegradable polymers (e.g., chitosan) transport drug particles protected against the gastric acid environment and digestive enzymes of the digestive tract. Nanoparticles allow mucoadherence and penetration through the mucous barrier of the digestive tract. Gradually, they release the active agent in a desired manner at the site from which it reaches the bloodstream. PEGylated calcium phosphate nanoparticles are considered the best carrier system for insulin.

IN-105 is an oral insulin preparation that is currently undergoing phase 3 clinical studies. The formulation, produced by Biocon, is a fast-acting insulin analogue that reaches maximum blood concentration after 20 minutes with the peak of action noted after 40 minutes. Absorption and action of the preparation is directly proportional to the dose administered [34].

Transdermal application of insulin

Transdermal application is yet another interesting alternative to insulin injection. The stratum corneum, which forms the main barrier for the drug to be absorbed, limits the penetration of substances except for small lipophilic particles. Studies on the increase in skin permeability are being conducted. These studies use physicochemical methods such as iontophoresis (electric current application), ultrasound sonophoresis (use of ultrasound), microneedles (formation of microchannels in the stratum corneum), laser ablation, microdermabrasion (mechanical or chemical removal of the stratum corneum), and chemical enhancers changing the lipid structure of the stratum corneum and increasing its permeability [35, 36].

Insulin patches

Insulin patches may be another alternative route of insulin administration. Insulin-loaded microemulsions are currently the most effective, although they are still in the preclinical phase. The patches contain 10% oleic acid, 38% aqueous phase, and 50% surfactant with 2% dimethyl sulfoxide [6, 36].

Summary

Despite advances in the field of technology and the development of knowledge regarding the disease and the treatment methods, ever more effective tools are still searched for. Their aim is improvement in the quality of life and in glucose control as well as the improvement in patient compliance.

It is not certain what the future will bring. However, at present, trials for optimisation of insulin action and progressive automatisation of insulin pump therapy are in the most advanced trial phase.

References

23. Rosenstock J, Hollander J, Bhrarga et al. Similar efficacy and safety of LY260361 insulin glargine and insulin glargine (Lantus®) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, double-blind controlled trial (the ELEMENT 2 study). Diabetes Obes Metab 2015; 17: 734–741. doi: 10.1111/dob.12482.
dożylną u pacjentów z cukrzycą bólową polineuropatią czuciowo-ʳuchową w celu złagodzenia nasilenia bólu i poprawy jakości życia u pacjentów z cukrzycą [3].

Wraz z postępowaniem technologicznym i zaawansowaniem wiedzy na temat cukrzycy, badania i poszukiwania w zakresie insulinoterapii wiodą w kilku kierunkach równocześnie:
— optymalizacji parametrów działania insulin, poprzez modyfikacje w zakresie farmakokinetiki (ultraszybkodziałające analogi insulin ludzkich, ultra długo działające analogi insulin ludzkich, czy też użycie czynników przyspieszających wchłanianie, takich jak ogrzewanie miejsca wkłucia, dodanie rekombinowanej ludzkiej hialuronidazy lub podanie insulininy śródrobnnej);
— automatyzacji, czyli terapia pompowa w systemie zamkniętej pętli, nazywana „sztuczną trzustką”;
— zmniejszenia inwazyjności metod podawania insulininy (ARIA — alternatywne drogi podania insulininy).

Optymalizacja parametrów działania insulin

Fizjologicznie istnieją dwa sposoby wydzielania insulininy, pierwszy w odpowiedzi na posiłek oraz drugi — podstawowy, niezależny od posiłku, który ma charakter pulsacyjny. Drogą układu wrotnego insulininy trafia do obrotu w Unii Europejskiej [11]. Insulina bazowa szybkodziałająca (Aspart) i Insulina bazowa ultradługodziałająca (Degludec) i Ryzodeg (mieszanka insuliny Degludec i Ryzodeg) dopuściła produkt Tresiba (insulina nowego, ultradługodziałającego analogu insulin ludzkiej). W styczniu 2013 roku, EMEA (Europejska Agencja Leków) dopuściła produkt Tresiba (insulina nowego, ultradługodziałającego analogu insulin ludzkiej). Nowe insuliny bazowe w domyśle mogłoby zostać zintegrowane z pompą insulinową i poprawić jej działanie [6–8].

Kolejnym sposobem przyspieszenia absorpcji i działania insulininy jest dodanie rekombinowanej ludzkiej hialuronidazy do preparatu insulininy. Badania potwierdzają przyspieszenie wchłaniania insulininy z miejsca wstrzyknięcia oraz jej działanie, a co za tym idzie poprawę kontroli glikemii poposiłkowej, bez zwiększonego ryzyka hipoglikemii oraz wskazują na dobrą tolerancję i bezpieczeństwo tej metody [9].

Do przyspieszenia absorpcji insulininy prowadzi również jej śródrobną podanie z wykorzystaniem mikroigły o długości 0,9 mm. W dwóch badaniach klinicznych przeprowadzonych u pacjentów w różnym wieku wykazano szybszy początek działania (o ok. 22 min) w porównaniu z insuliną podaną podskórnie, co tłumaczy się szybszą absorpcją insulininy z dobrze ukrwionej skóry. Daje to nadzieję na poprawę precyzji działania pomp insulinowych w systemie zamkniętej pętli. Podanie śródrobną insulininy w ocenie pacjentów (analizowana skala natężenia bólu VAS) nie było bardziej bolesne, w porównaniu z podaniem podskórnym [10].

Ultraszybkodziałające analogi insulin

Szybkodziałające analogi insulininy są dostępne na rynku od 1996 roku, jednak szcześć ich działania wciąż jest niewystarczający i nie pokrywa idealnie poposiłkowej glikemii. Trwają badania nad ultraszybkodziałającą insulininą ludzką Linjeta (VIAject), a ich wyniki wskazują na to, że działa ona szybciej niż analog Lispro i dotychczas stosowane insulininy ludzkie, co znajduje odzwierciedlenie w skuteczniejszym obniżaniu poposiłkowej glikemii, bez zwiększonego ryzyka hipoglikemii. Linjeta jest preparatem złożonym z ludzkiej insulininy krótko- și iloczynowego i cytrynowego. Taki skład, powoduje odląkanie jonów czynnych od cząsteczek insulininy i zapobiega ich agregacji w heksamery, dzięki czemu insulinina pozostaje w postaci monomerów i znacznie szybciej się wchłania [4, 5]. Porównując wpływ insulininy Linjeta, Lispro oraz insulininy ludzkiej szybkodziałającej na glikemii poposiłkowej u pacjentów z cukrzycą tego 1 uzyskano istotnie niższe wartości w grupie Linjeta (0–180 min; 157 ± 30 mg/dl; p = 0,002 vs. insulinina Ludzka szybkodziałająca) i w grupie Lispro (170 ± 42 mg/dl; p = 0,668 vs. insulinina Ludzka szybkodziałająca). Różnica między maksymalną a minimalną glikemią była mniejsza w przypadku Linjeta a wynosiła 70 ± 17 mg/dl, w porównaniu z insulininą ludzką szybkodziałającą (91 ± 33 mg/dl; p = 0,007 vs. Linjeta) i Lispro (89 ± 18 mg/dl; p = 0,011 vs. Linjeta) [4].

Przyspieszenie absorpcji insulininy próbować osiągnąć innymi metodami. Prowadzone badania kliniczne z urządzeniem InsuPatch ogrzewającym miejsce iniekcji i zwiększając ukrwienie, co przyczyniało się do szybszego wchłaniania insulininy. Urządzenie to w domyśle mogłoby zostać zintegrowane z pompą insulinową i poprawić jej działanie [6–8].

Przyspieszenia absorpcji insulininy próbowało osiągnąć innymi metodami. Prowadzone badania kliniczne z urządzeniem InsuPatch ogrzewającym miejsce iniekcji i zwiększając ukrwienie, co przyczyniało się do szybszego wchłaniania insulininy. Urządzenie to w domyśle mogłoby zostać zintegrowane z pompą insulinową i poprawić jej działanie [6–8].
powstaje w wyniku dołączenia lanuczka glikolu polietylenowego do cząsteczki insuliny Lispro. Pegylacja ma na celu wydłużenie czasu działania cząsteczki insulin, zwiększenie jej właściwości hydrodynamicznych i spowolnienie absorpcji z tkanki podskórnej [20]. Tak zmodyfikowana insulina charakteryzuje się 24 h płaskim profilem działania. Wykazuje większą wątrobową niż obwodową aktywność, przez co naśladowuje działanie endogennej insuliny. W badaniach klinicznych stwierdzono podobną lub lepszą kontrolę glikemii u pacjentów stosujących PegLispro w porównaniu z Glarginą, mniejszą zmienność glikemii, zarówno w DM 1 jak i DM 2 oraz korzystny wpływ na mąg ciała-uutra nawet 5% masy ciała w grupie leczonej PegLispro. Ryzyko hipoglikemii nocnych było istotnie mniejsze, przy nieco wyższym ryzyku hipoglikemii ogólnie (NS). Nie było konieczności zmiany dawki u pacjentów z zaburzeniami czynności nerek [20]. W badaniach III fazy porównując do insuliny Glarginy, wykazano lepszy wpływ PegLispro na kontrolę glikemii, mniejszą zmienność glikemii redukcję całkowitej liczby hipoglikemii, szczególnie nocnych. Obserwowano jednak wzrost stężenia triacylglicerydów, podwyższenie stężenia aminotransferaz i zwiększenie zawartości tłuszczu w wątrobie [21]. Powyższe obserwacje stały się przyczyną zaprzestania dalszych badań dotyczących pegywowanej insulin Lispro i w grudniu 2015 roku firma EliLilly wstrzymała dalsze obserwacje.

Insuliny bioszgodne

Z roku na rok rośnie sprzedaż insulin na świecie, stąd coraz większe zainteresowanie firm farmaceutycznych wprowadzeniem do sprzedaży insulin biozgodnych (biosimilar insulins). Wiadomo, że produkcja białka, jakim jest insulina obejmuje kilka etapów i wszelkie na-wet drobne zmiany w tej skomplikowanej procedurze mogą prowadzić do powstania produktów białkowych, różnicujących się od oryginału. Firma Eli Lilly i Merck prowadzą niezależne badania kliniczne z użyciem biozgodnej Glarginy [22].

Firma Biodel pracuje nad kolejną insuliną bazalną, tak zwanną BIOD-regularną insuliną bazową, która w swoim składzie zawiera zmodyfikowaną wersję insuliny Glarginy oraz ma zdolność mieszania preparatów o różnym czasie działania [22].

Innym obiecującym preparatem insulin jest BIOD-Smart Basal, preparat opracowany również przez firmę Biodel, który zawiera insulinę Glarginę, oksydazę glikozową i peroksydazu. W obecności glukozy i wyżej wymienionych enzymów powstaje kwas gluconowy, który obniża pH zawiesiny i zwiększa rozpuszczalność insuliny Glarginy, promując w ten sposób uwalnianie jej do obiegu [22].
W tym miejscu należy również wspomnieć o idei Smart Insulin, czyli „inteligentnej insuliny”. Pomyśl, aby cząsteczkę insuliny zmodyfikować w taki sposób, by aktywowana była przez odpowiednio duże stężenie glukozy we krwi — jako pierwsi wysunęli naukowcy z Instytutu Technologii w Massachussets — w ramach badań platformy technologicznej SmartCells. Badania te jednak pozostają na chwilę obecną w fazie przedklinicznej [22].

Firma Eli Lilly po przeprowadzeniu niezbędnych badań, uzyskała zgodę Europejskiej Agencji Leków i rozpoczęła produkcję i sprzedaż biogrodnej insuliny Glargina w Europie (LY2963016). Od 2015 roku biogrodna Glargina (pod nazwą handlową Abasaglar) dostępna jest również na polskim rynku [23, 24].

Automatyzacja

Sztuczna trzustka

Pierwsze pompy insulinowe i urządzenia do ciągłego monitorowania glikemii powstały już w latach 60. ubiegłego wieku. Od tej pory trwają próby „zamknięcia pętli”, czyli tworzenia systemu, w którym informacja na temat poziomu glikemii mogłaby wpłynąć w matematyczny sposób na podaż insuliny [25].

Dr Arnold Kadish w 1964 roku, po raz pierwszy połączył pompę i czujnik z prostym systemem otwierającym i zamykającym dopływ insuliny na podstawie pomiarów glikemii. W latach 70 ubiegłego wieku stworzono systemy wykorzystujące mikrokomputery obliczające zapotrzebowanie na insulinę za pomocą prostopadłego algorytmu, ale ze względu na duże rozmiały, urządzenia te mogły być stosowane tylko przy lóżku chorego. W latach 80. ubiegłego wieku pojawiły się pierwsze przenośne urządzenia [26] i chociaż w chwili obecnej pompę mają niewielkie rozmiary, to ciągle jednak kluczowym problemem ograniczającym szerokie kliniczne zastosowanie jest niedoskonałość sensorów glukemii. Jednak postępująca rewolucja komputerowa, oraz niedoskonałość systemów ciągłego monitorowania glikemii (Dexcom), uzyskało w pełni automatyzowaną „bioniczą trzustkę”. Kontrola glikemii, podawanie insuliny i glukagonu odbywała się w sposób całkowicie automatyczny, na podstawie matematycznego algorytmu zapisanego na smartfonie, który uwzględniał wyniki ciągłego monitorowania glikemii (Dexcom). Uzyskano średni poziom glikemii 138 mg/dl, a poziom glikemii < 70 mg/dl występował przez 4,8% czasu trwania badania u dorosłych i 6,1% u młodzieży. W odróżnieniu od poprzednich badań pacjenci mogli w dowolnym czasie przyjmować posiłki oraz podejmować aktywność fizyczną [29]. Pomimo znacznego postępu w badaniach sztucznej trzustki istnieje wciąż ograniczenia uniemożliwiające wprowadzenie pompy biorównoważnej do codziennego użytku. Do największych barier należą trudności w stworzeniu precyzyjnego algorytmu sterowania przewidywanym oraz niedoskonałość systemów ciągłego monitorowania glikemii. Jednak postępująca rewolucja technologiczna komputerowa, miniaturyzacja technologii elektronicznej oraz coraz szersze wykorzystanie nowoczesnych smartfonów do sterowania pracą sztucznej trzustki dają nadzieję na ogromnej liczbie pacjentów z cukrzycą typu 1.

Alternatywne drogi podania insuliny

Insulina wziewna

Mimo zaawansowanych technologii oraz zachęcających wyników badań, choć często dopiero w fazie przedklinicznej, zmiana drogi podawania insuliny jak dotychczas nie sprawdziła się w praktyce klinicznej.
Zle marketingowe doświadczenia z Exuberą, pierwszą wziętą insuliną, zaowocowały podejściem z dużą ostrożnością do nowości. Exubera została dopuszczona do obrotu w Unii Europejskiej w 2006 roku i po kilku miesiącach wycofana, przyniosąc duże straty. Przy czyną wycofania z rynku, była zbyt mała sprzedaż, co spowodowane było zbyt wysoką ceną, niewygodnym inhalatorem, problemami z dawkowaniem, ograniczeniem możliwości stosowania w przypadku schorzeń płucnych, brakiem danych na temat odległych skutków terapii i jej bezpieczeństwa oraz powikłaniami w postaci kaszlu.

Nie zaniechano jednak prób wykorzystania tej drogi do podaży insuliny okołoposiłkowej ze względu na bardzo dobre warunki do przyswajania leków drogą wziętą (duża powierzchnia wchłaniania i bogate unaczynienie) [30].

W czerwcu 2014 roku Agencja ds. Żywności i Leków (FDA) zatwierdziła AFREZZA — proszek do inhalacji zawierający szybkodziałającą ludzką insulinę w postaci Technosfer (liofilizowanych mikrosfer, złożonych z mikrocząsteczek o wielkości 2–3 µm), które w postaci suchego proszku inhalowane są do dróg oddechowych. AFREZZA przeznaczona jest do stosowania okołoposiłkowego. Początek jej działania ma miejsce po 15 minutach od inhalacji. Inhalator do podawania insuliny zasilany jest oddechem pacjenta. Skuteczność proszku inhalowanego jest taka sama jak u pacjentów stosujących insulinę podskórnie. Stężenie leku we krwi obserwowano po 20, a szczyt działania po 40 minutach. Wchłanianie i działanie leku wprost proporcjonalne do zastosowanej dawki [34].

Insulina doustna

Możliwość doustnej suplementacji insuliny była nieosiągalnym, bardzo pożądannym celem do którego dążyło od samego początku odkrycia insulin y [33]. W jednym z badań wśród pacjentów z cukrzycą typu 1, u których stosowano doustny preparat insuliny 3 razy dziennie, 45 minut przed głównymi posiłkami wraz z insuliną podawaną podskórnie, przez 15 dni, wykaza no redukcję o 24% wzrostów stężenia glikemii powyżej 200 mg/dl, z charakterystyczną, większą redukcją poziomów glikemii w godzinach porannych, co tłumaczone jest efektem przejścia insuliny przez krawędzie wrotna i promowaniem prawidłowej odpowiedzi wątroby [32].

Dodatkowe nadzieje na zwiększenie skuteczności i uznanie drogi doustnej podaży insuliny przyniosło rozwój nanotechnologii. Nanocząsteczki z biodegradowalnymi polimerami (np. chitosanem), przenoszą cząsteczki leku, zabezpieczone przed kwasami środowiska ziemskiego, enzymami trawiennymi przewodu pokarmowego, umożliwiają przyleganie i przenikanie przez barierę śluzówkową pokarmnego, umożliwiają przyleganie i przenikanie przez barierę śluzówkową przewodu pokarmowego i stopniowo, w pożądany sposób uwalniają substancję leczniczą w miejscu, z którego trafia do krwiowodu. Najlepszym nośnikiem insuliny na chwilę obecną okazały się nanocząsteczki z pegylowanym fosforanem wiskiem żołądka i enzymami trawiennymi, które w postaci dojrzewających nanocząsteczek wprowadzanych w formie proszku w technice nanotechnologii. Po inhalacji nanocząsteczek (AFREZZA) wchłanianie leku i działanie leku są wprost proporcjonalne do zastosowanej dawki [32].

Insulina przeszkólowa

Kolejną metodą nieinwazyjną podaży insuliny jest podanie droga przeszkólową. Aeroloz z odpowiednio przystosowanymi nanocząsteczkami insuliny, jest aplikowany na śluzówki jamy ustnej. Badania na modelu zwierzęcym daly zachodzące wyniki, podjęto więc kliniczne badania u zdrowych ochotników i chorych na cukrzycę typu 1 i 2. Wykazały one, że insulina aplikowana w postaci doustnego sprayu w porównaniu z insuliną aplikowaną podskórnie, była szysbciej wchłania niana, szybszy był jej początek działania i krótszy czas działania [32]. Szybkość absorpcji zależała od podanej dawki. Była ona na ogół dobrze tolerowana. Jedynym działaniem niepożądannym były przejściowe, łagodne nudności. Produkt jest stosowany w niektórych krajach, w Europie i Stanach Zjednoczonych, jednak ze względu na brak wymaganego badań klinicznych jego droga do klinicznego zastosowania jest jeszcze dość daleka [32].

Przeszkórną podaż insulin y

Kolejną atrakcyjną alternatywą dla iniekcji insuliny jest aplikacja jej przezskórnie. Warstwa rogowa naskórka, będąca główną barierą na drodze absorpcji leku ogranicza przenikanie substancji, przepuszczając tylko małe, lipofilne cząsteczki. Trwają badania nad zwiększeniem przenikalności przez skórę za pomocą fizyko-chemicznych metod, takich jak jonoforeza.
(użycie prądu elektrycznego), sonoforeza ultradźwiękowa (użycie ultradźwięków), mikroigły (wytworzenie mikrokanalów w warstwie rogowej naskórka), ablacja laserowa, mikrodermabrażja (mechaniczne lub chemiczne usunięcie zewnętrznej warstwy naskórka), użycie substancji chemicznych, zmieniających lipidową strukturę warstwy rogowej naskórka i zwiększających jej przepuszczalność [35, 36].

Plastry z insuliną
Plastry z insuliną mogą stanowić kolejną, alternatywną drogę podawania leku. Na chwilę obecną najbardziej skuteczne, choć dopiero w fazie badań przedklinicznych są plastry z mikroemulsją insuliny, złożoną w 10% z fazy oleistej, w 38% z fazy wodnej, w 50% z surfaktantu i w 2% z DMSO [6, 36].

Podsumowanie
Wraz z postępowaniem technologicznym i zaawansowaniem wiedzy na temat choroby i sposobów jej leczenia, trwają poszukiwania coraz doskonałych narzędzi, służących poprawie jakości życia, poprawie wyrównania metabolicznego i poprawie wskaźników przestrzegania zaleceń lekarskich.

Trudno wyrokować co przyniesie przyszłość, jednak w chwili obecnej, w najbardziej zaawansowanej fazie badań są próby optymalizacji parametrów działania insuliny oraz postępująca automatyzacja pomp insulinowych.